首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
针对GPS-36这颗卫星的运行特点,利用2004年全年的预报和实际观测记录,本文详细分析了这颗卫星的出没时间和运行规律,并通过日出日落时间与卫星运行规律来预报2005年GPS-36卫星每天通过的最大高度角及最佳观测时间。  相似文献   

2.
The in situ measurements of electron contents from GRACE K-band (dual-frequency) ranging system and CHAMP planar Langmuir probe were used to validate the international reference ionosphere (IRI) models. The comparison using measurements from year 2003 to 2007 shows a general agreement between data and the model outputs. The improvement in the newer IRI model (IRI-2007) is evident with the measurements from the GRACE satellites orbiting at the higher altitude. We present the comparison between the models and data comprehensively for various cases in solar activity, local time, season, and latitude. The IRI models do not well predict the electron density in the years 2006 and later, when the solar activity is extremely low. The IRI models generally overestimate the electron density during local winter while they underestimate during local summer. In the equatorial region, the large difference at local sunrise lasts for all years and all seasons. The IRI models do not perform well in predicting the anomaly in the polar region such as the Weddell Sea Anomaly. These discrepancies are likely due to smoothed (12-month averaged) solar activity indices used in the IRI models and due to insufficient spherical harmonic representation not able to capture small spatial scales. In near future, further improvement on the IRI models is expected by assimilating those in situ satellite data by implementing higher resolution (spatial and temporal) parameterizations.  相似文献   

3.
Urban heat island (UHI) effect is among the most typical characteristics of urban climate. The analysis of surface UHI (SUHI) mechanisms has received the most extensive attention in the world. Here, we quantify the diurnal and seasonal SUHI intensity (SUHII) in global 419 major cities during the period 2003-2013. A geographically weighted regression (GWR) was established to assess the relationships between SUHII and several driving factors, and it further was compared to the ordinary least square (OLS) and stepwise multiple linear regression (SMLR) models. We show that GWR model has higher determination coefficient (R2) than OLS and SMLR models (Time: summer daytime, summer night, winter daytime and winter nighttime; GWR: 0.805, 0.458, 0.699 and 0.582; OLS: 0.732, 0.347, 0.473 and 0.320; SMLR: 0.732, 0.341, 0.468 and 0.316), indicating the spatially non-stationarity in the relationships. During the day, both vegetation activity and tree cover fraction have stronger cooling effect on SUHI in the summer of Asia. At night, there are stronger albedo effects on SUHI in the summer of Eastern Asia and Western North America and in the winter of Eastern Asia. Furthermore, temperature has stronger effect on daytime SUHI in Africa, Europe and South America in summer, and precipitation has stronger effect on nighttime SUHI in Africa and Europe in summer. Our results emphasize the spatial variation of the relationships between SUHII and relevant driving factors across global major cities, further indicating that the spatially non-stationary effect of driving factors on SUHII need to be considered in the future.  相似文献   

4.
Summary Since 1989 several mobile VLBI campaigns have been carried out in Europe with a total of 14 sites occupied. The Norwegian stations at Tromsø and Trysil are the only mobile VLBI stations in Europe observed in more than one epoch, so they have produced the most interesting data from these campaigns. Tromsø is the only station observed in the two summer campaigns (1989 and 1992), while Trysil has been the winter site for MV-2 since late 1991 until the spring of 1993. In this paper we describe the mobile VLBI campaigns in Norway including the observational work and the detailed geodetic analysis performed with OCCAM V3.3. We have also analyzed a series of GPS data sets from Tromsø in order to check the reliability of the VLBI results for that station. The results reveal the need for a very careful design of mobile VLBI experiments, in particular regarding the consistency of the network and of the observation schedules, and the special care that is required in the analysis of the mobile VLBI data in order to achieve significant conclusions.  相似文献   

5.
为了全面分析我国大陆及其周边GNSS连续站噪声的空间分布规律,该文基于陆态网络260个GNSS连续站和周边区域10个IGS站的观测数据,利用GAMIT/GLOBK软件进行解算,得到各站的坐标值及其N、E、U 3分量误差值,制定筛选标准,依据该标准剔除质量差的测站,剔除异常值;利用Matlab软件,按照东向(E分量)、北向(N分量)、垂向(U分量)3个方向进行拟合,并提取各测站单日解的最大误差值出现的年积日,绘制其在我国大陆的空间分布图,得到中国大陆GNSS连续站最大单日误差值的时空分布特性图。发现大部分GNSS连续站单日最大误差值集中在夏季(7月居多)并分析了原因。  相似文献   

