首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
三维完全非线性波浪水槽的数值模拟   总被引:7,自引:0,他引:7  
用有限元求解拉普拉斯方程,建立了三维完全非线性数值波浪水槽.跟踪流体自由表面的方法为满足完全非线性自由表面条件的半拉格朗日法,对离散单元采用20节点的六面体二次等参数单元.并把数值计算结果与水面初始升高产生箱体内流体运动解析解和二阶斯托克斯波理论解进行了对比,结果表明该模型是稳定的、守恒的,能精确模拟非线性波浪的产生和传播.  相似文献   

2.
精确模拟非线性波沿斜面传播过程非常困难,为此论文从势函数的边界积分方程出发,建立了一种时域内二维波浪模拟的数值模型,主要用来模拟完全非线性波浪的传播变形过程。论文的数值模型使用高阶二维边界元方法,采用可调节时间步长的基于二阶显式泰勒展开的混合欧拉-拉格郎日时间步进来求解带自由表面的线性或完全非线性波浪传播问题。在计算区域一端造出线性或非线性的周期性波浪,另一端采用消除反射波的人工粘性吸收边界。通过与现有理论比较证明了论文数值方法所得结果是准确可靠的。  相似文献   

3.
X.T. Zhang  B.C. Khoo  J. Lou 《Ocean Engineering》2006,33(17-18):2310-2331
The problem of wave propagation in a fully nonlinear numerical wave tank is studied using desingularized boundary integral equation method coupled with mixed Eulerian–Lagrangian formulation. The present method is employed to solve the potential flow boundary value problem at each time step. The fourth-order predictor–corrector Adams–Bashforth–Moulton scheme is used for the time-stepping integration of the free surface boundary conditions. A damping layer near the end-wall of wave tank is added to absorb the outgoing waves with as little wave reflection back into the wave tank as possible. The saw-tooth instability is overcome via a five-point Chebyshev smoothing scheme. The model is applied to several wave propagations including solitary, irregular and random incident waves.  相似文献   

4.
Unsteady nonlinear wave motions on the free surface in shallow water and over slopes of various geometries are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier–Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Also, the free surface which consists of markers or segments is determined every time step with the satisfaction of kinematic and dynamic free surface conditions. Moreover, marker-density method is also adopted to allow plunging jets impinging on the free surface. Either linear or Stokes wave theory is employed for the generation of waves on the inflow boundary. For the simulation of wave breaking phenomena, the computations are carried out with various wave periods and sea bottom slopes in surf zone. The results are compared with other existing computational and experimental results. Agreement between the experimental data and the computation results is good.  相似文献   

5.
6.
Fully nonlinear wave-body interactions with surface-piercing bodies   总被引:1,自引:0,他引:1  
W.C. Koo  M.H. Kim   《Ocean Engineering》2007,34(7):1000-1012
Fully nonlinear wave-body interactions for stationary surface-piercing single and double bodies are studied by a potential-theory-based fully nonlinear 2D numerical wave tank (NWT). The NWT was developed in time domain by using boundary element method (BEM) with constant panels. MEL free surface treatment and Runge–Kutta fourth-order time integration with smoothing scheme was used for free-surface time simulation. The acceleration-potential scheme is employed to obtain accurate time derivative of velocity potential. Using the steady part of nonlinear force time histories, mean and a series of higher-harmonic force components are calculated and compared with the experimental and numerical results of other researchers. The slow-decaying second-harmonic vertical forces are investigated with particle velocities and corresponding body pressure. Typical patterns of two-body interactions, shielding effect, and the pumping/sloshing modes of water column in various gap distances are investigated. The pumping mode in low frequencies is demonstrated by the comparison of velocity magnitudes.  相似文献   

