首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Computer recording of thermal drilling rate of ice hummocks and stamukhas gives the objective information on their internal structure and basic morphometric characteristics. Methods of determination of the consolidation layer of ice hummocks and stamukhas and the thermal drilling data processing technique are considered in the paper. The reliability of determination of consolidated layer boundaries on the basis of the thermal drilling rate should be corroborated by the temperature measurements. To estimate the time spent for the ice hummock temperature measurement using the polyethylene tubes which are put into the boreholes and filled with the antifreeze, the experimental study of the borehole freezing rate was carried out depending on the temperature and salinity of ice. The results of experiments corroborating the existence of convection in the antifreeze are given. The used methods of ice hummock temperature measurement are discussed. The method of investigation of ice formations combining the thermal drilling technique and ice temperature measurement on the borehole wall enables to obtain the accurate data on the position of the lower boundary of consolidated layer, although it results in a smaller number of the boreholes.  相似文献   

3.
李金辉  田显  岳治国 《大气科学》2020,44(4):748-760
利用探空火箭、新一代天气雷达和气象探测资料对2015年7月17日延安宝塔区冰雹云进行了综合探测,结果表明:(1)当日08:00(北京时,下同)500 hPa河套低涡分裂东移,有较强冷平流且移动速度较快,地面14:00升温明显造成了这次降雹。(2)偏后位置的冰雹云内部温、湿条件以及对流指数(Tg)、整层比湿积分(IQ)、总指数(TT)均小于外部的自然大气;层结稳定度指数(K)、抬升指数(LI)、沙氏指数(SI)冰雹云内部比外部自然大气偏小;热力参数风暴强度指数(SSI)冰雹云内部低于外部自然大气;冰雹云内部能量参数(CAPE)明显低于自然大气;冰雹云内部0°C层高度低于冰雹云外部自然大气。(3)火箭探测的位置偏冰雹云后部,冰雹云由低层到高层风向呈逆时针变化,探空仪摆动明显,?20°C温度层偏高,气流较强,整层偏下沉气流。(4)冰雹云0°C附近,在温度区间?1.8~5.0°C、厚度1.0 km范围内有最大湿度区,湿度达80%以上,最大湿度87.1%,为冰雹的形成提供了水汽条件。(5)紧贴0°C下正温区,有最大水平风速为19 m s?1急流,厚度为0.022 km。在温度区间?4.8~5.0°C、厚度1.6 km范围内维持13 m s?1以上水平风速,为冰雹的形成提供了动力场条件。(6)在温度区间?8.7~?9.2°C、厚度0.2 km,有小于或等于2 m s?1弱风区;弱风区下方,在温度区间?4.6~?8.8°C、厚度0.889 km有上升气流,平均上升速度1.79 m s?1,最大上升速度4 m s?1,这种配置为冰雹的生长提供了环境场。  相似文献   

4.
冻土在气候系统中起重要作用,研究并揭示冻土时空变化对于增加陆气相互作用的理解具有重要意义.本研究利用包含土壤冻结融化界面动态变化的陆面过程模式CAS-LSM(Chinese Academy of Sciences Land Surface Model),采用0.9°(纬度)×1.25°(经度)分辨率,结合4种大气强迫数...  相似文献   

5.
In this paper, results of numerical experiments based on the one-dimensional thermodynamic model of hummock formations evolution, which has been developed by the authors, are analysed. This model has been used for computation of relative rates of freezing and melting of hummocks in typical conditions of the northeastern shelf of Sakhalin Island; then obtained values were compared with the plain sea ice cover parameters simulated by using climate and actual meteorological data. It is shown that obtained results well comply with observational data collected during expeditions in this region.  相似文献   

6.
Structural-genetic types of hummocks formed on the Arctic seas’ ice cover are considered. A method of the laboratory physical modeling was used for understanding kinematic schemes of the hummocks’ formation processes. A methodology of computation of the hummock consolidation intensity for different hummocks’ structural types was proposed. The performed computations showed good coherence of the laboratory experiments results and field studies of hummocks’ structure in the Barents and Kara seas.  相似文献   

