首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mean crustal velocity is a critical parameter for genesis of continental crystalline crust because it is a function of mean crustal composition and therefore may be used to resolve continental crustal growth in space and time. Although the best values of mean crustal velocity are determined from wide-angle reflection measurements, most studied here necessarily come from vertical averages in crustal refraction determinations. The mode of 158 values of mean crustal velocity is 6.3 km/s, a velocity which corresponds to a mean crustal composition of granodiorite to felsic quartz diorite; Archean crust may be slightly more mafic. Mean crustal velocities range from 5.8 to 7.0 km/s. The lowest values invariably are found in thermally disturbed rift zones and the highest values correspond to velocities in gabbro. Velocities in island arcs may be as low as 6.0 km/s but are typically 6.5–6.9 km/s which corresponds to andesitic composition; estimates of island arc composition are andesitic. If values of mean crustal velocity are not biased, this observation suggests that continental crust did not grow simply by addition of island arc material. Possibilities are that crust formed from fusion of island arcs and was later changed to more felsic composition by addition of material from the mantle or that the late Archean episode of major crustal growth did not involve processes similar to younger island arcs. Some crustal blocks might be changed in composition and thickness by such processes as underplating, interthrusting, necking and sub-crustal erosion. Specially designed experiments are suggested to determine this parameter so critical for understanding genesis of continental crust.  相似文献   

2.
Rayleigh Wave Group Velocity Tomography of Siberia, China and the Vicinity   总被引:7,自引:0,他引:7  
—Rayleigh waves are used in a tomographic inversion to obtain group velocity maps of East Asia (40° E–160° E and 20° N–70° N). The period range studied is 30 to 70 seconds. Seismograms used for this study were recorded at CDSN stations, at a temporary broadband seismic array in Tibet, at several SRO stations, and Kirnos-equipped stations established in Asia by the former Soviet Union, in Siberia, in the Sakhalin and in Mongolia. Altogether more than 1200 paths were available in the tomographic inversion. The study area includes the Angara craton, the geologically ancient core of Asia, and the subsequently accreted units, the Altaids (a Paleozoic collision complex), the Sino-Korean platform (a chain of Archaen terranes separated by belts of active structures), the south China platform (a collage of Precambrian, Paleozoic and Mesozoic metamorphic and igneous terranes), as well as the Tibetan plateau (an active tectonic feature created in late Cenozoic through collision of the Indian subcontinent and the Asian continent). Many of these main units are recognizable in the tomographic images as distinctive units; Tibet appears as a prominent low velocity (about ?15% from the average) structure, with western and central Tibet often appearing as the areas with the lowest velocities, the Central Asian fold-belt, and the Angara craton are consistently high group velocity areas. Some lesser tectonic features are also recognizable. For example, Lake Baikal is seen as a high velocity feature at periods greater than 40 seconds. However, the high group velocity feature does not stop near the southern end of Lake Baikal; it extends south-southwestward across Mongolia. The North China Plain, a part of the platform where extensional tectonics dominate, is an area of high velocities as a result of relatively thin crust. The south China block, the least tectonically active region of China, is generally an area of high velocity. For periods longer than 40 seconds, a NNE trending high group velocity gradient clearly exists in eastern China; the velocities are noticeably higher in the east. From the group velocity maps, average dispersion curves at twelve locations were determined and inverted to obtain velocity structures. Main results of group velocity inversion include: (1) a Tibetan crust of around 60?km thick, with low crustal and upper mantle shear velocities, at 3.3?km/s and 4.2?km/s, respectively; (2) with the Moho constrained at 40–43?km, the Angara craton and the Central Asian foldbelt have a V S in excess of 4.6?km/s; (3) relatively low shear velocities are obtained for tectonically active areas. In many parts of the study area, where Precambrian basement is exposed, the process in the crust and upper mantle due to recent tectonic activities have modified the crust and upper mantle velocity structures under the Precambrian terranes, they are no longer underlain by high velocity crust and mantle.  相似文献   

