首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents abundances of major and trace elements of apatites in granitic rocks associated with different types of ore deposits in Central Kazakhstan on the basis of electron probe microanalysis and laser ablation inductively coupled plasma mass spectrometry. Our results demonstrate that the concentrations and ratios of elements in apatites from different granitoid rocks show distinct features, and are sensitive to magma evolution, petrogenetic and metallogenetic processes. Apatites in the rocks associated with Mo‐W deposits have high content of F and MnO, low content of Cl, which may be indicative of sedimentary sources, while apatites from a Pb‐Zn deposit show relatively high content of Cl and low F content, which possibly suggest a high water content. In these apatites, Sr contents decrease, while Mn and Y contents increase with magma evolution. This relationship reflects that these elements in apatites are related with the degree of magmatic differentiation. Four types of REE patterns in apatites are identified. Type 1 character of highest (La/Yb)N in apatites of Aktogai porphyry Cu‐Mo deposit, Sayak‐I skarn Cu deposit and Akzhal skarn Pb‐Zn depposit is likely produced by the crystallization of heavy REE‐enriched minerals. Type 2 character of upward‐convex light REE in apatite of Aktogai porphyries likely results from La‐enriched mineral crystallization. Type 3 feature of Nd depletion in apatites of East Kounrad and Zhanet deposits both from Mo‐W deposits primarily inherits the character of host‐rock. Type 4 apatites of Aktogai deposit and Akshatau W‐Mo deposit with wide range of REE contents may suggest that apatites crystallize under a wide temperature range. Three types of apatite with distinct redox states are identified based on Eu anomaly. The Aktogai apatite with slight negative Eu anomaly displays the most oxidized state of the magma, and the apatites of other samples at Aktogai, East Kounrad and Akzhal with moderate negative Eu anomaly show moderate oxidizing condition of these rocks, while the remaining apatites with strong En anomaly indicate a moderate reductive state of these rocks.  相似文献   

2.
Variations in the F, Cl and OH contents of apatite are not constrained by crystal-chemical factors (in contrast to micas and amphiboles), and thus changes in the abundance of these components provide an indicator of halogen fugacity variations and insights into the degassing history of igneous rocks. Microprobe analysis of intercumulus apatites from the Stillwater Complex reveal that Cl-rich apatites, typically containing <0.4 wt % F and >6.0 wt % Cl, occur throughout the lower 1/3 of the complex excluding the Basal series. A change from Cl-rich to more F-rich apatite occurs within olivine-bearing zone I (OB I) of the Banded series, the host zone of the platiniferous J-M Reef. Although apatite compositions are somewhat variable above the J-M Reef, more F-rich apatites predominante and typically contain >1.2 wt % F and <3.0 wt % Cl. The most F-rich apatites occur in the uppermost exposed cumulates. Pristine apatites from coeval sills and dikes from below the complex and from the Basal series are similarly F-rich. In all apatites, the Cl and F contents are lower in rocks affected by later metamorphic fluids. Rare earth element (REE) concentrations in chlorapatites show a marked peak in the olivine-rich rocks of the J-M Reef, and contain up to 2 wt % Ce2O3 + La2O3. The trend of first increasing, then decreasing Cl/F ratios with stratigraphic height is modeled by a vapor-driven zone refining process occurring within the cumulate pile causing Cl-enrichment in the interstitial melt accompanied by degassing at the top of the magma chamber causing overall loss of Cl from the magma as crystallization proceeded. The abrupt change from Cl-rich to more F-rich apatites within OB I is interpreted as the result of a breakdown of the Cl-rich zone refining front and mixing with Cl-poor supernatant melt. Any high temperature fluids that exsolved and circulated through the lower 1/3 of the complex must have been enriched in Cl and could have transported REE and trace metals.  相似文献   