7.
Presented are the results of the sounding of the lower atmospheric 500-meter layer for the period of 2004–2012 carried out at the Meteorological Observatory of the Moscow State University (MSU) with the MODOS Doppler acoustic radar (sodar) produced by METEK (Germany). Discussed is the methodological basis of the sodar wind data analysis. It is demonstrated that in the air layer up to 200 m the maximum values in the annual course of the wind speed are observed more often in autumn and winter, and the minimum values, in summer; this is associated with the fact that during the cold period of the year Moscow is often located in the zones of intense gradient currents. The diurnal course of the wind speed is characterized by the daytime maximum and night-time minimum in the layer up to 40–60 m from the surface; it is poorly pronounced and characterized by the minimum in the morning in the layer of 80–120 m; and the daytime minimum and night-time maximum are observed above 140–160 m. The layer from 80 to 120 m approximately corresponds to the height of the wind rotation. The amplitude of diurnal variations of the wind speed increases from 0.3 m/s at the height of 7 m and 0.6 m/s at the height of 15 m, to 4.5 m/s at the height of 400 m; however, its secondary minimum (0.5 m/s) associated with the rotation height is registered at the altitude of 80 m. The statistical relationship between the wind speed and surface air temperature is direct during the cold season, inverse during the warm season, and is absent in April and October. The average maximum wind speed over Moscow for ten minutes in the layer up to 500 m from the surface reaches 30–35 m/s in some cases if two conditions concur: the capital is located on the periphery of vast pressure formations (usually of deep cyclones) and the local low-level jet stream is present in the wind profile.  相似文献   

8.
We test a surface renewal model that is widely used over snow and ice surfaces to calculate the scalar roughness length (z s ), one of the key parameters in the bulk aerodynamic method. For the first time, the model is tested against observations that cover a wide range of aerodynamic roughness lengths (z 0). During the experiments, performed in the ablation areas of the Greenland ice sheet and the Vatnajökull ice cap in Iceland, the surface varied from smooth snow to very rough hummocky ice. Over relatively smooth snow and ice with z 0 below a threshold value of approximately 10?3 m, the model performs well and in accord with earlier studies. However, with growing hummock size, z 0 increases well above the threshold and the bulk aerodynamic flux becomes significantly smaller than the eddy-correlation flux (e.g. for z 0 = 0.01 m, the bulk aerodynamic flux is about 50% smaller). Apparently, the model severely underpredicts z s over hummocky ice. We argue that the surface renewal model does not account for the deep inhomogeneous roughness sublayer (RSL) that is generated by the hummocks. As a consequence, the homogeneous substrate ice grain cover becomes more efficiently ‘ventilated’. Calculations with an alternative model that includes the RSL and was adapted for use over hummocky ice, qualitatively confirms our observations. We suggest that, whenever exceedance of the threshold occurs (z 0  >  10?3 m, i.e., an ice surface covered with at least 0.3-m high hummocks), the following relation should be used to calculate scalar roughness lengths, ln (z s /z 0)  =  1.5  ? 0.2 ln (Re *)  ? 0.11(ln (Re *))2.  相似文献   