3.
We conducted the ambient noise tomography to image the shallow crustal structure of southern Tibet. The 2D maps of phase velocity anomalies at the periods of 10–16 s show that the low velocities are mainly confined along or near some of the rift zones. While the maps at the periods of 18–25 s show that the coherent patterns that the low velocities expand outside of the rift zones. It means that the low velocities are prevailing in the middle crust of southern Tibet. According to the previous study of surface wave tomography with teleseismic data, we find that the low velocities from the lower crust to the lithospheric mantle are also restricted to the same rift zones. Thus, the integrated knowledge of the distribution of the low velocities in southern Tibet provides some new insight on the formation of the north–south trending rift zones. Compiling the multidiscipline evidences, we conclude that the rifting was an integrated process of the entire lithosphere in the early stage (~26–10 Ma), but mainly occurred within the upper crust due to the weakening a decoupling in the low velocity middle crust in the late stage (later than ~8 Ma).  相似文献   

4.
依据穿过巴颜喀拉地块的北部、秦岭地块、祁连地块、海原弧形构造区和鄂尔多斯地块的玛沁-兰州-靖边人工地震剖面的P波、S波的速度结构和泊松比结构,对青藏高原东北缘的地壳组成进行研究,并探讨其动力学过程. 首先,系统地归纳总结出一套将地震测深得到的原位P波速度校正到实验室温压条件下波速的具体可行的方法,利用大地热流值求取地壳不同深度的温度是该方法的关键. 然后,将上述剖面的原位P波速度校正到600 MPa和室温条件下,结合泊松比与相同温压条件下的实验室岩石波速测量结果进行对比,确定研究区的岩性组成. 结果表明,青藏高原东北缘地壳平均P波校正波速为6.43 km/s,地壳整体像上地壳一样呈酸性. 巴颜喀拉地块和秦岭地块南部的下地壳底部缺失校正速度Vp>6.9 km/s的基性岩,下地壳中酸性互层,下地壳整体呈酸性. 其他地块下地壳底部有2~10 km厚的校正速度Vp>6.9 km/s的基性岩,下地壳整体呈中性. 最后,根据青藏高原东北缘地壳结构和组成的研究成果,支持地壳增厚主要发生在下地壳的观点;提出巴颜喀拉地块和秦岭地块南部曾发生过下地壳拆沉作用,并导致高原的加速隆升.  相似文献   

5.
Two-dimensional crustal velocity models are derived from passive seismic observations for the Archean Karelian bedrock of north-eastern Finland. In addition, an updated Moho depth map is constructed by integrating the results of this study with previous data sets. The structural models image a typical three-layer Archean crust, with thickness varying between 40 and 52 km. P wave velocities within the 12–20 km thick upper crust range from 6.1 to 6.4 km/s. The relatively high velocities are related to layered mafic intrusive and volcanic rocks. The middle crust is a fairly homogeneous layer associated with velocities of 6.5–6.8 km/s. The boundary between middle and lower crust is located at depths between 28 and 38 km. The thickness of the lower crust increases from 5–15 km in the Archean part to 15–22 km in the Archean–Proterozoic transition zone. In the lower crust and uppermost mantle, P wave velocities vary between 6.9–7.3 km/s and 7.9–8.2 km/s. The average Vp/Vs ratio increases from 1.71 in the upper crust to 1.76 in the lower crust.The crust attains its maximum thickness in the south-east, where the Archean crust is both over- and underthrust by the Proterozoic crust. A crustal depression bulging out from that zone to the N–NE towards Kuusamo is linked to a collision between major Archean blocks. Further north, crustal thickening under the Salla and Kittilä greenstone belts is tentatively associated with a NW–SE-oriented collision zone or major shear zone. Elevated Moho beneath the Pudasjärvi block is primarily explained with rift-related extension and crustal thinning at ∼2.4–2.1 Ga.The new crustal velocity models and synthetic waveform modelling are used to outline the thickness of the seismogenic layer beneath the temporary Kuusamo seismic network. Lack of seismic activity within the mafic high-velocity body in the uppermost 8 km of crust and relative abundance of mid-crustal, i.e., 14–30 km deep earthquakes are characteristic features of the Kuusamo seismicity. The upper limit of seismicity is attributed to the excess of strong mafic material in the uppermost crust. Comparison with the rheological profiles of the lithosphere, calculated at nearby locations, indicates that the base of the seismogenic layer correlates best with the onset of brittle to ductile transition at about 30 km depth.We found no evidence on microearthquake activity in the lower crust beneath the Archean Karelian craton. However, a data set of relatively well-constrained events extracted from the regional earthquake catalogue implies a deeper cut-off depth for earthquakes in the Norrbotten tectonic province of northern Sweden.  相似文献   