3.
Summary The apatite in various igneous rocks (from quartzmonzonitic to gabbroic composition) in one and the same area of differentiation was geochemically examined. The samples were taken from 24 different localities in the Odenwald (Germany) and the thin sections were determined petrographically with a point counter. 25 kg of each sample were dressed and the apatite separated from the heavy mineral concentrates. The pure apatite was analysed quantitative chemically. The variable components of the apatite are represented diagrammatically as functions of the rockchemistry, the physical- and the X-ray constants and their relationships are discussed. The following relations were established: The F-content of magmatic apatites increases in the acidic rocks without showing a stringent lawfulness to the rockchemistry. F remains in all apatites, compared with Cl, OR and 0, alwavs in predominance.With increase in the content of F the refractive index, as well as the lattice constants of the apatites, decrease.The Cl-content of magmatic apatites increases towards the basic rocks, but here too it remains much less than the amount of F. Further more all other statements refering to F can be applied to Cl, but with opposite meaning.A comparison of the chemical analyses of apatites from the newer literature and these of the author reveals in all probability that there is only a limited miscibility between F- and Cl-apatites. The limit being 20 atom per cent Cl. The relation of F : Cl as 1:1 in some apatites might be attributed to an orderly arranged state of the F- and Cl-apatites.OH behaves in a similar manner as Cl, except that the results have wider dispersion effect.According to the chemical equivalence calculations there is generally a small excess of cations. This means that Oxygen must fill up free halogen-places in the lattice.The content of SiO2 of the apatites shows an increasing tendency towards in the basic rocks and the content of P2O5 a decreasing one.The contents of the rare earths of magmatic apatites increase in acidic rocks and only those ones with even numbers (with the exception of La) appear.Only apatites from rocks with metamorphic characteristics had an amount of SO3.By means of a comparison between the exploit of apatite and P2O5-contents of the rocks can be supposed with probability that the principal quantity of the P2O5 in the magmatic rocks is not bound to the apatite but to the silicates. This supposition will shortly be further examined.The relative increasing of the intensity of the line (0002) and (0004) in the X-ray-graphs (X-ray-goniometer) in the F-rich apatites suggests a better (0001)-cleavage as in the Cl-rich apatites. This observation can be explained easily with the different structures of the F- and the Cl-apatites.  相似文献   

4.
Geochemistry of chlorine and fluorine in apatites, micas, and amphiboles in rocks from eight intrusive complexes of the Siberian Platform has been first studied on the basis of new factual and analytical data (more than 1000 analyses). The main attention is focused on minerals from layered intrusions. Most apatites show F > Cl; the maximum contents of halogens are specific to chlorapatite (6.97 wt.% Cl) and fluorapatite (6.04 wt.% F). The total f value (f = Fe/(Fe + Mg), at.%) of femic minerals varies from 2 to 98 at.% in micas and from 22 to 95 at.% in amphiboles. The Cl-f and F-f trends show an increase in the Cl content and a decrease in the F content in the minerals with increasing f. Chlorine clearly exhibits ferrophilic properties, and fluorine has magnesiophilic properties. The halogen-richest minerals are fluorophlogopite (F = 7.06 wt.%, f = 7 at.%), chlorannite (Cl = 6.30 wt.%, f = 89 at.%), and chloroferrihastingsite (Cl = 5.22 wt.%, f = 90 at.%). Coexisting micas and amphiboles in the rocks are close in f value, but the micas are richer in Cl than the amphiboles. We assume that the halogen-containing minerals crystallized at the high pressure of halogen-hydrocarbon fluids at the levels of the MW, IW, and QIF buffers. The reducing conditions of the magmatism process are also evidenced by the presence of graphite and native metals in the rocks. The similarity of the Cl-f and F-f trends of micas and amphiboles from different intrusive complexes indicates the same mechanisms of the melt differentiation and mineral crystallization.  相似文献   

5.
Gold abundance in granitic rocks of different geological periods in southern China has been estimated. A review of the quantitative data available indicates that unaltered granitic rocks have a rather restricted range in gold content, rarely exceeding 4 ppb and generally ranging from 1.4 to 3.3 ppb. The mean gold content tends to decrease from basic to acidic granitoids. This tendency suggests that gold isnot concentrated in the residual silicate meltduring the formation of granitic rocks. It is necessary to establish the background values of gold for various rock types although it seems that gold abundance data for the granitic rocks of southern China can necessarily provide any geochemical clues or guides to areas favorable or unfavorable for gold mineralization.  相似文献   

