首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Agricultural land management requires strategies to reduce impacts on soil and water resources while maintaining food production. Models that capture the effects of agricultural and conservation practices on soil erosion and sediment delivery can help to address this challenge. Historic records of climatic variability and agricultural change over the last century also offer valuable information for establishing extended baselines against which to evaluate management scenarios. Here, we present an approach that combines centennial‐scale reconstructions of climate and agricultural land cover with modelling across four lake catchments in the UK where radiometric dating provides a record of lake sedimentation. We compare simulations using MMF‐TWI, a catchment‐scale model developed for humid agricultural landscapes that incorporates representation of seasonal variability in vegetation cover, soil water balance, runoff and sediment contributing areas. MMF‐TWI produced mean annual sediment exports within 9–20% of sediment core‐based records without calibration and using guide parameter values to represent vegetation cover. Simulations of land management scenarios compare upland afforestation and lowland field‐scale conservation measures to reconstructed historic baselines. Oak woodland versus conifer afforestation showed similar reductions in mean annual surface runoff (8–16%) compared to current moorland vegetation but a larger reduction in sediment exports (26–46 versus 4–30%). Riparian woodland buffers reduced upland sediment yields by 15–41%, depending on understorey cover levels, but had only minor effect on surface runoff. Planting of winter cover crops in the lowland arable catchment halved historic sediment exports. Permanent grass margins applied to sets of arable fields across 15% or more of the catchment led to further significant reduction in exports. Our findings show the potential for reducing sediment delivery at the catchment scale with land management interventions. We also demonstrate how MMF‐TWI can support hydrologically‐informed decision making to better target conservation measures in humid agricultural environments. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

2.
The present study demonstrates a spatially distributed application of a field‐scale annual soil loss model, the modified‐MMF (MMMF), to a large watershed using hydrological routing techniques, remote sensing data and geospatial technologies. In this study, the MMMF model is implemented after incorporating the corrections suggested in recent literature along with appropriate modifications of the model to suit the agro‐climatological conditions prevailing in most parts of India. Sensitivity analysis carried out through an Average Linear Sensitivity approach indicates that the model outputs are highly sensitive to soil moisture (MS), bulk density (BD), effective hydraulic depth (EHD), ground cover (GC) and settling velocity for clay (VSc). During calibration and validation, the performance evaluation statistics are mostly in the range of very good to satisfactory for both runoff and soil loss at the watershed outlet. Even spatial validation of the results of intermediate processes in the water phase and the sediment phase, although qualitative, seems to be reasonable and rational. Furthermore, the soil erosion severity analysis for different land‐uses existing in the watershed indicates that about 90% of the watershed area, especially that occupied by agricultural lands, is vulnerable to the long‐term effects of soil erosion. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
Soil erosion models are essential tools for the successful implementation of effective and adapted soil conservation measures on agricultural land. Therefore, models are needed that predict sediment delivery and quality, give a good spatial representation of erosion and deposition and allow us to account for various soil conservation measures. Here, we evaluate how well a modified version of the spatially distributed multi‐class sediment transport model (MCST) simulates the effectiveness of control measures for different event sizes. We use 8 year runoff and sediment delivery data from two small agricultural watersheds (0·7 and 3·7 ha) under optimized soil conservation. The modified MCST model successfully simulates surface runoff and sediment delivery from both watersheds; one of which was dominated by sheet and the other was partly affected by rill erosion. Moreover, first results of modelling enrichment of clay in sediment delivery are promising, showing the potential of MCST to model sediment enrichment and nutrient transport. In general, our results and those of an earlier modelling exercise in the Belgian Loess Belt indicate the potential of the MCST model to evaluate soil erosion and deposition under different agricultural land uses. As the model explicitly takes into account the dominant effects of soil‐conservation agriculture, it should be successfully applicable for soil‐conservation planning/evaluation in other environments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Bank erosion can contribute a significant portion of the sediment budget within temperate catchments, yet few catchment scale models include an explicit representation of bank erosion processes. Furthermore, representation is often simplistic resulting in an inability to capture realistic spatial and temporal variability in simulated bank erosion. In this study, the sediment component of the catchment scale model SHETRAN is developed to incorporate key factors influencing the spatio‐temporal rate of bank erosion, due to the effects of channel sinuosity and channel bank vegetation. The model is applied to the Eden catchment, north‐west England, and validated using data derived from a GIS methodology. The developed model simulates magnitudes of total catchment annual bank erosion (617–4063 t y‐1) within the range of observed values (211–4426 t yr‐1). In addition, the model provides both greater inter‐annual and spatial variability of bank eroded sediment generation when compared with the basic model, and indicates a potential 61% increase of bank eroded sediment as a result of temporal flood clustering. The approach developed within this study can be used within a number of distributed hydrologic models and has general applicability to temperate catchments, yet further development of model representation of bank erosion processes is required. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

5.