6.
Variations in crustal thickness in the Zagros determined by joint inversion of P wave receiver functions (RFs) and Rayleigh wave group and phase velocity dispersion. The time domain iterative deconvolution procedure was employed to compute RFs from teleseismic recordings at seven broadband stations of INSN network. Rayleigh wave phase velocity dispersion curves were estimated employing two-station method. Fundamental mode Rayleigh wave group velocities for each station is taken from a regional scale surface wave tomographic imaging. The main variations in crustal thickness that we observe are between stations located in the Zagros fold and thrust belt with those located in the Sanandaj–Sirjan zone (SSZ) and Urumieh–Dokhtar magmatic assemblage (UDMA). Our results indicate that the average crustal thickness beneath the Zagros Mountain Range varies from ~46 km in Western and Central Zagros beneath SHGR and GHIR up to ~50 km beneath BNDS located in easternmost of the Zagros. Toward NE, we observe an increase in Moho depth where it reaches ~58 km beneath SNGE located in the SSZ. Average crustal thickness also varies beneath the UDMA from ~50 km in western parts below ASAO to ~58 in central parts below NASN. The observed variation along the SSZ and UDMA may be associated to ongoing slab steepening or break off in the NW Zagros, comparing under thrusting of the Arabian plate beneath Central Zagros. The results show that in Central Iran, the crustal thickness decrease again to ~47 km below KRBR. There is not a significant crustal thickness difference along the Zagros fold and thrust belt. We found the same crystalline crust of ~34 km thick beneath the different parts of the Zagros fold and thrust belt. The similarity of crustal structure suggests that the crust of the Zagros fold and thrust belt was uniform before subsidence and deposition of the sediments. Our results confirm that the shortening of the western and eastern parts of the Zagros basement is small and has only started recently.  相似文献   

7.
The firework algorithm (FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude (M W) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region, inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15, 15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s, respectively.  相似文献   

8.
We computed P and S receiver functions to investigate the lithospheric structure beneath the northwest Iran and compute the Vp/Vs ratio within the crust of this seismologically active area. Our results enabled us to map the lateral variations of the Moho as well as those of the lithosphere–asthenosphere boundary (LAB) beneath this region. We selected data from teleseismic events (Mb?>?5.5, epicentral distance between 30° and 95° for P receiver functions and Mb?>?5.7, epicentral distance between 60° and 85° for S receiver functions) recorded from 1995 to 2008 at 8 three-component short-period stations of Tabriz Telemetry Seismic Network. Our results obtained from P receiver functions indicate clear conversions at the Moho boundary. The Moho depth was firstly estimated from the delay time of the Moho converted phase relative to the direct P wave. Then we used the H-Vp/Vs stacking algorithm of Zhu and Kanamori to estimate the crustal thickness and Vp/Vs ratio underneath the stations with clear Moho multiples. We found an average Moho depth of 48 km, which varies between 38.5 and 53 km. The Moho boundary showed a significant deepening towards east and north. This may reveal a crustal thickening towards northeast possibly due to the collision between the Central Iran and South Caspian plates. The obtained average Vp/Vs ratio was estimated to be 1.76, which varies between 1.73 and 1.82. The crustal structure was also determined by modeling of P receiver functions. We obtained a three-layered model for the crust beneath this area. The thickness of the layers is estimated to be 6–11, 18–35, and 38–53 km, respectively. The average of the shear wave velocity was calculated to be 3.4 km/s in the crust and reaches 4.3 km/s below the Moho discontinuity. The crustal thickness values obtained from P receiver functions are in good agreement with those derived by S receiver functions. In addition, clear conversions with negative polarity were observed at ~8.7 s in S receiver functions, which could be related to the conversion at the LAB. This may show a relatively thin continental lithosphere of about 85 km implying that the lithosphere was influenced by various geodynamical reworking processes in the past.  相似文献   