6.
Dot maps are one of the best ways to visualize absolute values in thematic cartography. Dots represent quantitative data on a map. Population is often used in this type of representation. This paper presents a population dot density map for the year 2011 on two scales: (1) for mainland Portugal, and (2) for the Lisbon and Oporto regions. We have used dots with constant values and sizes at the most detailed statistical level (i.e. statistical subsection) for localities with less than 5000 inhabitants, and proportional circles for localities with more than 5000 inhabitants. These two scales of analysis coupled with two cartographic representation techniques used on a single map allow for a clear reading of the distribution of population.  相似文献   

7.
The largest Florida manatee (Trichechus manatus latirostris) aggregation at a natural warm-water site occurs in Kings Bay, Crystal River, FL. In accordance with the Manatee Recovery Plan, manatee protection areas within Kings Bay have been created by the United States Fish and Wildlife Service (USFWS) and the State of Florida including a year-round refuge designation and seven Federal manatee sanctuaries during the winter manatee season (15 November–31 March). Over the last 30 years, an increase in manatee counts has been observed in Kings Bay which has prompted the need to review existing manatee protection measures. Aerial survey data collected between 1983 and 2012 were used to examine the seasonal change in manatee distribution within Kings Bay to assess the effectiveness of current sanctuary sizes and locations. Regression analysis suggested a significant change in manatee abundance among the winter seasons (< 0.05). The average winter manatee counts increased by 4.81 animals per year over the 30-year period. Spatially explicit maps using geographic information system (GIS) analysis revealed a strong correlation between high manatee density and artesian springs in Kings Bay during the winter seasons. Highest abundances were identified at three locations: King Spring, Three Sisters Springs, and Magnolia Springs, which coincide with preexisting sanctuary designations. Additional coverage is advocated to support the overflow of manatees outside of sanctuary boundaries. As density patterns were not uniform across summer periods, a consideration of additional boat speed regulations is recommended.  相似文献   

8.
In the period 1999–2009 ten-day SPOT-VEGETATION products of the Normalized Difference Vegetation Index (NDVI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) at 1 km spatial resolution were used in order to estimate and forecast the wheat yield over Europe. The products were used together with official wheat yield statistics to fine-tune a statistical model for each NUTS2 region, based on the Partial Least Squares Regression (PLSR) method. This method has been chosen to construct the model in the presence of many correlated predictor variables (10-day values of remote sensing indicators) and a limited number of wheat yield observations. The model was run in two different modalities: the “monitoring mode”, which allows for an overall yield assessment at the end of the growing season, and the “forecasting mode”, which provides early and timely yield estimates when the growing season is on-going. Performances of yield estimation at the regional and national level were evaluated using a cross-validation technique against yield statistics and the estimations were compared with those of a reference crop growth model. Models based on either NDVI or FAPAR normalized indicators achieved similar results with a minimal advantage of the model based on the FAPAR product. Best modelling results were obtained for the countries in Central Europe (Poland, North-Eastern Germany) and also Great Britain. By contrast, poor model performances characterize countries as follows: Sweden, Finland, Ireland, Portugal, Romania and Hungary. Country level yield estimates using the PLSR model in the monitoring mode, and those of a reference crop growth model that do not make use of remote sensing information showed comparable accuracies. The largest estimation errors were observed in Portugal, Spain and Finland for both approaches. This convergence may indicate poor reliability of the official yield statistics in these countries.  相似文献   

9.
Locust plagues have been the source of some of the most severe natural disasters in human history. Soil moisture content is among the most important of the numerous factors influencing plague onset and severity. This paper describes a study initiated in three pilot locust plague monitoring regions, i.e., Huangzao, Yangguanzhuang, and Tengnan in Huanghua county, Hebei province, China, to examine the impact of soil moisture status on oriental migratory locust [Locusta migratoria manilensis (L.) Meyen] plague breakout as related to the life cycle, oviposition in autumn, survival in winter, and incubation in summer. Thirty-nine temperature vegetation dryness index (TVDI) data sets, which represent soil moisture content, were extracted from MODIS remote sensing images for two representative time periods: a severe locust plague breakout year (2001–2002) and a slight plague year (2003–2004). TVDI values demonstrated distinctive soil moisture status differences between the 2 years concerned. Soil moisture conditions in the severe plague year were shown to be lower than those in slight plague year. In all three pilot regions, average TVDI value in the severe plague year was 0.07 higher than that in slight plague year, and monthly TVDI values in locust oviposition period (September and October) and incubation period (March, April and May) were higher than their corresponding monthly figures in slight plague year. No remarkable TVDI differences were found in other months during the locust life cycle between the 2 years. TVDI values for September and October (2001), March, April and May (2002) were 0.11, 0.08, 0.16, 0.11 and 0.16 higher than their corresponding monthly figures in 2003–2004 period, respectively.  相似文献   