This study sought to contribute to an improved understanding of soil erosion and redistribution on Mediterranean agricultural land, where traditional soil conservation practices have been applied over millennia to provide effective protection of cultivated land. The study was undertaken in the Na Borges catchment, a groundwater-dominated lowland limestone basin (319 km2), located in the northeastern part of Mallorca, Spain. The average sediment yield from the basin, based on river sediment load data, is 1 t/km2·yr. The 137Cs technique was used to quantify soil redistribution rates over the past 40 years and to identify the key factors involved in soil erosion and redistribution processes. To estimate erosion and deposition rates and to elucidate the main factors affecting soil redistribution, samples were collected from six slope transects representative of the local land use and slope gradients and the presence or absence of soil conservation practices. A mass balance and a profile distribution conversion model were used for cultivated areas and areas of natural vegetation, respectively, to derive point estimates of the soil redistribution rates from the 137Cs inventories measured for individual soil bulk cores. In areas without soil conservation practices, the estimated mean soil erosion rates ranged from 12.7 to 26.4 t/ha·yr, which correspond to the slight and moderate erosion classes. The erosivity of Mediterranean climatic conditions combined with the influence of agricultural practices and slope gradient on soil erosion, represent the main factors responsible for the variation of soil losses documented for the cultivated land located in downslope areas, in the absence of soil conservation practices. Deposition dominated for those transects affected by soil conservation practices, with rates ranging between 18.8 and 96.6 t/ha·yr. However, this situation does not mean that soil conservation measures retain all the sediment, but rather that agriculture and urbanization (i.e. new rural paths and stone boundaries) modified the micro-topography and diverted sediment from other upslope zones towards the slopes where sampling transects were located.  相似文献   

6.
Sediments produced from eroding cultivated land can cause on‐site and off‐site effects that cause considerable economic and social impacts. Despite the importance of soil conservation practices (SCP) for the control of soil erosion and improvements in soil hydrological functions, limited information is available regarding the effects of SCP on sediment yield (SY) at the catchment scale. This study aimed to investigate the long‐term relationships between SY and land use, soil management, and rainfall in a small catchment. To determine the effects of anthropogenic and climatic factors on SY, rainfall, streamflow, and suspended sediment concentration were monitored at 10‐min intervals for 14 years (2002–2016), and the land use and soil management changes were surveyed annually. Using a statistical procedure to separate the SY effects of climate, land use, and soil management, we observed pronounced temporal effects of land use and soil management changes on SY. During the first 2 years (2002–2004), the land was predominantly cultivated with tobacco under a traditional tillage system (no cover crops and ploughed soil) using animal traction. In that period, the SY reached approximately 400 t·km?2·year?1. From 2005 to 2009, a soil conservation programme introduced conservation tillage and winter cover crops in the catchment area, which lowered the SY to 50 t·km?2·year?1. In the final period (2010–2016), the SCP were partially abandoned by farmers, and reforested areas increased, resulting in an SY of 150 t·km?2·year?1. This study also discusses the factors associated with the failure to continue using SCP, including structural support and farmer attitudes.  相似文献   

7.