6.
Rb/Sr whole rock as well as K/Ar whole rock and mineral age determinations have been carried out on drill core samples obtained from the crystalline basement underlying the Amazonas and Maranhão Basins in Brazil. The data confirm the existence of an ancient basement under the Upper and Middle Amazonas Basin. The primary age of the granitic rocks is estimated at about 1560 Ma which correlates with recent age data obtained on granitic rocks on both sides of the Amazonas syneclise. In some areas the K/Ar ages show a decrease probably due to the effect of the Nickerie thermal episode described previously in the Guayana Shield.In the basement of the interconnected Lower Amazonas and Maranhão Basins Late Precambrian (Caririan) metamorphism and igneous activity seems to have been pervasive. The data allow the continuation of the Brazilian age province known in northeastern Brazil under the Maranhão Basin, linking this province to the Brasilia-Paraguay orogenic belt of similar age.  相似文献   

7.
Over 700 apatite grains from a range of rock types have been analysed by laser-ablation microprobe ICPMS for 28 trace elements, to investigate the potential usefulness of apatite as an indicator mineral in mineral exploration. Apatites derived from different rock types have distinctive absolute and relative abundances of many trace elements (including rare-earth elements (REE), Sr, Y, Mn, Th), and chondrite-normalised trace-element patterns. The slope of chondrite-normalised REE patterns varies systematically from ultramafic through mafic/intermediate to highly fractionated granitoid rock types. (Ce/Yb)cn is very high in apatites from carbonatites and mantle-derived lherzolites (over 100 and over 200, respectively), while (Ce/Yb)cn values in apatites from granitic pegmatites are generally less than 1, reflecting both HREE enrichment and LREE depletion. Within a large suite of apatites from granitoid rocks, chemical composition is closely related to both the degree of fractionation and the oxidation state of the magma, two important parameters in determining the mineral potential of the magmatic system. Apatite can accept high levels of transition and chalcophile elements and As, making it feasible to recognise apatite associated with specific types of mineralisation. Multivariate statistical analysis has provided a user-friendly scheme to distinguish apatites from different rock types, based on contents of Sr, Y, Mn and total REE, the degree of LREE enrichment and the size of the Eu anomaly. The scheme can be used for the recognition of apatites from specific rock types or styles of mineralisation, so that the provenance of apatite grains in heavy mineral concentrates can be determined and used in geochemical exploration.  相似文献   

8.
百里坪银、多金属矿化集中区白垩纪岩浆岩主要有花岗质与闪长质两个岩石系列。前者为富钾质钙碱性岩石,后者为富钠质碱钙性岩石,二者具有不同的变异曲线特征;花岗质岩石Co/N i值平均为2.644,闪长质岩石平均为0.498;花岗质岩石R b/S r值平均为0.223,闪长质岩石平均为0.020;在R b、S r、B a演化趋势上,花岗质岩石趋向富集R b,闪长质岩石趋向富集S r、B a,二者明显不同;两个岩系代表性岩石在稀土含量、稀土比值以及稀土模式上都不相同。两者的成矿专属性为:花岗质岩石对A g、Cu、P b、Zn矿化有利,闪长质岩石对A g、A u矿化有利。  相似文献   

9.
Apatites of representative magnetite‐series and ilmenite‐series granitoids were studied in the Japanese Islands. Concentrations of the volatile components F, Cl and SO3 are differently distributed in apatites of these granitoid series. Apatites are always fluoroapatite. They have weakly higher F content in the ilmenite series than in the magnetite series. In contrast, Cl and SO3, are significantly concentrated in apatites of the magnetite series compared to the ilmenite series. These characteristics reflect the original concentrations of these components in the host granitic magmas. A high fO2 seems most important for the S‐concentration as sulfate in apatite of the magnetite series. REE and Y are only erratically high in the studied apatites.  相似文献   

