首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is presented for the determination of the transverse response of the idealized suspended span of an offshore pipeline to random seismic input. The method is based on spatial discretization of the pipe with nodal lumped masses. The earthquake is assumed to be a stationary random process characterized by a power spectral density function. The cross spectral density function between two random seismic excitations along the pipe length is defined with the help of a local earthquake power special density function, which is assumed to be the same for the two end supports of the pipeline, and a frequency dependent weighted function which decays exponentially with distance from the pipe supports. The solution is obtained in the frequency domain using the spectral approach and is presented in terms of r.m.s. displacements and stresses. The formulation adequately includes the pressure drag effect which tends to dampen the pipe motions. Utilizing this method of analysis, several idealized pipe sea bed configurations, in which the pipe is anchored between two end blocks and subjected to horizontal ground excitations normal to the pipe axis, have been analysed to predict the influence of certain important parameters on the response.  相似文献   

2.
Earthquake excitation is often modelled by non‐stationary random process (i.e. uniformly modulated broad‐band excitation) for analysis of structural safety subjected to seismic hazards. In this paper, the non‐stationary response of a single‐degree‐of‐freedom (SDOF) system to non‐stationary earthquake motion is investigated for different shapes of modulating functions. The evolutionary power‐spectral density function (PSDF) of the displacement of the SDOF system is obtained using the time‐varying frequency response function and the PSDF of the earthquake excitation. The close form expressions for time‐varying frequency response function are derived for different shapes of the modulating functions. In order to study the effects of the shape of the modulating function, a comparison of the non‐stationary earthquake response of the SDOF system is also made for different modulating functions having the same energy content. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
地震动功率谱与反应谱的转换关系   总被引:11,自引:0,他引:11  
本文详细评述了现今常用的几种加速度反应谱与功率谱的转换关系。对于小阻尼单质点体系而言,考虑到输入地震动是一非平稳的随机过程,又由于其传递函数的窄频带滤波特性,它的加速度反应将是一窄频带的非平稳随机过程。对于峰值系数水平的超越不是独立的,而是成群超越。据此本文考虑非平稳效应和对峰值系数水平的成群效应,对前人的转换关系进行了修正,并基于随机振动理论,给出了对工程上常用的频率平稳、强度非平稳的地震;动模型的功率谱和反应谱的转换关系。此转换关系对于长、短持时的地震动记录和反应谱长、短周期部分以及不同阻尼比的反应谱都能给出精度较高的结果。  相似文献   

4.
Seismic response of buried pipes in longitudinal direction is studied. The effect of the variation of geotechnical properties of the surrounding soil on the stiffness, mass and damping of the soil is considered. The soil–structure interaction depends on pipe stiffness, joint stiffness, the variation of the soil stiffness and the soil mass and damping. Variations of the properties of the surrounding soil along the pipe are described by the random field theory. A numerical model is developed in order to simulate the effects of the variation of the soil on displacements, bending moments in the pipe and also to carry out a statistical analysis. The influence of different parameters regarding design and safety level of the pipe is conducted.  相似文献   

5.
A wavelet‐based random vibration theory has been developed for the non‐stationary seismic response of liquid storage tanks including soil interaction. The ground motion process has been characterized via estimates of statistical functionals of wavelet coefficients obtained from a single time history of ground accelerations. The tank–liquid–soil system has been modelled as a two‐degree‐of‐freedom (2‐DOF) system. The wavelet domain equations have been formulated and the wavelet coefficients of the required response state are obtained by solving two linear simultaneous algebraic equations. The explicit expression for the instantaneous power spectral density function (PSDF) in terms of the functionals of the input wavelet coefficients has been obtained. The moments of this PSDF are used to estimate the expected pseudo‐spectral acceleration (PSA) response of the tank. Parametric variations are carried out to study the effects of tank height, foundation natural frequency, shear wave velocity of soil and ratio of the mass of tank (including liquid) to the mass of foundation on the PSA responses of tanks. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Deterministic and probabilistic floor response spectra   总被引:1,自引:0,他引:1  
The paper presents a comparative study for computing floor response spectra (FRS) for complex structures. For the purpose of validation and evaluation of the methods for practical application, a systematic comparison of two concepts, classical deterministic and probabilistic, was carried out as an example of a nuclear power plants structure. The deterministic method utilizes time history analyses compatible with the prescribed design response spectrum. The probabilistic method uses an analysis of random vibrations for defining the probabilistic FRS influenced by random seismic soil movement. The seismic input is a power spectral density function (PSDF) compatible with the design response spectrum. The probabilistic approach based on PSDF provides satisfying FRS with far less effort and time consumption needed for calculation.  相似文献   