Soil redistribution on arable land significantly affects lateral and vertical soil carbon (C) fluxes (caused by C formation and mineralization) and soil organic carbon (SOC) stocks. Whether this serves as a (C) sink or source to the atmosphere is a controversial issue. In this study, the SPEROS‐C model was modified to analyse erosion induced lateral and vertical soil C fluxes and their effects upon SOC stocks in a small agricultural catchment (4·2 ha). The model was applied for the period between 1950 and 2007 covering 30 years of conventional tillage (1950–1979) followed by 28 years of conservation tillage (1980–2007). In general, modelled and measured SOC stocks are in good agreement for three observed soil layers. The overall balance (1950–2007) of erosion induced lateral and vertical C fluxes results in a C loss of ?4·4 g C m–2 a–1 at our test site. Land management has a significant impact on the erosion induced C fluxes, leading to a predominance of lateral C export under conventional and of vertical C exchange between soil and atmosphere under conservation agriculture. Overall, the application of the soil conservation practices, with enhanced C inputs by cover crops and decreased erosion, significantly reduced the modelled erosion induced C loss of the test site. Increasing C inputs alone, without a reduction of erosion rates, did not result in a reduction of erosion induced C losses. Moreover, our results show that the potential erosion induced C loss is very sensitive to the representation of erosion rates (long‐term steady state versus event driven). A first estimate suggests that C losses are very sensitive to magnitude and frequency of erosion events. If long‐term averages are dominated by large magnitude events modelled erosion induced C losses in the catchment were significantly reduced. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we present MHYDAS‐Erosion, a dynamic and distributed single‐storm water erosion model developed as a module of the existing hydrological MHYDAS model. As with many catchment erosion models, MHYDAS‐Erosion is able to simulate sediment transport, erosion and deposition by rill and interrill processes. Its originality stems from its capacity to integrate the impact of land management practices (LMP) as key elements controlling the sedimentological connectivity in agricultural catchments. To this end, the water‐sediment pathways are first determined by a specific process‐oriented procedure defined and controlled by the user, which makes the integration of LMP easier. The LMP dynamic behaviours are then integrated into the model as a time‐dependent function of hydrological variables and LMP characteristics. The first version of the model was implemented for vegetative filters and tested using water and sediment discharge measurements at three nested scales of a densely instrumented catchment (Roujan, OMERE Observatory, southern France). The results of discharge and soil loss for simulated rainfall events have been found to acceptably compare with available data. The average R2 values for water and sediment discharge are 0·82 and 0·83, respectively. The sensitivity of the model to changes in the proportion of LMP was assessed for a single rain event by considering three scenarios of the Roujan catchment management with vegetative filters: 0% (Scenario 1), 18% (Scenario 2, real case) and 100% (Scenario 3). Compared to Scenario 2 (real case), soil losses decreased for Scenario 3 by 65% on the agricultural plot scale, 62% on the sub‐catchment scale and 45% at the outlet of the catchment and increased for Scenario 1 by 0% on the plot scale, 26% on the sub‐catchment scale and 18% at the outlet of the catchment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, we investigated the responses of hydrology and sediment yield with impacts of land‐use and climate change scenarios in the Be River Catchment, using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a powerful tool for simulating the impact of environmental change on hydrology and sediment yield in this catchment. The hydrologic and sediment yield responses to land‐use and climate changes were simulated based on the calibrated model. The results indicated that a 16.3% decrease in forest land is likely to increase streamflow (0.2 to 0.4%), sediment load (1.8 to 3.0%), and surface runoff (SURQ) (4.8 to 10.7%) and to decrease groundwater discharge (GW_Q) (3.5 to 7.9%). Climate change in the catchment leads to decreases in streamflow (0.7 to 6.9%) and GW_Q (3.0 to 8.4%), increase in evapotranspiration (0.5 to 2.9%), and changes in SURQ (?5.3 to 2.3%) and sediment load (?5.3 to 4.4%). The combined impacts of land‐use and climate changes decrease streamflow (2.0 to 3.9%) and GW_Q (12.3 to 14.0%), increase evapotranspiration (0.7 to 2.8%), SURQ (8.2 to 12.4%), and sediment load (2.0 to 7.9%). In general, the separate impacts of climate and land‐use changes on streamflow, sediment load, and water balance components are offset each other. However, SURQ and some component of subsurface flow are more sensitive to land‐use change than to climate change. Furthermore, the results emphasized water scarcity during the dry season and increased soil erosion during the wet season. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Extensive land use changes have occurred in many areas of SE Spain as a result of reforestation and the abandonment of agricultural activities. Parallel to this the Spanish Administration spends large funds on hydrological control works to reduce erosion and sediment transport. However, it remains untested how these large land use changes affect the erosion processes at the catchment scale and if the hydrological control works efficiently reduce sediment export. A combination of field work, mapping and modelling was used to test the influence of land use scenarios with and without sediment control structures (check‐dams) on sediment yield at the catchment scale. The study catchment is located in SE Spain and suffered important land use changes, increasing the forest cover 3‐fold and decreasing the agricultural land 2·5‐fold from 1956 to 1997. In addition 58 check‐dams were constructed in the catchment in the 1970s accompanying reforestation works. The erosion model WATEM‐SEDEM was applied using six land use scenarios: land use in 1956, 1981 and 1997, each with and without check‐dams. Calibration of the model provided a model efficiency of 0·84 for absolute sediment yield. Model application showed that in a scenario without check dams, the land use changes between 1956 and 1997 caused a progressive decrease in sediment yield of 54%. In a scenario without land use changes but with check‐dams, about 77% of the sediment yield was retained behind the dams. Check‐dams can be efficient sediment control measures, but with a short‐lived effect. They have important side‐effects, such as inducing channel erosion downstream. While also having side‐effects, land use changes can have important long‐term effects on sediment yield. The application of either land use changes (i.e. reforestation) or check‐dams to control sediment yield depends on the objective of the management and the specific environmental conditions of each area. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The west‐central part of South Africa's Free State Province falls within the transition zone between South Africa's sub‐humid, temperate grasslands to the east, and the semi‐arid Karoo and arid Kalahari to the south and west, respectively. The area is characterized by low rainfall (typically 500 mm or less) with high variability, but environmental conditions allow widespread dryland commercial agriculture (maize, sunflowers and stock farming). However, human activity promotes wind erosion and the area is susceptible to dust emissions. This study is the first to quantify the degree of wind erosion on the agricultural soils in the region under prevailing winter to spring climatic conditions and land management practices. Using arrays of cup anemometers, dust deposition traps and saltation impact sensors (Safires), measurements were made of the key erosivity and erodibility drivers that control the degree of wind erosion. Results demonstrate that significant quantities of dust are mobilized, particularly during the months of September and October. Thresholds of wind erosion are shown to respond particularly closely to changes in surface and aerodynamic roughness (z0) with the amount of collected dust correlating well with measures of wind erosivity that weight the impact of higher wind speeds. Given the importance of surface roughness in controlling erosion thresholds, results show that the opportunity exists for well designed farming practices to control wind erosion. However, it is likely that climatically driven environmental change will impact on some of the identified controls on erosion (wind power, moisture availability) with the result that the wind erosion hazard is likely to increase within this marginal environment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Model predictions concerning the endangerment of on‐site and off‐site damages due to runoff, soil erosion and sedimentation under alternative design and operation policies are of particular importance in recent catchment planning and management. By using the raster‐based model approach, linear landscape elements, such as streets and roads, and their impacts on flow paths are often neglected. Therefore, the aim of this study was to analyse the effects of linear landscape elements on patterns of soil erosion, sediment transport and sedimentation. To accomplish this, roads are considered while determining flow paths. Simulations in the well‐investigated catchment of the Wahnbach River (54 km²) in a low mountain range in Germany were carried out using a combination of different models for hydrology and soil erosion. Although the study focuses on the catchment scale of the Wahnbach River, detailed investigations concerning the sub‐catchment scale (21 ha) were also conducted. The simulation results show that these spatial structures mainly affect the pattern of soil erosion and sedimentation. On the sub‐catchment scale, improved identification of active zones for sediment dynamic becomes possible. On the catchment scale, the predicted runoff is about 20% higher, and sediment outputs were four times larger than predicted when roads were considered. Soil erosion increases by 37% whereas sedimentation is reduced by 29%. The model improvement could not be evaluated on the catchment scale because of the high variability and heterogeneity of land use and soils, but road impacts could be explained by simulations on the sub‐catchment scale. It can be concluded that runoff concentration due to rerouted flow paths leads to lower non‐concentrated and higher concentric‐linear surface runoff. Thus, infiltration losses decline and surface runoff and soil erosion increase because sedimentation is reduced. Further, runoff concentration can cause soil erosion hot spots. In the model concept used in this study, buffering of runoff and sediments on the upslope side of roads and in local depressions adjacent to roads cannot be simulated. Flow paths will only be rerouted because of road impacts, but the temporal ponding of water is not simulated. Therefore, the drastic increase of predicted sediment output due to road impact does not seem to be reliable. However, results indicate that the consideration of roads when determining flow paths enabled more detailed simulations of surface runoff, soil erosion and sedimentation. Thus, progress in model‐based decision‐making support for river catchment planning and management can be achieved. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Prompt location of areas exposed to high erosion is of the utmost importance for soil and water conservation planning. Erosion models can be useful tools to locate sources of sediment and areas of deposition within a catchment, but the reliability of model predictions of spatial patterns of erosion at catchment scale has seldom been validated against observations. This study aimed to evaluate the performance of a simple empirical model (Morgan, Morgan and Finney model, MMF) in predicting spatial patterns of erosion at two small catchments in the East African Highlands: Kwalei (Tanzania) and Gikuuri (Kenya). Erosion maps predicted by the MMF model were compared with erosion maps obtained by direct survey. In Kwalei, erosion features were especially frequent in fields of annual crops. In Gikuuri, slope was the critical erosion factor, with estimated erosion rates >10 kg m?2 a?1 on slopes >18 per cent. Predicted erosion rates were mainly transport‐limited and ranged from <0·01 to 13·50 kg m?2 a?1 in Kwalei and 9·29 kg m?2 a?1 in Gikuuri. The performance of the MMF model in predicting the spatial patterns of erosion was acceptable in Kwalei, but poor in Gikuuri. However, by excluding the elements at the valley bottoms in Gikuuri Catchment, the performance of the model improved dramatically. The spatial pattern of erosion predicted by the MMF model was driven by the accumulation of surface runoff, which did not consider the possibility of re‐infiltration along the slope. As a result, the MMF erosion patterns predicted by the model increased invariably from the ridges to the valley bottoms, hampering the model suitability for locating areas subjected to high and very high erosion. It is concluded that the model predictions could be substantially improved by introducing a more realistic hydrological component for the prediction of surface runoff along the hill‐slope. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Agricultural land abandonment is currently widely spread in Mediterranean countries and a further increase is expected. Previous research has shown that abandoned fields in semi‐arid areas are more vulnerable to gully erosion. The absence of ploughing and slow vegetation recovery cause the formation of soil crusts with low infiltration rates, resulting in increased runoff and gully erosion risk. The objective of our study was to assess the extent and causes of erosion and terrace failure on abandoned fields and to discuss options for mitigation. The study was carried out in the Carcavo basin, a semi‐arid catchment in southeast Spain. At catchment scale all abandoned fields were surveyed and characteristics of each field were described. Additionally we surveyed abandoned and cultivated terraces and used statistical analyses to determine the factors that induce terrace failure. At field scale we constructed a detailed digital elevation model (DEM) for an abandoned terrace field in order to calculate sediment losses since time of abandonment. The results revealed that more than half the abandoned fields had moderate to severe erosion and the statistical analysis showed that these fields had significantly steeper slopes, were terraced and had cereals as previous land use. Factors that increase the risk of terrace failure were land abandonment, steeper terrace slope, loam texture, valley‐bottom position and shrubs on the terrace wall. The reconstructed erosion rate (87 ton ha?1 year?1) confirmed the importance of gully erosion on these abandoned terrace fields. Potential soil and water conservation practices to mitigate soil erosion after abandonment are: (1) maintenance of terrace walls, as a result more water is retained, which increases vegetation cover and consequently decreases erosion. (2) Revegetation with indigenous grass species on spots with concentrated flow, especially near terrace walls. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The performance of the Pan‐European Soil Erosion Risk Assessment (PESERA) model was evaluated by comparison with existing soil erosion data collected in plots under different land uses and climate conditions in Europe. In order to identify the most important sources of error, the PESERA model was evaluated by comparing model output with measured values as well as by assessing the effect of the various model components on prediction accuracy through a multistep approach. First, the performance of the hydrological and erosion components of PESERA was evaluated separately by comparing both runoff and soil loss predictions with measured values. In order to assess the performance of the vegetation growth component of PESERA, the predictions of the model based on observed values of vegetation ground cover were also compared with predictions based on the simulated