9.
The characteristics of boundary layer structure during a persistent regional haze event over the central Liaoning city cluster of Northeast China from 16 to 21 December 2016 were investigated based on the measurements of particulate matter (PM) concentration and the meteorological data within the atmospheric boundary layer (ABL). During the observational period, the maximum hourly mean PM2.5 and PM10 concentrations in Shenyang, Anshan, Fushun, and Benxi ranged from 276 to 355 μg m–3 and from 378 to 442 μg m–3, respectively, and the lowest hourly mean atmospheric visibility (VIS) in different cities ranged from 0.14 to 0.64 km. The central Liaoning city cluster was located in the front of a slowly moving high pressure and was mainly controlled by southerly winds. Wind speed (WS) within the ABL (< 2 km) decreased significantly and WS at 10-m height mostly remained below 2 m s–1 during the hazy episodes, which was favorable for the accumulation of air pollutants. A potential temperature inversion layer existed throughout the entire ABL during the earlier hazy episode [from 0500 Local Time (LT) 18 December to 1100 LT 19 December], and then a potential temperature inversion layer developed with the bottom gradually decreased from 900 m to 300 m. Such a stable atmospheric stratification further weakened pollutant dispersion. The atmospheric boundary layer height (ABLH) estimated based on potential temperature profiles was mostly lower than 400 m and varied oppositely with PM2.5 in Shenyang. In summary, weak winds due to calm synoptic conditions, strong thermal inversion layer, and shallow atmospheric boundary layer contributed to the formation and development of this haze event. The backward trajectory analysis revealed the sources of air masses and explained the different characteristics of the haze episodes in the four cities.  相似文献   

10.
This study analyzes radiative effect of the higher clouds over the fog layer and presents the improvement of fog detection over the Korean peninsula, utilizing satellite data of the Multi-functional Transport SATellite (MTSAT)-1R and the MODerate resolution Imaging Spectroradiometer (MODIS) and the Look-Up Table (LUT) based on Radiative Transfer Model (RTM) simulations. Fog detection utilizing the satellite data from visible (0.68 µm) and infrared (3.75 µm and 10.8 µm) channels has been evaluated in comparison with ground-based observations over 52 meteorological stations in the Korean Peninsula from March 2006 to February 2007. The threshold values for fog sensing have been derived from the difference (i.e., T3.7–11) in brightness temperature between 3.75 µm (T3.7) and 10.8 µm (T11) during day and night, and also from the reflectivity at 0.68 µm (R0.68) in the daytime. In the twilight, however, the difference between the temperature values at 10.8 µm and their maximum within previous 15 days (i.e., T11max-11) are used instead, because the 3.75 µm channel is inaccurate for the fog detection at dawn/dusk. The sensitivity of the T3.7–11 values with respect to the clouds is investigated based on the cloud variables such as its height, optical thickness, and amount. The values of T3.7–11 are the most sensitive to cloud height, followed by cloud optical thickness and effective radius, while R0.68 is insensitive to cloud height. The sensitivity is examined with various conditions of cloud phases and day/night. Sixteen cases among eighteen fog occurrences, which have been unable to be sensed by using only the conventional threshold values, are successfully detected with the additional LUT corrections, indicating a significant improvement. The method of fog detection in this study can be useful to the Communication, Ocean, and Meteorological Satellite (COMS) Meteorological Data Processing System (CMDPS) by reducing the cloud effect on fog sensing.  相似文献   

11.
Monitoring, modeling and predicting the formation and movement of dust storms across the global deserts has drawn great attention in recent decades. Nevertheless, the scarcity of real-time observations of the wind-driven emission, transport and deposition of dusts has severely impeded progress in this area. In this study, we report an observational analysis of sand-dust storm samples collected at seven vertical levels from an 80-m-high flux tower located in the hinterland of the great Taklamakan Desert for ten sand-dust storm events that occurred during 2008–2010. We analyzed the vertical distribution of sandstorm particle grain sizes and horizontal sand-dust sediment fluxes from the near surface up to 80 m high in this extremely harsh but highly representative environment. The results showed that the average sandstorm grain size was in the range of 70 to 85 μm. With the natural presence of sand dunes and valleys, the horizontal dust flux appeared to increase with height within the lower surface layer, but was almost invariant above 32 m. The average flux values varied within the range of 8 to 14 kg m?2 and the vertical distribution was dominated by the wind speed in the boundary layer. The dominant dust particle size was PM100 and below, which on average accounted for 60–80 % of the samples collected, with 0.9–2.5 % for PM0–2.5, 3.5–7.0 % for PM0–10, 5.0–14.0 % for PM0–20 and 20.0–40.0 % for PM0–50. The observations suggested that on average the sand-dust vertical flux potential is about 0.29 kg m?2 from the top of the 80 m tower to the upper planetary boundary layer and free atmosphere through the transport of particles smaller than PM20. Some of our results differed from previous measurements from other desert surfaces and laboratory wind-dust experiments, and therefore provide valuable observations to support further improvement of modeling of sandstorms across different natural environmental conditions.  相似文献   