9.
沿乌鲁木齐-库尔勒350余公里长的测线上完成了穿越天山的地震转换波野外观测,得出天山造山带的深部构造剖面图和壳内P,S波速度结构模型.天山的结晶地壳可分为4层,各层的速度分别是:Vp值为5.9,6.3,6.6,6.9km/s;Vs值为3.2,3.5,3.7,3.9km/s。上地幔顶部的波速:Vp值为8.10km/s。Vs值为4.6km/s。天山地区的地壳厚度为42-56km,中天山最厚,达到50-56km。地壳中部存在低速透镜体。探测结果表明,天山大地构造可分为北天山、中天山和南天山3个区,其地壳深部构造特征各不相同。用颤动构造理论来解释天山造山带的形成机制和演化较板块构造理论更为合理。  相似文献   

10.
11.
沿乌鲁木齐-库尔勒350余公里长的测线上完成了穿越天山的地震转换波野外观测,得出天山造山带的深部构造剖面图和壳内P,S波速度结构模型.天山的结晶地壳可分为4层,各层的速度分别是:Vp值为5.9,6.3,6.6,6.9km/s;Vs值为3.2,3.5,3.7,3.9km/s。上地幔顶部的波速:Vp值为8.10km/s。Vs值为4.6km/s。天山地区的地壳厚度为42-56km,中天山最厚,达到50-56km。地壳中部存在低速透镜体。探测结果表明,天山大地构造可分为北天山、中天山和南天山3个区,其地壳深部构造特征各不相同。用颤动构造理论来解释天山造山带的形成机制和演化较板块构造理论更为合理。  相似文献   

12.
We determined crustal structure along the latitude 30°N through the eastern Tibetan Plateau using a teleseismic receiver function analysis. The data came mostly from seismic stations deployed in eastern Tibet and western Sichuan region from 2004 to 2006. Crustal thickness and Vp/Vs ratio at each station were estimated by the Hk stacking method. On the profile, the mean crustal thickness and Vp/Vs ratio were found to be 62.3 km and 1.74 in the Lhasa block, 71.2 km and 1.79 near the Bangong–Nujiang suture, 66.3 km and 1.80 in the Qiangtang block, 59.8 km and 1.81 in the Songpan–Garze block, and 42.9 km and 1.76 in the Yangtze block, respectively. The estimated crustal thicknesses are consistent with predictions based on the topography and the Airy isostasy, except near the Bangong–Nujiang suture and in the Qiangtang block where the crust is 5–10 km thicker than predicted, indicating that the crust may be denser, possibly due to mafic underplating. We also inverted receiver functions for crustal velocity structure along the profile, which reveals a low S-wave velocity zone in the lower crust beneath the eastern Tibetan Plateau, although the extent of the low-velocity zone varies considerably. The low-velocity zone, together with previous results, suggests limited partial melting and localized crustal flow in the lower crust of the eastern Tibetan Plateau.  相似文献   

13.
We analyze refraction measurements along a short profile in western Kru?né hory crystalline unit. The profile passed close to the seismically active zone of Nový Kostel. The measurements were carried out to distances of about 15 km using quarry blasts near the village of Horní Rozmy?l, located at the eastern margin of the crystalline unit. Smoothed P-wave travel times were interpreted using the Wiechert-Herglotz method, which yielded a 1-D velocity model of the shallow crustal structure of the crystalline unit down to a depth of 1.7 km. The P-wave velocity of the model increases from about 4.0 km/s at the surface to 5.9 km/s at a depth of 1.7 km. The superficial velocities of our model are somewhat higher than the superficial velocities of the model that is routinely used for earthquake location in the region.  相似文献   