7.
A finite-difference scheme and a modified marker-and-cell (MAC) algorithm have been developed to investigate the interactions of fully nonlinear waves with two- or three-dimensional structures of arbitrary shape. The Navier–Stokes (NS) and continuity equations are solved in the computational domain and the boundary values are updated at each time step by the finite-difference time-marching scheme in the framework of a rectangular coordinate system. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique developed for two fluid layers.To demonstrate the capability and accuracy of the present method, the numerical simulation of backstep flows with free-surface, and the numerical tests of the MDF technique with limit functions are conducted. The 3D program was then applied to nonlinear wave interactions with conical gravity platforms of circular and octagonal cross-sections. The numerical prediction of maximum wave run-up on arctic structures is compared with the prediction of the Shore Protection Manual (SPM) method and those of linear and second-order diffraction analyses based on potential theory and boundary element method (BEM). Through this comparison, the effects of non-linearity and viscosity on wave loading and run-up are discussed.  相似文献   

8.
Simulation of Fully Nonlinear 3-D Numerical Wave Tank   总被引:6,自引:0,他引:6  
A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order bouodary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.  相似文献   

9.
This is a numerical study on the time development of surface waves generated by a submerged body moving steadily in a two-layer fluid system, in which a layer of water is underlain by a layer of viscous mud. The fully nonlinear Navier-Stokes equations are solved on FLUENT with the Volume-of-Fluid (VOF) multiphase scheme in order to simulate the free surface waves as well as the water-mud interface waves as functions of time. The numerical model is validated by mimicking a reported experiment in a one-layer ...  相似文献   

10.
A fully nonlinear domain decomposed solver is proposed for efficient computations of wave loads on surface piercing structures in the time domain. A fully nonlinear potential flow solver was combined with a fully nonlinear Navier–Stokes/VOF solver via generalized coupling zones of arbitrary shape. Sensitivity tests of the extent of the inner Navier–Stokes/VOF domain were carried out. Numerical computations of wave loads on surface piercing circular cylinders at intermediate water depths are presented. Four different test cases of increasing complexity were considered; 1) weakly nonlinear regular waves on a sloping bed, 2) phase-focused irregular waves on a flat bed, 3) irregular waves on a sloping bed and 4) multidirectional irregular waves on a sloping bed. For all cases, the free surface elevation and the inline force were successfully compared against experimental measurements.  相似文献   

11.
基于高阶边界元的三维数值波浪港池   总被引:9,自引:1,他引:8  
初步建立了一个基于高阶边界元的三维数值波浪港池,港池具有造波和消波功能。采用高阶边界元16节点四边形单元和基于二阶显式泰勒展开的混合欧拉-拉格朗日时间步进求解带自由表面的完全非线性势流方程。模型中对于影响数值精度的问题作了细致的处理。数值计算结果表明本港池可以用来模拟非线性波浪的传播,具有很高的数值精度和稳定性。  相似文献   

12.
13.
Propagation of a solitary wave over rigid porous beds   总被引:1,自引:0,他引:1  
The unsteady two-dimensional Navier–Stokes equations and Navier–Stokes type model equations for porous flows were solved numerically to simulate the propagation of a solitary wave over porous beds. The free surface boundary conditions and the interfacial boundary conditions between the water region and the porous bed are in complete form. The incoming waves were generated using a piston type wavemaker set up in the computational domain. Accuracy of the numerical model was verified by comparing the numerical results with the theoretical solutions. The main characteristics of the flow fields in both the water region and the porous bed were discussed by specifying the velocity fields. Behaviors of boundary layer flows in both fluid and porous bed regions were also revealed. Effects of different parameters on the wave height attenuation were studied and discussed. The results of this numerical model indicate that for the investigated incident wave as the ratio of the porous bed depth to the fluid depth exceeds 10, any further increase of the porous bed depth has no effect on wave height attenuation.  相似文献   

