首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lim  Aswin  Ou  Chang-Yu  Hsieh  Pio-Go 《Acta Geotechnica》2020,15(6):1557-1576

This paper presents a novel strut-free earth retaining wall system for excavation in soft clay, referred to as the rigid and fixed diaphragm (RFD) wall retaining system. The RFD system is comprised of four main structures—diaphragm walls, rib-walls, cross walls, and buttress walls—and a complementary structure—the cap-slab. The characteristics of the RFD system are: (1) the formation of a continuous earth retaining wall by constructing diaphragm walls along the circumference of the excavated zone; (2) the formation of a rigid and fixed retaining wall system by a series of rib-walls and cross walls; and (3) the formation of a rigid retaining wall by buttress walls and the cap-slab. Furthermore, the performance and mechanisms of the RFD system were investigated carefully through three-dimensional finite element analyses. The results demonstrated that the system stiffness of the RFD system was a major factor controlling deformations induced by excavation. Moreover, the excavation geometry determined the dimension of each component of the RFD system.

  相似文献   

2.
The analyses of retaining walls in California showed many backfills are coarse material with some cohesion. In this investigation, seismic response of cantilever retaining walls, backfilled with dirty sandy materials with up to 30 kPa cohesion, is evaluated using fully dynamic analysis. The numerical simulation procedure is first validated using reported centrifuge test results. The validated methodology is then used to investigate the effects of three earthquake ground motions including Kobe, Loma Prieta, and Chi-Chi on seismic response of retaining walls. In addition, the input peak ground acceleration values are varied to consider a wide range of earthquake acceleration intensity.  相似文献   

3.
杨敏  张俊峰  王瑞祥 《岩土力学》2016,37(11):3270-3274
现代基坑工程中出现坑中坑的情况越来越普遍,设计需要对坑中坑的桩墙围护进行结构分析。坑中坑的外围基坑与内部基坑的桩墙存在相互影响,因此,坑中坑的桩墙围护结构受力分析相对而言更加复杂。针对这种坑中坑内、外桩墙的复杂受力情况,提出了坑中坑桩墙围护结构的弹性支点法联合求解模型,通过对内、外桩墙间有限土体的地基弹簧刚度的求解,使该模型可以解决坑中坑桩墙的内力变形计算问题。具体的坑中坑工程实例分析表明,采用弹性支点法联合求解模型得到的围护结构变形、内力与工程实际比较吻合,研究成果具有一定理论与工程实用意义。  相似文献   

4.
The determination of the load bearing capacity of hydraulic structures such as dams, reservoirs and retaining walls requires the consideration of mixed‐mode fracture, possibly driven by the fluid pressure, in correspondence to artificial and natural joints (or cracks, in the latter case). A friction‐cohesive softening interface model with coupled degradation of normal and tangential strength is introduced here to account for the essential features of the joint behaviour; its predictive capability is assessed through extensive calculations. Alternative numerical techniques resting on the discrete‐crack approach are considered, focusing on simplified approaches for the direct appraisal of the structural resistance. Comparison is made with the results of evolutionary analyses, based on a priori piecewise linearization of the interface model and on ‘exact integration’. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
考虑蠕变性土工格栅加筋挡土墙应力与变形有限元分析   总被引:4,自引:1,他引:4  
土工格栅加筋挡土墙在岩上加固工程中得到了广泛应用。采用粘弹塑性流变模型考虑地基和填士的流变性,采用作者所建议的绎验型粘弹性本构模型考虑土工格栅的蠕变性,对于土工格栅加筋挡土墒发展了非线性有限元数值分析方法,通过变动参数的对比计算与分析探讨了逐层填筑过程、加筋长度及间距布置方式等因素对土工格栅加筋挡土墙长期变形与应力特性的影响。计算与分析表明:填筑过程对面板侧向变形、格栅拉力与应变及地基中水平位移与竖向沉降具有较大的影响;加筋使墙后填土应力重新分布;面板位移、格栅拉力及应变在经历一段时间后趋于稳定状态。  相似文献   