14.
A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from surface to 80 km beneath the profile have been determined. The inversion results reveal that there is significant lateral variation of the crustal structure between the tectonic blocks on the profile. From Linzhi north of the eastern Himalayan Syntaxis, the crust is gradually thickened in NE direction; the crustal thickness reaches to the maximum value (∼72 km) at the Bangong-Nujiang suture, and then decreased to 65 km in the Qiangtang block, to 57–64 km in the Bayan Har block, and to 40–45 km in the Sichuan Basin. The eastern segment of the teleseismic profile (to the east of Batang) coincides geographically with the Zhubalong-Zizhong deep seismic sounding profile carried out in 2000, and the S-wave velocity structure determined from receiver functions is consistent with the P-wave velocity structure obtained by deep seismic sounding in respect of the depths of Moho and major crustal interfaces. In the Qiangtang and the Bayan Har blocks, the lower velocity layer is widespread in the lower crust (at depth of 30–60 km) along the profile, while there is a normal velocity distribution in lower crust in the Sichuan Basin. On an average, the crustal velocity ratio (Poisson ratio) in tectonic blocks on the profile is 1.73 (σ = 0.247) in the Lhasa block, 1.78 (σ = 0.269) in the Banggong-Nujiang suture, 1.80 (σ = 0.275) in the Qiangtang block, 1.86 (σ = 0.294) in the Bayan Har blocks, and 1.77 (σ = 0.265) in the Yangtze block, respectively. The Qiangtang and the Bayan Har blocks are characterized by lower S-wave velocity anomaly in lower crust, complicated Moho transition, and higher crustal Poisson ratio, indicating that there is a hot and weak medium in lower crust. These are considered as the deep environment of lower crustal flow in the eastern Tibetan Plateau. Flowage of the ductile material in lower crust may be attributable to the variation of the gravitational potential energy in upper crust from higher on the plateau to lower off plateau. Supported by the National Natural Science Foundation of China (Grants No. 40334041 and 40774037) and the International Cooperation Program of the Ministry of Science and Technology of China (Grant No. 2003DF000011)  相似文献   

15.
The Maqen-Jingbian wide-angle seismic reflection and refraction experiment was carried out in 1998, which aims at determining detailed structure in the crust and top of the upper mantle and understanding structural relation between the northeastern Tibetan plateau and the Ordos block. The 1-D crustal models inferred by waveform inversion show strong variations in crustal structure, which can be classified into four different types: ① an Ordos platform with the Proterozoic crust and two high-velocity layers in the northeast section, ② a transitional crust between the northeastern Tibetan plateau and the Ordos block across the Haiyuan earthquake zone, ③ the Qilian orogenic zone in the central part, and 4 the Qinling orogenic zone in the southwestern section. The Moho depth increases from ~42 km to ~62 km from the NE part to the SW part of the profile. The crystalline crust consists of the upper crust and lower crust in northeastern Tibetan plateau. There is an obviously low P-wave velocity layer dipping northeastward, which is 12–13 km thick, at the bottom of the upper crust in Qinling orogenic zone and Haiyuan earthquake zone. The lower crust is characterized by alternating high and low P-wave velocity layers. Beneath Ordos block, i.e., the NE part of the profile, the crust shows quite a smooth increase in P-wave velocity down to the Moho at a depth of about 42 km.  相似文献   