10.
Concentrations of halogens (fluorine, chlorine, bromine and iodine) were determined in six geochemical reference materials (BHVO‐2, GS‐N, JG‐1, JR‐1, JB‐1b, JB‐2). Halogens were first extracted from powdered samples using a pyrohydrolysis technique, then hydrolysis solutions were analysed by ion chromatography for F and Cl and inductively coupled plasma‐mass spectrometry for Br and I. The detection limits in solutions were 100 μg l?1 for both F and Cl and 10 ng l?1 for Br and I. Considering the extraction procedure, performed on a maximum of 500 mg of sample and producing 100 ml of pyrohydrolysis solution, detection limits in rock samples were 20 mg kg?1 for F and Cl and 2 μg kg?1 for Br and I. The mean analytical errors on the studied composition ranges were estimated at 10 mg kg?1 for F and Cl, 100 μg kg?1 for Br and 25 μg kg?1 for I. The concentration values, based on repeated (generally > 10) sample analysis, were in good agreement generally with published values and narrowed the mean dispersion around mean values. Large dispersions are discussed in terms of samples heterogeneity and contaminations during sample preparation. Basaltic RMs were found to be more suitable for studies of halogen compositions than differentiated rock material, especially granites – the powders of which were heterogeneous in halogens at the 500 mg level.  相似文献   

11.
张灵敏  刘景波  程南飞  叶凯  郭顺  陈意  毛骞 《岩石学报》2013,29(5):1525-1539
流体的盐度对含羟基变质矿物组合的稳定温压条件和岩石-流体的相互作用有重要影响.流体的盐度可从矿物中氯含量的角度加以研究.磷灰石是一个含氯矿物,作为副矿物广泛分布在各种岩石中,且能在较宽的温压范围内稳定存在.本文选择大别-苏鲁造山带中典型的高压、超高压岩石开展了磷灰石成分的研究,结合前人流体包裹体的研究结果,探讨了榴辉岩相条件下流体盐度和磷灰石中的氯含量之间的关系.榴辉岩和脉体中磷灰石的XClAp/XOHAp比值与已有的流体包裹体盐度呈很好的线性正相关.榴辉岩和脉体中磷灰石的XClAp/XoHAp比值范围为0.00~0.35时,对应的流体包裹体盐度约为0~40% NaCleqv.  相似文献   

12.
燕山早期中-酸性岩浆岩侵入于蓟县系铁岭组、青白口系下马岭组地层中.辉钼矿化分布于岩体内部及其围岩中.本文讨论了花岗斑岩和闪长岩体的地质特征、成岩期次、岩石学、岩石化学特征及其含矿性;论述了矽卡岩一斑岩型钼矿床的成矿地质条件、围岩蚀变、矿床特征和矿床成因.  相似文献   

13.
Geochemcial distribution of tungsten in the granitic rocks of Afu Younger Granite Complex of Central Nigeria, indicates that the average tungsten content (168 ppm) of the rocks is significantly higher than any reported average abundance for granitic rocks. However, significant contrast between the rock phases is obtained only in the Igo biotite granite which is directly connected with tungsten lode mineralization.The close spatial relationship between tungsten mineralization and the Igo biotite granite suggests that the ore forming fluids were probably derived from the residual fraction of the granitic magma. Greisenization is intimately associated with mineralization and it is suggested that they both had a common process of formation.  相似文献   