7.
This paper presents three approaches to defining the stationary power spectrum density function (PSDF) of strong ground acceleration, for prediction of structural response corresponding to the strong-motion stationary part of the input excitation. The first approach defines the PSDF in terms of the Fourier amplitude spectrum and a stationary duration of ground acceleration. The PSDF obtained by this approach predicts accurately the response of structures with low to intermediate natural periods. In the second approach, we introduce the concept of stationary duration of response, which is defined as a function of the natural period and damping ratio of the oscillator. Using this approach, it is possible to get accurate estimates of response amplitudes for the broad range of natural periods. However, it is not convenient in practical applications to deal with several stationary durations for a given input excitation. Further, to evaluate these durations it is necessary to specify both the Fourier and the response spectra of ground accelerations; whereas the common engineering practice is to specify the response spectrum only. Therefore, the third approach suggests the use of the response ‘spectrum compatible’ PSDF. The paper presents several improvements in the general methodology used for this purpose. The improvements mainly relate to using more accurate peak factors and to using the transient nature of response. The spectrum compatible PSDFs, as evaluated in the present study, provide realistic specification of strong ground motion for stochastic seismic response analyses of structures.  相似文献   

8.
A wavelet‐based stochastic formulation has been presented in this paper for the seismic analysis of a base‐isolated structural system which is modelled as a two‐degree‐of‐freedom (2‐DOF) system. The ground motion has been modelled as a non‐stationary process (both in amplitude and frequency) by using modified Littlewood–Paley basis wavelets. The proposed formulation is based on replacing the non‐linear system by an equivalent linear system with time‐dependent damping properties. The expressions of the instantaneous damping and the power spectral density function (PSDF) of the superstructure response have been obtained in terms of the functionals of input wavelet coefficients. The proposed formulation has been validated by simulating a ground motion process. The effect of the frequency non‐stationarity on the non‐linear response has also been studied in detail, and it has been clearly shown how ignoring the frequency non‐stationarity in the ground motion leads to inaccurate non‐linear response calculations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
基岩弹性刚度对土层地震反应的影响   总被引:4,自引:1,他引:3  
将基岩上均匀、各向同性土层的地震反应,简化为置于弹性支座上的一维剪切梁模型进行分析。将地震激励假定为白噪声谱,在随机边界激励下,主要探讨了土层与基岩2种介质间的波阻抗比、波速比、土层厚度和阻尼特性对土层地震反应的影响。计算结果表明,对于一定的土层厚度,在一定阻尼比条件下,土层和基岩的阻抗比小到一定程度时,可以将基岩假定为刚性约束,而误差可以控制在一定的范围内。  相似文献   

10.
李喜梅  杜永峰 《地震工程学报》2016,38(1):103-108,115
曲线梁桥由于其平面不规则性导致结构在地震激励下产生弯扭耦合效应,使得隔震曲线梁桥的地震响应更加复杂。目前常用的控制方法是将隔震技术与附加减震装置相结合对曲线梁桥进行控制。本文将地震动考虑为一均匀调制非平稳随机过程,针对隔震曲线梁桥长周期、低频率的特点,选取Clough-Pension平稳地震动功率谱模型作为随机地震动输入模型,对无控(NON-C)、经典线性最优控制(COC)以及序列最优控制算法(SOC)三种状态下的曲线桥梁进行随机响应分析。通过建立曲线梁桥在随机地震动作用下的运动方程,求出减震控制结构的位移谱密度、加速度谱密度响应及时变方差。分析结果表明:序列最优控制算法(SOC)在使隔震层位移得到减小的同时,可以更有效地控制上部结构的地震响应,具有更好的控制效果。  相似文献   