10.
基于时间序列叶面积指数稀疏表示的作物种植区域提取   总被引:3,自引:0,他引:3  
王鹏新  荀兰  李俐  王蕾  孔庆玲 《遥感学报》2019,23(5):959-970
以华北平原黄河以北地区为研究区域,以时间序列叶面积指数LAI(Leaf Area Index)傅里叶变换的谐波特征作为不同作物识别的数据源,利用稀疏表示的分类方法识别2007年—2016年冬小麦、春玉米、夏玉米等主要农作物种植区域。首先利用上包络线Savitzky-Golay滤波分别对2007年—2016年的时间序列MODIS LAI曲线进行重构,进而对重构的年时间序列LAI进行傅里叶变换,以0—5级谐波振幅、1—5级谐波相位作为作物识别的依据,基于各类地物的训练样本,通过在线字典学习算法构建稀疏表示方法的判别字典,对每个待测样本利用正交匹配追踪算法求解稀疏系数,从而计算对应于各类地物的重构误差,根据最小重构误差判定待测样本的作物类型,并对作物识别结果的位置精度进行验证。结果表明,2007年—2016年作物识别的总体精度为77.97%,Kappa系数为0.74,表明本文提出的方法可以用于研究区域主要作物种植区域的提取。  相似文献   

11.
The use of observations from the Global Positioning System (GPS) has significantly impacted the study of the ionosphere. As it is widely known, dual-frequency GPS observations can provide very precise estimation of the slant Total Electron Content (sTEC—the linear integral of the electron density along a ray-path) and that the precision level is bounded by the carrier-phase noise and multi-path effects on both frequencies. Despite its precision, GPS sTEC estimations can be systematically affected by errors in the estimation of the satellites and receivers by Inter-Frequency Biases (IFB) that are simultaneously determined with the sTEC. Thus, the ultimate accuracy of the GPS sTEC estimation is determined by the errors with which the IFBs are estimated. This contribution attempts to assess the accuracy of IFBs estimation techniques based on the single layer model for different ionospheric regions (low, mid and high magnetic latitude); different seasons (summer and winter solstices and spring and autumn equinoxes); different solar activity levels (high and low); and different geomagnetic conditions (quiet and very disturbed). The followed strategy relies upon the generation of a synthetic data set free of IFB, multi-path, measurement noise and of any other error source. Therefore, when a data set with such properties is used as the input of the IFB estimation algorithms, any deviation from zero on the estimated IFBs should be taken as indications of the errors introduced by the estimation technique. The truthfulness of this assessment work is warranted by the fact that the synthetic data sets resemble, as realistically as possible, the different conditions that may happen in the real ionosphere. The results of this work show that during the high solar activity period the accuracy for the estimated sTEC is approximately of ±10 TECu for the low geomagnetic region and of ±2.2 TECu for the mid-latitude. During low solar activity the accuracy can be assumed to be in the order of ±2 TECu. For the geomagnetic high-disturbed period, the results show that the accuracy is degraded for those stations located over the region where the storm has the strongest impact, but for those stations over regions where the storm has a moderate effect, the accuracy is comparable to that obtained in the quiet period.  相似文献   