14.
Abstract. Determinations of SO3 and Cl contents of igneous accessory apatite were carried out on Late Cenozoic intermediate to silicic intrusive and volcanic rocks in the Japanese island arcs of the western Pacific rim including the southwestern Kuril arc (eastern Hokkaido), Northeast Japan arc (southwestern Hokkaido through northeastern Honshu to central Honshu), Izu‐Bonin arc, Kyushu‐Palau ridge, Southwest Japan arc (northern Kyushu) and northern Ryukyu arc (southern Kyushu). These were compared to those from the Western Luzon arc, Philippines, to better understand the metallogenesis of porphyry Cu deposits in the western Pacific island arcs. In addition, SO3 and Cl contents of accessory apatite in the Cretaceous magnetite‐series granitic rocks in the Kitakami belt (northeastern Honshu) and the Miocene ilmenite‐series granitic rocks in the Outer Zone of Southwest Japan (southern Kyushu) were also examined. Microphenocrystic apatites in shallow intrusions associated with porphyry Cu deposits in the Western Luzon arc contain >0.1 wt% S as SO3. Such high SO3 contents of microphenocrystic apatite are a common characteristic of hydrous mag‐matism in the Western Luzon arc, from 15 Ma old tonalitic plutonic rocks of the Luzon Central Cordillera to present‐day volcanism at Mount Pinatubo. The accessory apatite in intrusive rocks associated with porphyry Cu deposits, especially those at the Santo Tomas II deposit, show significantly high Cl contents (>2 wt%). The SO3 contents of microphenocrystic apatite in most of the hydrous silicic rocks along the volcanic front, in andesites related to native sulfur deposits, and in Miocene and younger shallow granitic intrusions in northeastern Honshu, are generally <0.1 wt%. On the other hand, the SO3 contents of apatite in such rocks from eastern Hokkaido, southwestern Hokkaido, Izu, northern Kyushu and southern Kyushu are similar to those from the Western Luzon arc. The SO3 contents of accessory apatite in the Cretaceous magnetite‐series granitic rocks in the Kitakami belt are variable, whereas those of the Miocene ilmenite‐series granitic rocks in southern Kyushu are extremely low. The Cl contents of accessory apatite in some rocks of the Northeast Japan arc, Izu‐Bonin arc and Southwest Japan arc are significantly high. In terms of the Cl and SO3 contents of microphenocrystic apatite, Cenozoic Japanese arc magmatism show similarities with arc magmatism associated elsewhere with porphyry Cu mineralization, except for the most of northeastern Honshu of the Northeast Japan arc. Apatite commonly occurs as inclusions in other phenocrystic phases. Thus the variation in SO3 contents of apatite is a feature of early stage magmatic differentiation. The SO3 contents of microphenocrystic apatite are considered to reflect the redox state of the magma source region or fluids encountered during magma generation.  相似文献   

15.
邵树勋  张乾  潘家永 《矿物学报》1999,19(4):483-490
丹寨汞矿是产于碳酸盐岩地层中以汞为主伴生金的浅成低温层控矿床。本文对该矿床矿石及围岩中的卤素元素分布特征进行了一定的研究。研究结果表明,(1)矿区内Br、I的富集程度远比F、Cl高,从远矿围岩→近矿围岩→汞矿石Br、I含量呈增加趋势,金矿石中Br、I含量比近矿及远矿围岩含量低,且I的富集系数小于1;(2)F在金矿化岩石及近矿围岩中含量较高;(3)Cl的变化规律不甚明显,且富集系统均小于1;(4)垂  相似文献   

16.
The Banke and Ririwai complexes have plutonic phases of igneous activity composed mainly of granitic rocks. These granitic ring complexes are associated with Sn-Nb mineralization and are characterized by high Li, F and Rb contents and Rb/Sr ratios, and low Ba and Sr contents and Ba/Rb ratios. — The altered and mineralized granites have variable Rb/Sr and Ba/Rb ratios differing significantly from those of fresh rocks. These ratios as well as the Li, F and Rb concentrations are good indicators of granitic rocks associated with postmagmatic alteration and mineralization providing valuable tools for Sn-Nb exploration within the Nigerian Younger Granite province.  相似文献   