11.
Since earthquake ground motions are very uncertain even with the present knowledge, it is desirable to develop a robust structural design method taking into account these uncertainties. Critical excitation approaches are promising and a new non‐stationary random critical excitation method is proposed. In contrast to the conventional critical excitation methods, a stochastic response index is treated as the objective function to be maximized. The power (area of power spectral density (PSD) function) and the intensity (magnitude of PSD function) are fixed and the critical excitation is found under these restrictions. It is shown that the original idea for stationary random inputs can be utilized effectively in the procedure for finding a critical excitation for non‐stationary random inputs. The key for finding the new non‐stationary random critical excitation is the exchange of the order of the double maximization procedures with respect to time and to the power spectral density function. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
The highest response of multi-supported structures subjected to partially specified multi-component earthquake support motions is considered. The seismic inputs are modelled as incompletely specified vector Gaussian random processes with known autospectral density functions but unknown cross spectral densities and these unknown functions are determined such that the steady state response variance of a given linear system is maximized. The resulting cross power spectral density functions are shown to be dependent on the system properties, autospectra of excitation and the response variable chosen for maximization. It emerges that the highest system response is associated neither with fully correlated support motions, nor with independent motions, but, instead, specific forms of cross power spectral density functions are shown to exist which produce bounds on the response of a given structure. Application of the proposed results is demonstrated by examples on a ground based extended structure, namely, a 1578 m long, three span, suspension cable bridge and a secondary system, namely, an idealized piping structure of a nuclear power plant.  相似文献   

13.
The dynamic response of piles to seismic loading is explored by means of an extensive parametric study based on a properly calibrated Beam-on-Dynamic-Winkler-Foundation (BDWF) model. The investigated problem consists of a single vertical cylindrical pile, modelled as an Euler–Bernoulli beam, embedded in a subsoil consisting of two homogeneous viscoelastic layers of sharply different stiffness resting on a rigid stratum. The system is subjected to vertically propagating seismic S waves, in the form of a transient motion imposed on rock outcrop. Several accelerograms recorded in Italy are employed as input motions in the numerical analyses. The paper highlights the severity of kinematic pile bending in the vicinity of the interface separating the two soil layers. In addition to factors already investigated such as layer stiffness contrast, relative soil–pile stiffness, interface depth and intensity of ground excitation, the paper focuses on additional important factors, notably soil material damping, stiffness of Winkler springs and frequency content of earthquake excitation. Existing predictive equations for assessing kinematic pile bending at soil layer interfaces are revisited and new regression analyses are performed. A synthesis of findings in terms of a set of simple equations is provided. The use of these equations is discussed through examples.  相似文献   

14.
Centrifuge modeling of seismic response of layered soft clay   总被引:1,自引:0,他引:1  
Centrifuge modeling is a valuable tool used to study the response of geotechnical structures to infrequent or extreme events such as earthquakes. A series of centrifuge model tests was conducted at 80g using an electro-hydraulic earthquake simulator mounted on the C-CORE geotechnical centrifuge to study the dynamic response of soft soils and seismic soil–structure interaction (SSI). The acceleration records at different locations within the soil bed and at its surface along with the settlement records at the surface were used to analyze the soft soil seismic response. In addition, the records of acceleration at the surface of a foundation model partially embedded in the soil were used to investigate the seismic SSI. Centrifuge data was used to evaluate the variation of shear modulus and damping ratio with shear strain amplitude and confining pressure, and to assess their effects on site response. Site response analysis using the measured shear wave velocity, estimated modulus reduction and damping ratio as input parameters produced good agreement with the measured site response. A spectral analysis of the results showed that the stiffness of the soil deposits had a significant effect on the characteristics of the input motions and the overall behavior of the structure. The peak surface acceleration measured in the centrifuge was significantly amplified, especially for low amplitude base acceleration. The amplification of the earthquake shaking as well as the frequency of the response spectra decreased with increasing earthquake intensity. The results clearly demonstrate that the layering system has to be considered, and not just the average shear wave velocity, when evaluating the local site effects.  相似文献   

15.
The dynamic response of a rigid footing resting on an elastic tensionless Winkler foundation is examined. A parametric investigation, concerning the effect of the main parameters on the response, is performed for harmonic excitation. The parameters examined include the stiffness and the damping of the foundation, the excitation frequency and the superstructure characteristics and loads. The maximum rocking response, the minimum length of contact after uplift, the maximum stress developed at the soil and the factor of safety with respect to the bearing capacity of the soil are used to measure the effect of each dimensionless parameter. An example for earthquake excitation is also given for a plane frame. The results are compared to the ones of a simplified static approach based on the maximum values of the applied loads, similarly to the procedure that is usually applied in practice. The results show that the static approach can predict the response satisfactorily if resonance does not happen, if the stiffness of the foundation is not large compared to the stiffness of the superstructure and if the dynamic part of the axial force of the column is not large; in these cases, it may underestimate or overestimate the response significantly, depending on the sign of the dynamic axial force that is considered.  相似文献   