16.
华北克拉通北缘(怀来-苏尼特右旗)地壳结构   总被引:4,自引:3,他引:1       下载免费PDF全文
2009年,中国地质科学院地质研究所与美国俄克拉荷马大学合作实施了一条长453 km的深地震反射、宽角反射与折射、三分量反射地震联合探测剖面. 剖面南起怀来盆地,向北依次穿过燕山造山带西缘、内蒙地轴、白乃庙弧带、温都尔庙杂岩带,到达索伦缝合带. 其中,宽角反射与折射剖面采用8个0.5~1.5 t炸药震源激发,使用300套Texan单分量数字检波器接收,获得了高质量的地震资料. 通过资料分析和处理,识别出沉积层及结晶基底的折射波(Pg)、来自上地壳底界面的反射波(Pcp),中地壳底界面的反射波(Plp),莫霍界面的反射波(Pmp)及上地幔顶部的折射波(Pn)等5个震相. 分别采用Hole有限差分层析成像和Rayinvr算法对华北克拉通北缘及中亚造山带南部进行了上地壳P波速度结构成像和全地壳二维射线追踪反演成像. 结果显示:(1)中亚造山带地壳厚度~40 km,变化平缓,低于全球平均造山带地壳平均厚度,可能为造山后区域伸展的结果. 阴山-燕山带附近莫霍明显加深,推测其为燕山期造山过程形成的山根,但该山根很可能在后期被改造. (2)测线中部地壳上部速度较高,对应地表大面积花岗岩出露,而下地壳速度较低,速度梯度低,呈通道状,推测其可能曾为古亚洲洋向南俯冲消亡的主动陆缘,并在碰撞后演变为伸展环境下岩浆侵入的通道. (3)华北克拉通北缘与中亚造山带显示出不同速度变化特征,前者变化相对缓而后者则变化剧烈,二者的分界出现在赤峰-白云鄂博断裂附近.  相似文献   

17.
The transitional area between the northeastern margin of the Qinghai-Tibetan Plateau, Ordos Block and Alxa Block,also being the northern segment of the North-South Seismic Belt, is characterized by considerably high seismicity level and high risk of strong earthquakes. In view of the special tectonic environment and deep tectonic setting in this area, this study used two seismic wide-angle reflection/refraction cross profiles for double constraining, so as to more reliably obtain the fine-scale velocity structure characteristics in both the shallow and deep crust of individual blocks and their boundaries in the study area,and further discuss the seismogenic environment in seismic zones with strong historical earthquakes. In this paper, the P-wave data from the two profiles are processed and interpreted, and two-dimensional crustal velocity structure models along the two profiles are constructed by travel time forward modeling. The results show that there are great differences in velocity structure,shape of intra-crustal interfaces and crustal thickness among different blocks sampled by the two seismic profiles. The crustal thickness along the Lanzhou-Huianbu-Yulin seismic sounding profile(L1) increases from ~43 km in the western margin of Ordos Block to ~56 km in the Qilian Block to the west. In the Ordos Block, the velocity contours vary gently, and the average velocity of the crust is about 6.30 km s-1; On the other hand, the velocity structures in the crust of the Qilian Block and the arclike tectonic zone vary dramatically, and the average crustal velocities in these areas are about 0.10 km s-1 lower than that of the Ordos Block. In addition, discontinuous low-velocity bodies(LVZ1 and LVZ2) are identified in the crust of the Qilian Block and the arc-like tectonic zone, the velocity of which is 0.10–0.20 km s-1 lower than that of the surroundings. The average crustal thickness of the Ordos Block is consistently estimated to be around 43 km along both Profile L2(Tongchuan-Huianbu-Alashan left banner seismic sounding profile) and Profile L1. In contrast to the gently varying intra-crustal interfaces and velocity contours in the Ordos Block along Profile L1, which is a typical structure characteristic of stable cratons, the crustal structure in the Ordos Block along Profile L2 exhibits rather complex variations. This indicates the presence of significant structural differences in the crust within the Ordos Block. The crustal structure of the Helan Mountain Qilian Block and the Yinchuan Basin is featured by "uplift and depression" undulations, showing the characteristics of localized compressional deformation.Moreover, there are low-velocity zones with alternative high and low velocities in the middle and lower crust beneath the Helan Mountain, where the velocity is about 0.15–0.25 km s-1 lower than that of the surrounding areas. The crustal thickness of the Alxa Block is about 49 km, and the velocity contours in the upper and middle-lower crust of the block vary significantly. The complex crustal velocity structure images along the two seismic sounding profiles L1 and L2 reveal considerable structural differences among different tectonic blocks, their coupling relationships and velocity structural features in the seismic zones where strong historical earthquakes occurred. The imaging result of this study provides fine-scale crustal structure information for further understanding the seismogenic environment and mechanism in the study area.  相似文献   