6.
Changes in the hydraulic conductivity field, resulting from the redistribution of stresses in fractured rock masses, are difficult to characterize due to complex nature of the coupled hydromechanical processes. A methodology is developed to predict the distributed hydraulic conductivity field based on the original undisturbed parameters of hydraulic conductivity, Rock Mass Rating (RMR), Rock Quality Designation (RQD), and additionally the induced strains. The most obvious advantage of the methodology is that these required parameters are minimal and are readily available in practice. The incorporation of RMR and RQD, both of which have been applied to design in rock engineering for decades, enables the stress-dependent hydraulic conductivity field to be represented for a whole spectrum of rock masses. Knowledge of the RQD, together with the original hydraulic conductivity, is applied to determine the effective porosity for the fractured media. When RQD approaches zero, the rock mass is highly fractured, and fracture permeability will be relatively high. When RQD approaches 100, the degree of fracturing is minimal, and secondary porosity and secondary permeability will be low. These values bound the possible ranges in hydraulic behaviour of the secondary porosity within the system. RMR may also be applied to determine the scale effect of elastic modulus. As RMR approaches 100, the ‘softening’ effect of fractures is a minimum and results in the smallest strain-induced change in the hydraulic conductivity because the induced strain is uniformly distributed between fractures and matrix. When RMR approaches zero, the laboratory modulus must be reduced significantly in order to represent the rock mass. This results in the largest possible change in the hydraulic conductivity because the induced strain is applied entirely to the fracture system. These values of RMR bound the possible ranges in mechanical behaviour of the system. The mechanical system is coupled with the hydraulic system by two empirical parameters, RQD and RMR. The methodology has been applied to a circular underground excavation and to qualitatively explain the in situ experimental results of the macropermeability test in the drift at Stripa. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
A series of three-dimensional finite element analyses of deep excavations with the integrated system between buttress walls and diaphragm walls was conducted to investigate the effect of the buttress wall intervals, treatments, locations, height, and thickness on limiting deformations induced by deep excavation. The integrated retaining system was formed by maintaining buttress walls when soil was excavated. The wall deflection control mechanism of the integrated retaining system mainly came from the combined stiffness between the buttress wall and the diaphragm wall. In addition, the ground settlement control mechanism came from the combined stiffness between the buttress wall and the diaphragm wall, and the frictional resistance between the buttress wall and the surrounding soil. For achieving 50% reduction in the wall deflection and the ground surface settlement, the length and intervals of buttress walls that were applied to the integrated retaining system were at least 4 and 8 m, respectively. When the deflection at the diaphragm wall head was well restrained, for example, by the floor slab, the position of the buttress wall head could be located at a depth the diaphragm wall starts to bulge out. In such a case, the performance between the full height and limited height of buttress walls was quite close. Furthermore, a new well-documented excavation project was analyzed to verify the performance of the integrated retaining system. Results showed that the integrated retaining system worked excellently if the joints between buttress walls and diaphragm walls were constructed properly.  相似文献   

8.
A finite element model is proposed for studying the seismic response of a flexible retaining wall/soil system. The model accounts for nonlinear hysteretic soil behaviour, and also for the increase in lateral stresses and settlement related to grain slip caused by cyclic loads. The response computed by the proposed method was compared with responses recorded at the Cambridge centrifuge facility, and found to be in reasonable agreement. The model was then used to identify the importance of factors such as flexibility of the wall and relative density of the backfill. The study reveals that the maximum bending moments given by current design procedures are nonconservative for stiffer walls. Deflections of flexible walls are of major concern. Flexible walls supporting a sand of medium density yield the greatest deflection.  相似文献   

9.
This paper presents reliability analyses of soil nail walls against two external ultimate limit states, global and sliding stabilities, which are related to the external stability failures of soil nail walls. Reliability analyses are conducted using Monte Carlo simulation technique. Soil nailing is a popular retaining system in highway construction and slope stabilization, and its current design practice is still based on the working stress design. There remains a need to establish a more rational design framework—load and resistance factor design—based on the concept of limit state design and reliability analysis for soil nail walls. The development of load and resistance factor design approach must consider multiple ultimate limit states, associated with external, internal, and facing failures. The analyses of resistance factors against two external failures are conducted in this study considering various influencing factors, including statistical parameters of soil friction angle, ultimate bond strength between soil and nails, soil type, wall geometry (wall height, back slope angle, and face batter angle), and nail configurations (nail inclination angle, drillhole diameter, and nail spacing). In the end, a series of resistance factors are proposed for potential application of load and resistance factor design approach against external failures for soil nail walls according to different design codes.  相似文献   