16.
An approximate analytical approach is presented which makes it possible to consider soil properties and footing embedment in the analysis of the response of structures to external excitation such as wind and earthquake. The approach is based on modal analysis and the definition of stiffness and damping due to soil pertinent to each vibration mode. The approach also facilitates the analysis of coupled motions of a footing alone. The analysis of a tall chimney for the effects of gusting wind, vortex shedding and earthquake is used as an example.  相似文献   

17.
If earthquakes are modelled by a stochastic process, it is possible to interpret the associated response spectrum in terms of the statistics of extreme values of oscillator response to the process. For a stationary earthquake model this interpretation leads to a relationship between the power spectral density function of the process and the response spectrum. This relationship is examined in this paper and forms the basis for two methods presented to obtain the power spectrum of the earthquake process from its response spectrum. One of these methods is approximate but leads to an explicit representation of the power spectral density function in terms of the response spectrum. The other method is exact wherein an iterative scheme for the solution of the problem is established. An example problem is solved to illustrate the use of the two methods and it is shown that for small values of damping, the approximate derivation yields a fairly accurate solution.  相似文献   

18.
The non‐stationary rocking response of liquid storage tanks under seismic base excitations including soil interaction has been developed based on the wavelet domain random vibration theory. The ground motion has been characterized through statistical functionals of wavelet coefficients of the ground acceleration history. The tank–liquid–foundation system is modelled as a multi‐degree‐of‐freedom (MDOF) system with both lateral and rocking motions of vibration of the foundation. The impulsive and convective modes of vibration of the liquid in the tank have been considered. The wavelet domain coupled dynamic equations are formulated and then solved to get the expressions of instantaneous power spectral density function (PSDF) in terms of functionals of input wavelet coefficients. The moments of the instantaneous PSDF are used to obtain the stochastic responses of the tank in the form of coefficients of hydrodynamic pressure, base shear and overturning base moment for the largest expected peak responses. Parametric variations are carried out to study the effects of various governing parameters like height of liquid in the tank, height–radius ratio of the tank, ratio of total liquid mass to mass of foundation, and shear wave velocity in the soil medium, on the responses of the tank. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The complete Square‐Root‐of‐Sum‐of‐Squares (c‐SRSS) modal combination rule is presented. It expresses the structural response in terms of uncoupled SDOF modal responses, yet accounting fully for modal response variances and cross‐covariances. Thus, it is an improvement over the classical SRSS rule which neglects contributions from modal cross‐covariances. In the c‐SRSS rule the spectral moments of the structural response are expressed rigorously in terms of the spectral moments of uncoupled modal responses and of some coefficients that can be computed straightforwardly as a function of modal frequencies and damping, without involving the computation of cross‐correlation coefficients between modal responses. An example shows an application of the c‐SRSS rule for structural systems with well separated and closely spaced modal frequencies, subjected to wide‐band and narrow‐band excitations. Comparisons with response calculations using the SRSS and the Complete Quadratic Combination rules are given and discussed in detail. Based on the c‐SRSS rule a response spectrum formulation is introduced to estimate the maximum structural response. An example considering a narrow‐band excitation from the great Mexico earthquake of September 19, 1985, is given and the accuracy of the response spectrum formulation is examined. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This study aims at evaluating the optimal properties of friction pendulum bearings to be employed for the seismic protection of elastic isolated structural systems under earthquake excitations with different characteristics in terms of frequency content. A two-degree-of-freedom model is considered to describe the isolated system behavior while accounting for the superstructure flexibility and a non-dimensional formulation of the governing equations of motion is employed to relate the characteristic parameters describing the isolator and structure properties to the response parameters of interest for the performance assessment. Seismic excitations are modeled as time-modulated filtered Gaussian white noise random processes of different intensity within the power spectral density method. The filter parameters control the frequency content of the random excitations and are calibrated to describe stiff, medium and soft soil conditions, respectively. Finally, multi-variate regression expressions are obtained for the optimum values of the friction coefficient that minimize the superstructure displacements relative to the base mass as a function of the structural system properties, of the seismic input intensity and of the soil condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号