17.
We remelted and analyzed crystallized silicate melt inclusions in quartz from a porphyritic albite-zinnwaldite microgranite dike to determine the composition of highly evolved, shallowly intruded, Li- and F-rich granitic magma and to investigate the role of crystal fractionation and aqueous fluid exsolution in causing the extreme extent of magma differentiation. This dike is intimately associated with tin- and tungsten-mineralized granites of Zinnwald, Erzgebirge, Germany. Prior research on Zinnwald granite geochemistry was limited by the effects of strong and pervasive greisenization and alkali-feldspar metasomatism of the rocks. These melt inclusions, however, provide important new constraints on magmatic and mineralizing processes in Zinnwald magmas.The mildly peraluminous granitic melt inclusions are strongly depleted in CAFEMIC constituents (e.g., CaO, FeO, MgO, TiO2), highly enriched in lithophile trace elements, and highly but variably enriched in F and Cl. The melt inclusions contain up to several thousand ppm Cl and nearly 3 wt% F, on average; several inclusions contain more than 5 wt% F. The melt inclusions are geochemically similar to the corresponding whole-rock sample, except that the former contain much more F and less CaO, FeO, Zr, Nb, Sr, and Ba. The Sr and Ba abundances are very low implying the melt inclusions represent magma that was more evolved than that represented by the bulk rock. Relationships involving melt constituents reflect increasing lithophile-element and halogen abundances in residual melt with progressive magma differentiation. Modeling demonstrates that differentiation was dominated by crystal fractionation involving quartz and feldspar and significant quantities of topaz and F-rich zinnwaldite. The computed abundances of the latter phases greatly exceed their abundances in the rocks, suggesting that the residual melt was separated physically from phenocrysts during magma movement and evolution.Interactions of aqueous fluids with silicate melt were also critical to magma evolution. To better understand the role of halogen-charged, aqueous fluids in magmatic differentiation and in subsequent mineralization and metasomatism of the Zinnwald granites, Cl-partitioning experiments were conducted with a F-enriched silicate melt and aqueous fluids at 2,000 bar (200 MPa). The results of the experimentally determined partition coefficients for Cl and F, the compositions of fluid inclusions in quartz and other phenocrysts, and associated geochemical modeling point to an important role of magmatic-hydrothermal fluids in influencing magma geochemistry and evolution. The exsolution of halogen-charged fluids from the Li- and F-enriched Zinnwald granitic magma modified the Cl, alkali, and F contents of the residual melt, and may have also sequestered Li, Sn, and W from the melt. Many of these fluids contained strongly elevated F concentrations that were equivalent to or greater than their Cl abundances. The exsolution of F-, Cl-, Li-, ± W- and Sn-bearing hydrothermal fluids from Zinnwald granite magmas was important in effecting the greisenizing and alkali-feldspathizing metasomatism of the granites and the concomitant mineralization.Editorial Handling: B. Lehmann  相似文献   

18.
Compositional data on apatite, phlogopite, and amphibole indicatethat the high-temperature hydrothermal fluids which affectedthe lower portions of the Stillwater and Bushveld Complexeswere Cl-rich. Apatites from the platinum-group element (PGE)ore zones from both complexes are enriched in Cl relative toother cumulus and noncumulus apatites in these intrusions andto apatites from the Skaergaard and Kiglapait Intrusions andthe Great Dyke. Apatites from all five intrusions can be groupedinto three distinct compositional fields: (a) Cumulus apatitesare essentially fluorapatites with molar Cl/(Cl+OH+F) <0?03;(b) noncumulus apatites, with the exception of those from thePGE ore zones of the Stillwater and Bushveld Complexes, haveCl/(Cl+OH+F) <0?20; (c) Cl-rich apatites associated withPGE-rich zones have Cl/(Cl+OH+F) between 0?45 and 1?0. The REEcontent of noncumulus and Cl-rich apatites also show a positivecorrelation with Cl concentration. It is argued that becauseCl is less soluble in silicate melts than F and because meltswith extremely high Cl/F ratios are unknown, the Cl-rich apatitesequilibrated with Cl-rich hydrothermal fluids exsolved duringsolidification of the cumulate sequence. The Cl, F, and OH contents of phlogopites and amphiboles aremore variable. Compositional heterogeneity is due to crystal-chemicalcontrols on halogen contents, variation in the halogen contentof the original melt/fluid phase and subsolidus re-equilibrationduring cooling with both surrounding mineral phases and lowtemperature fluids. However, both the Stillwater and Bushveldphlogopites are enriched in Cl compared to those from the Skaergaardand Kiglapait Intrusions. The compositions of coexisting minerals from the platinum depositof Olivine-Bearing Subzone I of the Stillwater Complex are usedto compute a fluid composition. The fluid is rich in alkalisand iron as well as HCl, and the solution composition is consistentwith fluid compositions deduced for the PGE-bearing secondaryhortonolite pipes of the Bushveld Complex. The high (Pt+Pd)/Irratios of these deposits are also consistent with a hydrothermalorigin, as both Pt and Pd are more soluble in Cl-complexingfluids than Ir.  相似文献   