10.
利用1stOpt软件优化设计重力式挡土墙断面   总被引:1,自引:0,他引:1  
王磊  董国梁 《岩土工程技术》2009,23(2):72-74,78
为解决挡土墙设计指标计算较为繁琐,并且难以得出最佳结果的问题,以重力式档土墙的截面面积最小为目标函数,并以满足稳定性及地基承载力验算要求为约束条件,得到非线性优化数学模型,并利用优秀国产数学软件1stopt优化求解。该方法避免了繁琐的试算过程,能得到经济合理的截面尺寸,并已成功应用在忠-武输气管线沿途水工保护工程中。  相似文献   

11.
废旧轮胎胎面挡土墙是一种有效利用废旧轮胎的理想途径,但直立的模块式废旧轮胎胎面挡土墙不能承受高强度的地震作用,因而提出格栅条带式加筋的方法提高其抗震性能。根据土-结构动力相似体系,设计格栅条带式加筋废旧轮胎胎面挡土墙振动台试验模型,考虑地震强度、地震波、格栅加筋长度、格栅加筋间距以及墙面坡度的影响,分析胎面墙体与回填料加速度、墙体侧向位移、墙顶表面回填料沉降以及墙背动土压力等地震响应特征,并与无加筋的废旧轮胎胎面挡土墙的振动台模型试验进行对比。研究结果表明:格栅条带式加筋胎面挡土墙的方式显著改善了无加筋状态的胎面挡土墙的地震响应特征,提高了胎面挡土墙的抗震性能,格栅条带式加筋直立式废旧轮胎胎面挡土墙可以作为理想的墙体进行工程推广应用。  相似文献   

12.
Reliability-based analysis of cantilever retaining walls requires consideration of different failure mechanisms. In this paper, the reliability of soil-wall system is assessed considering two failure modes: rotational and structural stability, and the system reliability is assumed as a series system. The methodology is based on Monte Carlo Simulation (MCS), and it deals with the variability of the design parameters in the limit equilibrium analysis of a wall embedded in granular soil. Results of the MCS indicate that the reliability of the failure components increases exponentially by increasing the variability of design parameters. The results of the system reliability indicate how the system reliability is different from the component reliabilities. The strength of the weakest component influences the reliability of the system. The system reliability index increases with the wall section gradually. However it remains constant for the rotational failure mode.  相似文献   

13.
基坑围护结构系统的性态及其状态变量   总被引:2,自引:1,他引:2  
视基坑围护与支撑结构2为一共同变形体系统,且是一耗散结构系统,将现场量测的基坑围护变形视为该系统的外观表征,利用这些变形数据计算了上海几种常用围护结构系统的吸引子维数,探讨了基坑系统的力学性态,状态变量及现行的设计,有助于基坑稳定性的分析。  相似文献   

14.
In the present study, the large-scale excavation in the construction is numerically back-analyzed using a soil–water-coupled finite element method with an elasto-viscoplastic model which considers the strain-induced degradation. The measurements of the deformation have been performed during the construction of a new railway station in Osaka, Japan, in which a large and deep excavation has been successfully carried out using a special deep mixing type of soil improvement method with earth retaining walls through the thick Holocene Osaka Umeda clay deposit. A comparison between the numerical results and the measurements of the excavation at Osaka shows that the simulation method can reproduce the overall deformation of the soft ground and the earth retaining walls including the time-dependent behaviour during the excavation and a deep mixing soil improvement method as an additional technique for stability are effective.  相似文献   

15.
Hydraulic conductivity is a dominant parameter in the design of engineered waste disposal facilities such as landfill liners and covers, lagoon liners and slurry walls. It is of interest to a geotechnical or geo-environmental engineer to develop a predictive method of determining the hydraulic conductivity of fine-grained soils, in order to assess its suitability as a liner material. To predict the hydraulic conductivity of soils, researchers and geotechnical engineers have attempted to correlate it with index properties of the soils, such as the liquid limit, void ratio and specific surface. Based on the present study a predictive method has been developed in this paper to predict the hydraulic conductivity in terms of void ratio and shrinkage index (Liquid limit – shrinkage limit) for remoulded fine-grained soils. Though the initial conditions for the soil will affect the hydraulic conductivity behaviour to some extent, both the void ratio and soil characteristics are primary factors in affecting the hydraulic conductivity. Therefore for predictive purpose, the study of hydraulic conductivity behaviour of remoulded fine-grained soils as presented in this paper can be found to be useful for compacted soils also.  相似文献   