12.
A systematic comparison of wind profiles and momentum exchange at a trade wind site outside Oahu, Hawaii and corresponding data from the Baltic Sea is presented. The trade wind data are to a very high degree swell dominated, whereas the Baltic Sea data include a more varied assortment of wave conditions, ranging from a pure growing sea to swell. In the trade wind region swell waves travel predominantly in the wind direction, while in the Baltic, significant cross-wind swells are also present. Showing the drag coefficient as a function of the 10-m wind speed demonstrates striking differences for unstable conditions with swell for the wind-speed range 2 m s?1 < U 10 < 7 m s?1, where the trade-wind site drag values are significantly larger than the corresponding Baltic Sea values. In striking contrast to this disagreement, other features studied are surprisingly similar between the two sites. Thus, exactly as found previously in Baltic Sea studies during unstable conditions and swell, the wind profile in light winds (3 m s?1) shows a wind maximum at around 7–8 m above the water, with close to constant wind speed above. Also, for slightly higher wind speeds (4 m s?1 < U 10 < 7 m s?1), the similarity between wind profiles is striking, with a strong wind-speed increase below a height of about 7–8 m followed by a layer of virtually constant wind speed above. A consequence of these wind-profile features is that Monin–Obukhov similarity is no longer valid. At the trade-wind site this was observed to be the case even for wind speeds as high as 10 m s?1. The turbulence kinetic energy budget was evaluated for four cases of 8–16 30- min periods at the trade-wind site, giving results that agree very well with corresponding figures from the Baltic Sea.  相似文献   

13.
毫米波测云雷达融化层自动识别技术   总被引:2,自引:1,他引:1  
孙晓光  刘宪勋  贺宏兵  程周杰 《气象》2011,37(6):720-726
为了充分利用雷达数据中的融化层信息,通过分析融化层在反射率因子和线性退极化比(LDR)参量中的特性,结合国内某型毫米波测云雷达的特点,提出了一种融化层边界自动识别的技术。利用2010年5-10月国内某型毫米波测云雷达在杭州的探测资料及相应的探空资料,对识别结果以及算法中参数的敏感性进行了对比和分析。对比结果表明,该方法能有效识别亮带的存在,得到的融化层上边界平均高度与实测零度层高度的误差小于100 m。参数的敏感性分析表明,融化层在反射率和LDR中的特性存在差异,其厚度在600~1500 m。毫米波测云雷达距离分辨率高、LDR对融化层敏感以及使用反射率和LDR双重约束是识别出的融化层边界误差较小的原因。  相似文献   

14.
利用2009年石家庄地区的4次机载PMS探测资料,对不同天气条件下大气气溶胶的数浓度、平均直径垂直分布和谱分布及一次晴天条件下的水平分布进行分析。结果表明:PCASP 探头探测的0.1-3.0 μm气溶胶粒子最大数浓度的量级为102-104 cm-3之间,平均值量级为102-103 cm-3之间,平均直径最大值介于0.225-0.717 μm,平均值介于0.148-0.167 μm。晴天条件下,气溶胶的数浓度随高度递减,直径随高度变化不大;逆温层底气溶胶明显积累,气溶胶浓度在大气边界层内明显高于其他层次;阴天轻雾情况下边界层内的气溶胶数浓度大于雨天和晴天,雨天气溶胶浓度最低;晴天气溶胶数浓度的水平分布不均匀;在云中气溶胶浓度明显下降,在云外气溶胶浓度较高。不同天气条件和晴天不同高度情况下,石家庄地区气溶胶谱型呈单峰分布,小于0.3 μm的细粒子对气溶胶的数浓度贡献最大,且随着高度的增加谱宽变窄。  相似文献   