19.
Fluorine and chlorine play an important role in magmatic differentiation, hydrothermal alteration, and related mineralization processes, but tracing their evolution in magmatic and especially plutonic systems is not an easy task. The F and Cl in melts can be estimated from F and Cl concentrations in minerals, provided that partitioning between minerals and melts are constrained. Based on available partitioning models between mineral/melt, mineral/fluid, and melt/fluid, a set of equations has been derived to determine F and Cl concentrations in melts from the compositions of amphibole, biotite, and apatite. The new calculation procedure has been applied to a plutonic system, the Liujiawa pluton, eastern Dabie orogen (China). Cl and F concentrations in amphiboles, biotites, and apatites from different rock types (gabbronorite, two-pyroxene diorite, clinopyroxene diorite, and hornblende gabbro) have been determined by electron microprobe. Most amphiboles show a negative correlation between log(Cl/OH) and Mg-number and a positive correlation between log(F/OH) and A-site occupation. Biotites from the gabbronorite and two-pyroxene diorite show a slight positive correlation between log(Cl/OH) and Mg, which is however not the case for the clinopyroxene diorite. Apatites from all the samples are rich in F and show negative correlations between Cl and F concentrations. In our case study, we demonstrate that the Cl concentration in melt remains approximately constant at 1,000–2,000?ppm over the major crystallization interval, but decreases strongly at near solidus temperatures as a result of fluid exsolution. The F concentration in melt remains nearly constant at ca. 2,000–3,000?ppm at high temperatures as well as near solidus conditions, indicating that it is not largely affected by fluid exsolution because of its strongly preferred incorporation into melt. Interestingly, the evolution of Cl and F concentrations in melt with magmatic differentiation is similar to that determined in volcanic systems, suggesting that the evolution of Cl and F in melts during crystallization and late magmatic stages at depth (plutonic systems) is similar to that observed in volcanic systems during decompression and degassing.  相似文献   

20.
青海祁漫塔格地区位于东昆仑造山带西段,是我国近些年来的重点找矿地区之一。本文对区内与虎头崖矿床I矿带(Fe)、野马泉矿床(Fe)、虎头崖矿床VI矿带(Zn)和卡而却卡矿床B区(Cu)有关的花岗质岩石开展了矿物学研究。结果显示,虎头崖矿床I矿带的斜长石以奥长石为主(An15.0-24.1);虎头崖矿床VI矿带的斜长石主要为钠长石和奥长石(An8.7-20.8);卡而却卡矿床B区的斜长石主要是中长石(An33.8-42.2);野马泉矿床的斜长石主要为奥长石和中长石(An26.2-48.4)。角闪石为典型的钙角闪石,其中,虎头崖矿床I矿带的角闪石属铁浅闪石;卡而却卡矿床B区的角闪石为镁角闪石和铁角闪石。各矿床(带)的黑云母普遍富Fe、Ti、F、Cl,属典型的铁黑云母。矿物学特征显示,各矿床(带)的黑云母结晶于相似的高氧逸度条件下,但在结晶温度和挥发份组成等方面存在差异。黑云母的结晶温度和氧逸度特征与各矿床类型之间未表现出明显的规律性特征。结合前人的研究成果可知,岩浆结晶的温度和氧逸度可能不是控制本区矽卡岩矿床成矿作用类型的主要因素。黑云母的挥发份组成与各成矿元素间表现出明显的规律性特征,其中,以Fe为主的虎头崖矿床I矿带和野马泉矿床的岩浆流体特征基本一致,表现出相对富Cl、贫H2O、F的特点;以Zn为主的虎头崖矿床VI矿带的岩浆流体相对富F贫H2O、Cl;以Cu为主的卡而却卡矿床B区的岩浆流体相对富Cl、H2O贫F,说明岩浆流体不同的挥发份组成可能与不同的矿床类型之间存在密切的联系。综合地质特征和矿物学特征可知,岩浆流体的挥发份组成可能是控制青海祁漫塔格地区矽卡岩矿床成矿作用类型多样性的重要因素之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号