12.
Cropland fallows are the next best-bet for intensification and extensification, leading to increased food production and adding to the nutritional basket. The agronomical suitability of these lands can decide the extent of usage of these lands. Myanmar’s agricultural land (over 13.8 Mha) has the potential to expand by another 50% into additional fallow areas. These areas may be used to grow short-duration pulses, which are economically important and nutritionally rich, and constitute the diets of millions of people as well as provide an important source of livestock feed throughout Asia. Intensifying rice fallows will not only improve the productivity of the land but also increase the income of the smallholder farmers. The enhanced cultivation of pulses will help improve nutritional security in Myanmar and also help conserve natural resources and reduce environmental degradation. The objectives of this study was to use remote sensing methods to identify croplands in Myanmar and cropland fallow areas in two important agro-ecological regions, delta and coastal region and the dry zone. The study used moderate-resolution imaging spectroradiometer (MODIS) 250-m, 16-day normalized difference vegetation index (NDVI) maximum value composite (MVC), and land surface water index (LSWI) for one 1 year (1 June 2012–31 May 2013) along with seasonal field-plot level information and spectral matching techniques to derive croplands versus cropland fallows for each of the three seasons: the monsoon period between June and October; winter period between November and February; and summer period between March and May. The study showed that Myanmar had total net cropland area (TNCA) of 13.8 Mha. Cropland fallows during the monsoon season account for a meagre 2.4% of TNCA. However, in the winter season, 56.5% of TNCA (or 7.8 Mha) were classified as cropland fallows and during the summer season, 82.7% of TNCA (11.4 Mha) were cropland fallows. The producer’s accuracy of the cropland fallow class varied between 92 and 98% (errors of omission of 2 to 8%) and user’s accuracy varied between 82 and 92% (errors of commission of 8 to 18%) for winter and summer, respectively. Overall, the study estimated 19.2 Mha cropland fallows from the two major seasons (winter and summer). Out of this, 10.08 Mha has sufficient moisture (either from rainfall or stored soil water content) to grow short-season pulse crops. This potential with an estimated income of US$ 300 per hectare, if exploited sustainably, is estimated to bring an additional net income of about US$ 1.5 billion to Myanmar per year if at least half (5.04 Mha) of the total cropland fallows (10.08 Mha) is covered with short season pulses.  相似文献   

13.
Abstract

Information of snow cover (SC) over Himalayan regions is very important for regional climatological and hydrological studies. Precise monitoring of SC in the Himalayan region is essential for water supply to hydropower stations, irrigation requirements, and flood forecasting. Microwave remote sensing has all weather, day and night earth observation capability unlike optical remote sensing. In this study, spaceborne synthetic aperture radar interferometric (InSAR) coherence analysis is used to monitor SC over Himalayan rugged terrain. The feasibility of monitoring SC using synthetic aperture radar (SAR) interferometry depends on the ability to maintain coherence over InSAR pair acquisition time interval. ERS-1/2 InSAR coherence and ENVISAT ASAR InSAR coherence images are analyzed for SC mapping. Data sets of winter and of snow free months of the Himalayan region are taken for interferogram generation. Coherence images of the available data sets show maximum decorrelation in most of the area which indicates massive snowfall in the region in the winter season and melting in the summer. Area showing coherence loss due to decorrelation is mapped as a snow-covered area. The result is validated with field observations of snow depth and it is found that standing snow is inversely related to coherence in the Himalayan region.  相似文献   

14.
Summary In the last three years, the European Geodetic Very Long Baseline Interferometry (VLBI) Network has grown to a total of six fixed antennas placed in Germany, Italy, Spain and Sweden, all equipped with the standard geodetic VLBI instrumentation and data recording systems. During this period of time, several experiments have been carried out using this interferometer providing data of very high quality due to the excellent sensitivity and performance of the European stations. The purpose of this paper is to study the consistency of the VLBI geodetic results on the European baselines with respect to the different degrees of freedom in the analysis procedure. In order to complete this study we have made use of both real and simulated data sets, two different software packages (OCCAM 3.0 and CALC 7.4/SOLVE) and a variety of strategies in the data analysis. The results we have obtained show that the repeatability of the VLBI estimates of the baseline lengths in the European network is better than one centimeter, independent of the different analysis methods, and is consistent with the formal error levels expected from the data analysis. This consistency should be enough to produce geophysically significant information in Europe from VLBI data within a relatively short time span.  相似文献   

15.
In general the observations within a continental levelling network have been made during day time when the sun is above the horizon. In Northern countries levelling observations have often been made during the summer months and in the morning and the evening, when the sun may be to the North of the prime vertical. This entails that special mean tidal perturbations by the sun on a levelling network may deviate with not quite negligible quantities from general mean tidal influence by the sun on the sea. For the moon the corresponding deviation will be nearly zero. The variance of the levelling (REUN 1960) between the tidal stations M-28 Fredericia and M-48 Genova is (±33 mm x kiloGal)2. The author (1965) has found for this line (hypothetical levelling 19/5–2/6 1950 on the Yielding Earth) possiblespecial mean tidal correction by the moon +27.5 mm possiblespecial mean tidal correction by the sun −4.2 mm ― in total +23.3 mm deviating 22.5 mm fromgeneral mean tidal correction of the seafor both moon and sun} +45.8 mm The deviation 22.5 mm between tidal corrections for Mean Sea Level, MSL, and for levelling line is not quite negligible.  相似文献   