18.
The crustal structure of North Abu-Simbel area was studied using spectral ratios of short-period P waves. Three-component short period seismograms from the Masmas seismic station of the Egyptian National Seismic Network Stations were used. The Thomson-Haskell matrix formulation was applied for linearly elastic, homogeneous crustal layers. The obtained model suggests that the crust under the study region consists of a thin (0.8 km) superficial top layer with a P-wave velocity of 3.8±0.7 km/s and three distinct layers with a mean P-wave velocity of 6.6 km/s, overlaying the upper mantle with a P-wave velocity of 8.3 km/s (fixed). The results were obtained for 14 different earthquakes. The P-wave velocities of the three layers are: 5.8±0.6 km/s, 6.5±0.4 km/s and 7.2±0.3 km/s. The total depth to the Moho interface is 32±2 km. The crustal velocity model estimated using observations is relatively simple, being characterized by smooth velocity variations through the middle and lower crust and normal crustal thickness. The resultant crustal model is consistent with the model obtained from previous deep seismic soundings along the northern part of Aswan lake zone.  相似文献   

19.
In order to investigate crustal structure beneath the eastern Marmara region, a seismic refraction survey was conducted across the North Anatolian Fault (NAF) zone in north west Turkey. Two reversed profiles across two strands of the NAF zone were recorded in the Armutlu Highland where a tectonically active region was formed by different continents. We used land explosions in boreholes and quarry blasts as seismic sources. A reliable crustal velocity and depth model is obtained from the inversion of first arrival travel times. The velocity-depth model will improve the positioning of the earthquake activities in this active portion of the NAF. A high velocity anomaly (5.6–5.8 km s−1) in the central highland of Armutlu block and the low velocity (4.90 km s−1) pattern north of Iznik Lake are the two dominant features. The crustal thickness is about 26 ± 2 km in the north and increases to about 32 ± 2 km beneath the central Armutlu block in the south. P-wave velocities are about 3.95 km s−1 to 4.70 km s−1 for the depth range between about 1 km and 5 km in the upper crust. The eastern Marmara region has different units of upper crust with velocities varying with depth to almost 8 km. The high upper crust velocities are associated with Armutlu metamorphic rocks, while the low velocity anomalies are due to unconsolidated sedimentary sequences. The western side of Armutlu block has complex tectonics and is well known for geothermal sources. If these sources are continuous throughout the portions of the crust, it may be associated with a granitic intrusion and deformation along the NAF zone. That is, the geothermal sources associated with the low velocity may be due to the occurrence of widespread shear heating, even shear melting. The presence of shear melting may indicate the presence of crustal fluid imposed by two blocks of the NAF system.  相似文献   

20.
邢台震源区波速比异常与地震的关系   总被引:5,自引:2,他引:5       下载免费PDF全文
通过对忻州─泰安人工地震测深剖面P波、S波的联合解释,得到沿剖面不同地质单元隆起区与裂陷区、震源区与非震区的速度和波速比结构.鲁西隆起和太行、山西隆起为较均匀的成层构造,地壳厚度分别为32km和40-43km,波速比为1.74.中段裂陷区构造变化较大,地壳厚度约30-33km,波速比为1.75-1.77.邢台地震区上地壳下部和中地壳出现高波速比1.77的异常,与裂陷区东的1.73形成明显的差异.由此推测,地震的发生不仅与震源区的构造有关,更主要是与震源区岩石的性质有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号