15.
''98南海季风(SCSMEX)和高原科学试验(TIPEX)边界层   总被引:5,自引:0,他引:5  
使用1998年南海季风(SCSMEX)试验和青藏高原科学试验(TIPEX)的边界层资料对Ekman特征进行了动力学研究。得到如下结果:(1)在青藏高原和南海及其周围区域有类似的Ekman动力学特征。(2)比较研究表明,边界层厚度在青藏高原约为2250m且考虑到它的摆动特性,其厚度可在2250-2750m之间。在热带西南太平洋边界层厚度约为2000m,其厚度摆动较小,在平原地区边界层厚度较低。(3)由于高原和热带海域海拔高度的不同,尽管在高原和热带海区有着几乎同样的边界层厚度,但边界层对大气的影响是相当不同的。考虑到海拔高度的影响,在这两个地区摩擦力作用的空间部位的高度有相当大的差别。(4)这两个区域的湍流摩擦的垂直结构差异较大。使用’98SCSMEX和TIPEX边界层资料计算结果表明,即使在低层,平均湍流粘性力在高原上是热带海域的2.3倍。  相似文献   

16.
Utilizing aircraft sounding data collected from the Surface Heat Budget of the Arctic Ocean (SHEBA, 1998) campaign, the authors evaluated commonly-used profile methods for Arctic ABL height estimation by validating against the’true’ABL height from aircraft sounding profiles, where ABL height is defined as the top of the layer with significant turbulence. Furthermore, the best performing method was used to estimate ABL height from the one-year GPS soundings obtained during SHEBA (October 1997-October 1998). It was found that the temperature gradient method produces a reliable estimate of ABL height. Additionally, the authors determined optimal threshold values of temperature gradient for stable boundary layer (SBL) and convective boundary layer (CBL) to be 6.5 K/100 m and 1.0 K/100 m, respectively. The maximum ABL height during the year was 1150 m occurred in May. Median values of Arctic ABL height in May, June, July, and August were 400 m, 430 m, 180 m, and 320 m, respectively. Arctic ABL heights are clearly higher in the spring than in the summer.  相似文献   

17.
一次深厚浓雾过程的边界层特征和生消物理机制   总被引:6,自引:2,他引:4  
杨军  王蕾  刘端阳  李子华 《气象学报》2010,68(6):998-1006
2007年12月13-14日,南京出现一次厚度达600 m、持续近14 h的浓雾过程,其中强浓雾阶段维持4 h.通过系留气球边界层探测系统、涡动协方差测量系统、雾滴尺度分布和自动气象站等外场试验资料分析了此次深厚浓雾过程的边界层结构特征和生消物理机制.结果表明,此次雾过程首先由地面辐射冷却形成贴地雾层,而后因低空平流冷却形成低云.在发展阶段,伴随低云不断下伸,贴地雾层不断抬升.在贴地雾层受到地面弱冷空气平流降温影响下,雾中微物理过程迅速发展,雾滴数密度、含水量、平均直径、最大直径等微物理参数在15 min内跃增,雾体爆发性升高,最终导致地面雾和低云上下贯通形成深厚雾层,地面能见度骤降至15 m以下.雾体爆发性增强时,地面垂直动量通量和向下长波辐射通量密度增大,净辐射趋于零.整个雾过程中,由于贴地层持续弱冷平流降温和上层雾阻碍了下层雾的辐射降温,二者的共同作用使贴地强逆温结构始终维持.  相似文献   