16.
Satellite-based measurements of aerosols are one of the most effective ways to understand the role of aerosols in climate in terms of spatial and temporal variability. In the present study, we attempted to analyse spatial and temporal variations of satellite derived aerosol optical depth (AOD) over Indian region using moderate resolution imaging spectrometer over a period of 2001–2011. Due to its vast spatial extent, Indian region and adjacent oceanic regions are divided into different zones for analysis. The land mass is sub divided into five different zones such as Indo Gangetic Plain (IGP), Indian mainland, North Eastern India (NE), South India-1 (SI-1), South India-2 (SI-2). Oceanic areas are divided into Arabian Sea and Bay of Bengal. Arabian Sea is further divided as three zones viz. Northern AS (NAS), Central AS (CAS) and Eastern AS (EAS) zones. Bay of Bengal is divided as North BoB (NBoB), West BoB (WBoB), Central BoB (CBoB), and East BoB (EBoB). The study revealed that among all the land regions, IGP showed the highest peak AOD value (0.52 ± 0.17) while SI-2 showed the lower values of AOD in all the months compared to all India average. The maximum AOD is observed during premonsoon season for all regions. During the winter, average AOD levels were substantially lower than the summer averages. Peak of aerosol loading (0.35 ± 0.159) is observed in March over NE region, whereas in all other regions, peak is observed during May. Frequency distribution of long term AOD (<0.2, 0.3–0.5, >0.5) shows a shift of frequency distribution of AOD from <0.3 to 0.3–0.5 during the study period in all regions except IGP. In IGP shift of frequency of AOD values occurs from 0.3–0.5 to >0.5. Oceanic areas also shows seasonal variation of AOD. Over Arabian Sea, high AOD values with greater variations were observed in summer monsoon season while in Bay of Bengal it is observed during winter monsoon. This is due to the high wind speed prevailing in Arabian Sea during monsoon season which results in production of more sea salt aerosol. Highest AOD values are observed over NAS during monsoon season and over NBOB during winter season. Lowest AOD values with its lower variations observed in both the central region of Arabian Sea and Bay of Bengal.  相似文献   

17.
Using the global positioning system (GPS) measurements, the total electron content (TEC) at station Bangalore (13.02°N, 77.57°E geographic; 04.44°N, 150.84°E geomagnetic), lying at the equatorial region, and station Lucknow (26.91°N, 80.95°E geographic; 17.96°N, 155.24°E geomagnetic), lying at equatorial ionospheric anomaly (EIA) crest region, have been estimated for the year 2012–2013. In order to evaluate the International Reference Ionosphere (IRI) model regarding simulation/modeling of ionospheric studies specially at equatorial and EIA crest regions, we have compared the TEC derived from the recent version of the IRI-2012 model and the older IRI-2007 with its three topside options, namely IRI-NeQuick (IRI-NeQ), IRI-2001, and IRI01-corr, with that of GPS-TEC over Bangalore and Lucknow. For the EIA station Lucknow, the IRI-2012 model with IRI-NeQ and IRI01-corr topside is found in good agreement with GPS-TEC during summer and equinox season, while the IRI-2012 model for all three topside options significantly overestimates the GPS-TEC during winter season. The IRI-2001 topside overestimates the GPS-TEC over both the stations during all seasons. The anomalous difference between the IRI-2012 model prediction and ground-based GPS-TEC in daytime hours during the winter season observed at Lucknow could be attributed to discrepancies in the slab thickness predicted by the model, which is more during the winter season as compared to summer and equinox. These large discrepancies in the slab thickness predicted by the IRI-2012 as well as the IRI-2007 model during the winter season have been supported by using the foF2 data from Constellation Observing System for Meteorology, Ionosphere, and Climate radio occultation-based measurements. We also observed that the discrepancies in the recent IRI-2012 model with respect to GPS-TEC are found to be slightly larger than those with the older IRI-2007 model over the EIA region Lucknow. However, over the equatorial region Bangalore, the discrepancy with the older model IRI-2007 was found to be larger than with the recent IRI-2012 model. This suggests that the performance of the IRI-2012 model is poorer than the IRI-2007 model at the EIA region while better at equatorial region, and that further improvements in the IRI-2012 models are required particularly in the low-latitude and EIA regions. The GPS-TEC showed disappearance of the winter anomaly during 2012–2013, while the IRI model failed to predict the disappearance of winter anomaly.  相似文献   