14.
A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Eulerian-Lagrangian formulation is adopted and a higher-order boundary element method in conjunction with an image Green function is used for the fluid domain. The boundary values on the free surface are updated at each time step by a fourth-order Runga-Kutta time-marching scheme at each time step. Input wave characteristics are specified at the upstream boundary by an appropriate wave theory. At the downstream boundary, an artificial damping zone is used to prevent wave reflection back into the computational domain. Using the image Green function in the whole fluid domain, the integrations on the two lateral walls and bottom are excluded. The simulation results on extreme wave elevations in finite and infinite water-depths are compared with experimental results and second-order analytical solutions respectively. The wave kinematics is also discussed in the present study.  相似文献   

15.
16.
C.Z. Wang  G.X. Wu  K.R. Drake 《Ocean Engineering》2007,34(8-9):1182-1196
Interactions between water waves and non-wall-sided cylinders are analyzed based on velocity potential theory with fully nonlinear boundary conditions on the free surface and the body surface. The finite element method (FEM) is adopted together with a 3D mesh generated through an extension of a 2D Delaunay grid on a horizontal plane along the depth. The linear matrix equation for the velocity potential is constructed by imposing the governing equation and boundary conditions through the Galerkin method and is solved through an iterative method. By imposing the gradient of the potential equal to the velocity, the Galerkin method is used again to obtain the velocity field in the fluid domain. Simulations are made for bottom mounted and truncated cylinders with flare in a numerical tank. Periodic waves and wave groups are generated by a piston type wave maker mounted on one end of the tank. Results are obtained for forces, wave profiles and wave runups. Further simulations are made for a cylinder with flare subjected to forced motion in otherwise still open water. Results are provided for surge and heave motion in different amplitudes, and for a body moving in a circular path in the horizontal plane. Comparisons are made in several cases with the results obtained from the second order solution in the time domain.  相似文献   

17.
A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Eulerian-Lagrangian formulation is adopted and a higher-order boundary element method in conjunction with an image Green function is used for the fluid domain. The boundary values on the free surface are updated at each time step by a fourth-order Runga-Kutta time-marching scheme at each time step. Input wave characteristics are specified at the upstream boundary by an appropr...  相似文献   

18.
A fully nonlinear numerical model based on a time-domain higher-order boundary element method (HOBEM) is founded to simulate the kinematics of extreme waves. In the model, the fully nonlinear free surface boundary conditions are satisfied and a semi-mixed Euler-Lagrange method is used to track free surface; a fourth-order Runga-Kutta technique is adopted to refresh the wave elevation and velocity potential on the free surface at each time step; an image Green function is used in the numerical wave tank so that the integrations on the lateral surfaces and bottom are excluded. The extreme waves are generated by the method of wave focusing. The physical experiments are carried out in a wave flume. On the horizontal velocity of the measured point, numerical solutions agree well with experimental results. The characteristics of the nonlinear extreme-wave kinematics and the velocity distribution are studied here.  相似文献   

19.
Inviscid three-dimensional free surface wave motions are simulated using a novel quadratic higher order boundary element model (HOBEM) based on potential theory for irrotational, incompressible fluid flow in an infinite water-depth. The free surface boundary conditions are fully non-linear. Based on the use of images, a channel Green function is developed and applied to the present model so that two lateral surfaces of an infinite-depth wave tank can be excluded from the calculation domain. In order to generate incident waves and dissipate outgoing waves, a non-reflective wave generator, composed of a series of vertically aligned point sources in the computational domain, is used in conjunction with upstream and downstream damping layers. Numerical experiments are carried out, with linear and fully non-linear, regular and focused waves. It can be seen from the results that the present approach is effective in generating a specified wave profile in an infinite water-depth without reflection at the open boundaries, and fully non-linear numerical simulations compare well with theoretical solutions. The present numerical technique is aimed at efficient modelling of the non-linear wave interactions with ocean structures in deep water.  相似文献   

20.
波浪与带窄缝方箱作用共振现象的数值模拟   总被引:1,自引:1,他引:0  
By introducing a source term into the Laplace equation, a two-dimensional fully nonlinear time-domain numerical wave flume (NWF) is developed to investigate the resonance induced by the interaction bet...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号