16.
For retaining walls built in mountainous regions, narrow backfill spaces are often encountered. The space to fully develop the active wedge is restricted for walls with a limited backfill space. This paper presents a numerical study on the behaviour of active earth pressures behind a rigid retaining wall with limited backfill space of various geometries. The active earth pressure for a wall built with limited backfill space is considerably less than that of the Coulomb solution, and the location of the resultant of active earth pressures is noticeably higher than one-third of the wall height. The coefficient of active earth pressures is as low as 0.5–0.6 times the Coulomb solution and the h/H value reaches up to 0.4–0.37 if aspect ratio of the fill space is in the range from 0.1 to 0.2. A clear trend between the ratio of the coefficient of active earth pressures at constrained fill conditions over the Coulomb Ka value and the aspect ratio of the fill-space geometry is obtained.  相似文献   

17.
龙门山地区强震荷载导致大量已建边坡支挡结构严重受损,如何对震区受损挡土墙进行震害评估成为亟待解决的技术难点。本文首先通过对研究区挡土墙的震害分析,总结出其主要破坏模式包括滑移破坏、沉降破坏、倾覆破坏、墙身破坏以及越顶破坏5类。然后根据全面性、重要性以及科学性原则对影响震害评价的因子进行定性分析和分类,并结合挡墙的破坏模式,综合分析得到挡土墙安全评估的敏感性因子和一般因子。将震害范围60%作为挡墙评价的敏感性因子,而一般因子分为两级共10个指标,包括:滑移距离,沉降深度,倾斜角度,裂缝数量,裂缝长度比,开裂深度比,开裂宽度,错动距离,垮塌范围,覆盖范围。最后,采用灰色关联分析与模糊数学理论相结合的方法构建挡土墙震害评估体系,从而变事后处理为事先预防,为灾后恢复重建服务。  相似文献   

18.
肖成志  陈倩倩  韩杰  陈培 《岩土力学》2013,34(6):1586-1592
针对加筋挡墙顶部受条形基础载荷作用时的工作性能开展试验研究,分析条形基础距挡墙面板距离对基础极限承载力、加筋挡墙变形特点、筋材应变和破坏模式的影响。试验结果表明:基础极限承载力随基础偏移距离 增加呈现先增大后减小的趋势,且在 为 ( 为挡墙高度)时达到最大值;条形基础加载至破坏前一级载荷时,基础沉降与挡墙高度比值均小于2%,面板水平位移与挡墙高度比值均小于1%,且当 小于0.6时,面板顶部水平位移明显大于中底部;各层筋材中应变最大值随 增加而逐渐向远离面板方向发展,且筋材最大应变由最初出现在顶层而转向中间层;顶部受条形基础载荷作用下加筋挡墙破坏以3种模式为主,即顶层面板挤出的浅层破坏、破坏面沿基础边缘发展并向深部推进和加筋挡墙整体破坏。  相似文献   

19.
Failure of retaining walls during earthquakes has occurred many times in the past. Although significant progress has been made in analysing the seismic response of rigid gravity type retaining walls, considerable difficulties still exist in the seismic-resistant design of the flexible cantilever type of retaining walls because of the complex nature of the dynamic soil–structure interaction. In this paper the seismic response of cantilever retaining walls with dry backfill is simulated using centrifuge modelling and numerical modelling. It is found that bending moments on the wall increased significantly during an earthquake. After the end of base shaking, the residual moment on the wall was significantly higher than the moment under static loading. The numerical simulation is able to model quite accurately the main characteristics of acceleration, bending moment, and displacement recorded in the centrifuge test.  相似文献   

20.
挡土墙病害和破坏形式主要有:滑移、倾覆、墙身开裂等,并且主要考虑一级或单级挡墙的破坏。本文通过对东莞南城区能源厂重叠式组合挡土墙失稳观察,提出其破坏形式除了一般挡土墙具有的常见病害倾覆之外,还伴随有该类挡土墙特有的灾害流土的发生,本文从定量、定性两方面对该失稳挡墙进行了具体分析,最后,根据分析结果对该挡墙提出了具有针对性的处理措施。通过对该挡土墙的分析总结,为今后该类挡土墙的设计、施工提出了极具借鉴价值的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号