18.
本文介绍了从单一温度廓线提取重力波的水平波长、垂直波长、势能和动量通量的方法,利用2007~2008年COSMIC干温廓线数据计算得到了可以表征中尺度重力波活动特征的相关参数值在各年夏季和冬季的全球分布。结果与国内外已有的相关结果在形态分布上符合较好。结果表明,在20~30 km大气层,重力波在北半球处于冬季时的活动明显强于夏季,重力波的活动呈现纬向分布特征,夏半球高纬地区的重力波活动有明显的季节性变化,重力波的活动主要受地形和对流作用影响。COSMIC数据计算的动量通量分布大致与势能分布趋于一致。  相似文献   

19.
Himalayan region has high concentrations of mountain glaciers. Large extent of this region is covered by seasonal snow during winter. Runoff generates from melting of these snow and glaciers is one of the important sources of water for the Himalayan Rivers. Glaciers and snowfields are distributed throughout the Himalayas and form a source of numerous streams. Due to steep slopes, all such streams have potential sites for hydropower generation. If this potential is fully utilized, it will help in generating power from environmentally friendly Run-of-River (RoR) hydropower stations. Considering these aspects, a stream flow simulation model was developed for small streams. This will help in estimation of average seasonal unrestricted hydropower potential of snow and glaciated streams for winter, summer, monsoon and autumn seasons. Information generated through remote sensing technique as glacier, permanent snow cover, seasonal snow cover, altitude of snow and glaciers were used in conjunction with daily maximum and minimum temperature, rainfall and discharge. The model was developed for Malana nala located in Parbati River basin near Kullu in Himachal Pradesh. It was validated at adjacent Tosh nala in the same basin. Seasonal runoff computed from the model is comparable with observed data for all seasons except Monsoon. Good results in autumn, winter and summer seasons demonstrates usefulness of runoff model to assess hydropower potential of snow and glaciated streams and therefore, the model was applied to ungauged Sorang Gad and Kirang Khad. In winter runoff was estimated as 1.8 and 1.69 cumecs for Kirang Khad and Sorang Gad, respectively. This is important, as viability of hydropower station depends upon winter stream runoff. These results suggest that the model is useful tool to assess initial estimate of hydropower potential for large number of snow and glaciated streams, for which no hydrological data is available.  相似文献   

20.
Recent studies in Amazonian tropical evergreen forests using the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) have highlighted the importance of considering the view-illumination geometry in satellite data analysis. However, contrary to the observed for evergreen forests, bidirectional effects have not been evaluated in Brazilian subtropical deciduous forests. In this study, we used MISR data to characterize the reflectance and vegetation index anisotropies in subtropical deciduous forest from south Brazil under large seasonal solar zenith angle (SZA) variation and decreasing leaf area index (LAI) from the summer to winter. MODIS data were used to observe seasonal changes in the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Topographic effects on their determination were inspected by dividing data from the summer to winter and projecting results over a digital elevation model (DEM). By using the PROSAIL, we investigated the relative contribution of LAI and SZA to vegetation indices (VI) of deciduous forest. We also simulated and compared the MISR NDVI and EVI response of subtropical deciduous and tropical evergreen forests as a function of the large seasonal SZA amplitude of 33°. Results showed that the MODIS-MISR NDVI and EVI presented higher values in the summer and lower ones in the winter with decreasing LAI and increasing SZA or greater amounts of canopy shadows viewed by the sensors. In the winter, NDVI reduced local topographic effects due to the red-near infrared (NIR) band normalization. However, the contrary was observed for the three-band EVI that enhanced local variations in shaded and sunlit surfaces due to its strong dependence on the NIR band response. The reflectance anisotropy of the MISR bands increased from the summer to winter and was stronger in the backscattering direction at large view zenith angles (VZA). EVI was much more anisotropic than NDVI and the anisotropy increased from the summer to winter. It also increased from the forward scatter to the backscattering direction with the predominance of sunlit canopy components viewed by MISR, especially at large VZA. Modeling PROSAIL results confirmed the stronger anisotropy of EVI than NDVI for the subtropical deciduous and tropical evergreen forests. PROSAIL showed that LAI and SZA are coupled factors to decrease seasonally the VIs of deciduous forest with the first one having greater importance than the latter. However, PROSAIL seasonal variations in VIs were much smaller than those observed with MODIS data probably because the effects of shadows in heterogeneous canopy structures or/and cast by emergent trees and from local topography were not modeled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号