18.
The observed seasonal and interannual variability of near-surface thermal structure of the Arabian Sea Warm Pool (ASWP) is examined utilizing a reanalysis data set for the period 1990–2008. During a year, the ASWP progressively builds from February, reaches its peak by May only in the topmost 60 m water column. The ASWP Index showed a strong seasonal cycle with distinct interannual signatures. The years with higher (lower) sea surface temperature (SST) and larger (smaller) spatial extent are termed as strong (weak) ASWP years. The differences in the magnitude and spatial extent of thermal structure between the strong and weak ASWP regimes are seen more prominently in the topmost 40 m water column. The heat content values with respect to 28 °C isotherm (HC28) are relatively higher (lower) during strong (weak) ASWP years. Even the secondary peak in HC28 seen during the preceding November–December showed higher (lower) magnitude during the strong ASWP (weak) years. The influence of the observed variability in the surface wind field, surface net air–sea heat flux, near-surface mixed layer thickness, sea surface height (SSH) anomaly, depth of 20 °C isotherm and barrier layer thickness is examined to explain the observed differences in the near-surface thermal structure of the ASWP between strong and weak regimes. The surface wind speed is much weaker in particular during the preceding October and February–March corresponding to the strong ASWP years when compared to those of the weak ASWP years implying its important role. Both stronger winter cooling during weak ASWP years and stronger pre-monsoon heating during strong ASWP years through the surface air–sea heat fluxes contribute to the observed sharp contrast in the magnitudes of both the regimes of the ASWP. The upwelling Rossby wave during the preceding summer monsoon, post-monsoon and winter seasons is stronger corresponding to the weak ASWP regime when compared to the strong ASWP regime resulting in greater cooling of the near-surface layers during the summer monsoon season of the preceding year. On the other hand, the downwelling Rossby wave is stronger during pre-monsoon months during the strong ASWP regime when compared to weak ASWP regime leading to lesser cooling during strong ASWP regime.  相似文献   

19.
雷达比是激光雷达反演气溶胶光学特性的重要参数和影响因素。利用北京地区2016年一次清洁过程(12月10日)和两次污染过程(11月15~18日和12月16~19日)的微脉冲激光雷达、机载浊度计和黑碳仪以及多种地基观测设备,综合研究基于飞机观测订正雷达比的方法及其分布特征。清洁过程地面PM2.5浓度低于40 μg m?3;污染严重时期的PM2.5均高于150 μg m?3且能见度低于5 km,污染过程1存在高空传输的特征。研究结果表明相较于采用单一的柱平均雷达比,利用本文方法获得的雷达比垂直廓线反演得到的气溶胶消光系数和光学厚度更接近原位跟踪观测,精度均有提升。基于此方法获得的雷达比在污染发展不同时期垂直分布差异较大,主要分布在19~76 sr之间,清洁时期雷达比较小且垂直分布差异不大。污染过程1雷达比随高度波动增加至边界层顶(19~45 sr);污染过程2严重期边界层内雷达比随高度由70 sr降低到20 sr;边界层以上均呈现小幅波动变化。边界层内雷达比垂直分布与气溶胶来源特别是高空气溶胶传输有密切联系,混有沙尘的区域传输显著提升了所在高度的雷达比值。边界层以上雷达比受少量大粒子或者强吸收性的气溶胶粒子的影响波动变化。边界层内消光系数增大时雷达比呈增加趋势;当相对湿度高于40%,边界层内雷达比随相对湿度增加而增大。  相似文献   

20.
In this paper, by using the sounding data collected in LOPEX05, we have analyzed the vertical atmospheric structure and boundary layer characteristics of temperature and humidity in the late summer over the east Gansu loess plateau. The results show that the bottom of the stratosphere is at about 16 500 m and varies between 14 000 m and 18 000 m above the ground. The center of the westerly jet is located between 8300 m and 14 300 m above the ground and its direction moves between 260° and 305°. There is an ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号