vegetation cover values. Finally, in order to evaluate the sediment transport model, predicted monthly erosion rates were also calculated using observed values of runoff and vegetation cover instead of simulated values. Moreover, in order to investigate the capability of PESERA to reproduce seasonal trends, the observed and simulated monthly runoff and erosion values were aggregated at different temporal scale and we investigated at what extend the model prediction error could be reduced by output aggregation. PESERA showed promise to predict annual average spatial variability quite well. In its present form, short‐term temporal variations are not well captured probably due to various reasons. The multistep approach showed that this is not only due to unrealistic simulation of cover and runoff, being erosion prediction also an important source of error. Although variability between the investigated land uses and climate conditions is well captured, absolute rates are strongly underestimated. A calibration procedure, focused on a soil erodibility factor, is proposed to reduce the significant underestimation of soil erosion rates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The suitability of the physically based model SHETRAN for simulating sediment generation and delivery with a high degree of spatial (20 m) and temporal (sub‐hourly) resolution was assessed through application of the model to a 167‐km2 catchment leading to an estuary in New Zealand. By subdividing the catchment and conducting calculations on a computer cluster for a 6‐month hydrology initialisation period, it was possible to simulate a large rainfall event and its antecedent conditions in 24 h of computation time. The model was calibrated satisfactorily to catchment outlet flow and sediment flux for a large rainfall event in two subcatchments (~2 km2). Validation for a separate subcatchment was successful for flow (Nash–Sutcliff efficiency of 0.84) with a factor 2.1 over‐prediction for sediment load. Validation for sediment at full catchment scale using parameters from the subcatchment scale was good for flow but poor for sediment, with gross under‐estimation of the dominant stream sources of sediment. After recalibration at catchment scale, validation for a separate event gave good results for flow (Nash–Sutcliff efficiency of 0.93) and sediment load within a factor of two of measurements. An exploratory spatially explicit landslide model was added to SHETRAN, but it was not possible to test this fully because no landslides were observed in the study period. Application to climate change highlighted the non‐linear response to extreme rainfall. However, full exploration of land use and climate change and the evaluation of uncertainty were severely constrained by computational limitations. Subdivision of the catchment with separate stream routing is suggested as a way forward to overcome these limitations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
This paper analyses the factors that control rates and extent of soil erosion processes in the 199 ha May Zegzeg catchment near Hagere Selam in the Tigray Highlands (Northern Ethiopia). This catchment, characterized by high elevations (2100–2650 m a.s.l.) and a subhorizontal structural relief, is typical for the Northern Ethiopian Highlands. Soil loss rates due to various erosion processes, as well as sediment yield rates and rates of sediment deposition within the catchment (essentially induced by recent soil conservation activities), were measured using a range of geomorphological methods. The area‐weighted average rate of soil erosion by water in the catchment, measured over four years (1998–2001), is 14·8 t ha?1 y?1, which accounts for 98% of the change in potential energy of the landscape. Considering these soil loss rates by water, 28% is due to gully erosion. Other geomorphic processes, such as tillage erosion and rock fragment displacement by gravity and livestock trampling, are also important, either within certain land units, or for their impact on agricultural productivity. Estimated mean sediment deposition rate within the catchment equals 9·2 t ha?1 y?1. Calculated sediment yield (5·6 t ha?1 y?1) is similar to sediment yield measured in nearby catchments. Seventy‐four percent of total soil loss by sheet and rill erosion is trapped in exclosures and behind stone bunds. The anthropogenic factor is dominant in controlling present‐day erosion processes in the Northern Ethiopian Highlands. Human activities have led to an overall increase in erosion process intensities, but, through targeted interventions, rural society is now well on the way to control and reverse the degradation processes, as can be demonstrated through the sediment budget. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The objective of this study was to quantify the impacts of land use/land cover (LULC) change on the hydrology of the Jedeb, an agricultural dominated mesoscale catchment, in the Abay/Upper Blue Nile basin, Ethiopia. Two methods have been used. First, the trends of certain daily flow variability parameters were evaluated to detect statistical significance of the change of the hydrologic response. Second, a conceptual monthly hydrological model was used to detect changes in the model parameters over different periods to infer LULC change. The results from the statistical analysis of the daily flows between 1973 and 2010 reveal a significant change in the response of the catchment. Peak flow is enhanced, i.e. response appears to be flashier. There is a significant increase in the rise and fall rates of the flow hydrograph, as well as the number of low‐flow pulses below a threshold level. The discharge pulses show a declining duration with time. The model result depicts a change in model parameters over different periods, which could be attributed to an LULC change. The model parameters representing soil moisture conditions indicated a gradual decreasing trend, implying limited storage capacity likely attributed to increasing agricultural farming practices in the catchment. This resulted in more surface runoff and less infiltration into the soil layers. The results of the monthly flow duration curve analysis indicated large changes of the flow regime. The high flow has increased by 45% between the 1990s and 2000s, whereas the reduction in low flows was larger: a 15% decrease between 1970s and 1980s, 39% between 1980s and 1990s and up to 71% between 1990s and 2000s. These results, could guide informed catchment management practices to reduce surface runoff and augment soil moisture level in the Jedeb catchment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Sediment yield is a complex function of many environmental factors including climate,hydrology,vegetation,basin topography,soil types,and land cover.We present a new semi-physical watershed sediment yield model for the estimation of suspended sediment in loess region.This model is composed by three modules in slope,gully,and stream phases.For slope sediment yield,a balance equation is established based on the concept of hydraulic erosion capacity and soil erosion resistance capacity.According to the statistical analysis of watershed characteristics,we use an exponential curve to approximately describe the spatial variability of watershed soil erosion resistance capacity.In gully phase,the relationship between gully sediment concentration and flow velocity is established based on the Bagnold'stream power function.In the stream phase,we assume a linear dependence of the sediment volume in the reach on the weighted sediment input and output.The proposed sediment yield model is operated in conjunction with a conceptual hydrologic model,and is tested over 16 regions including testing grounds,and small,medium and large watersheds in the loess plateau region in the mid-reach of Yellow River.Our results indicate that the model is reasonable in structure and is able to provide a good simulation of sediment generation and transportation processes at both flood event scale and inter-annual time scale.The proposed model is generally applicable to the watersheds with soil texture similar to that of the loess plateau region in the Yellow River basin in China.  相似文献   

20.
Laurie Boithias  Yves Auda  Stéphane Audry  Jean-Pierre Bricquet  Alounsavath Chanhphengxay  Vincent Chaplot  Anneke de Rouw  Thierry Henry des Tureaux  Sylvain Huon  Jean-Louis Janeau  Keooudone Latsachack  Yann Le Troquer  Guillaume Lestrelin  Jean-Luc Maeght  Pierre Marchand  Pierre Moreau  Andrew Noble  Anne Pando-Bahuon  Kongkeo Phachomphon  Khambai Phanthavong  Alain Pierret  Olivier Ribolzi  Jean Riotte  Henri Robain  Emma Rochelle-Newall  Saysongkham Sayavong  Oloth Sengtaheuanghoung  Norbert Silvera  Nivong Sipaseuth  Bounsamay Soulileuth  Xaysatith Souliyavongsa  Phapvilay Sounyaphong  Sengkeo Tasaketh  Chanthamousone Thammahacksa  Jean-Pierre Thiebaux  Christian Valentin  Olga Vigiak  Marion Viguier  Khampaseuth Xayyathip 《水文研究》2021,35(5):e14126
Mountain regions of the humid tropics are characterized by steep slopes and heavy rains. These regions are thus prone to both high surface runoff and soil erosion. In Southeast Asia, uplands are also subject to rapid land-use change, predominantly as a result of increased population pressure and market forces. Since 1998, the Houay Pano site, located in northern Lao PDR (19.85°N 102.17°E) within the Mekong basin, aims at assessing the long-term impact of the conversion of traditional slash-and-burn cultivation systems to commercial perennial monocultures such as teak tree plantations, on the catchment hydrological response and sediment yield. The instrumented site monitors hydro-meteorological and soil loss parameters at both microplot (1 m2) and small catchment (0.6 km2) scales. The monitored catchment is part of the network of critical zone observatories named Multiscale TROPIcal CatchmentS (M-TROPICS). The data shared by M-TROPICS in Houay Pano are (1) rainfall, (2) air temperature, air relative humidity, wind speed, and global radiation, (3) catchment land use, (4) stream water level, suspended particulate matter, bed particulate matter and stones, (5) soil surface features, and (6) soil surface runoff and soil detachment. The dataset has already been used to interpret suspended particulate matter and bed particulate matter sources and dynamics, to assess the impact of land-use change on catchment hydrology, soil erosion, and sediment yields, to understand bacteria fate and weed seed transport across the catchment, and to build catchment-scale models focused on hydrology and water quality issues. The dataset may be further used to, for example, assess the role of headwater catchments in large tropical river basin hydrology, support the interpretation of new variables measured in the catchment (e.g., contaminants other than faecal bacteria), and assess the relative impacts of both climate and land-use change on the catchment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号