首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
河口湍流数据现场采集和后处理   总被引:1,自引:0,他引:1  
刘欢  吴超羽 《海洋工程》2011,29(2):122-128
利用声学多普勒流速仪ADV,在珠江河口崖门底边界进行了一个潮周期的湍流观测,并选取了急流和憩流两个典型时刻对数据进行后处理分析.后处理方法包括信号检查、过滤和去噪,每个步骤都包含无效数据的剔除和替换.结果表明,后处理对平均流速影响不大,但会显著改变脉动流速统计分布特性.对于河口非定常流动,未经处理的原始数据不适宜用于分析湍流特征量.  相似文献   

2.
河口及近岸海域底边界层生物地球化学过程研究进展   总被引:1,自引:0,他引:1  
河口及近岸海域底边界层的生物地球化学过程在很大程度上影响着陆源物质的迁移转化及向海洋的输送通量,是陆海相互作用研究、海洋碳的"源、汇"研究以及氮、磷循环研究的关键。本文对河口及近岸海域底边界层生物地球化学过程研究进展进行了综述,重点介绍了底边界层中移动泥的特点和功能及微生物在其生物地球化学过程中的作用,并对今后的研究进行了展望。  相似文献   

3.
小尺度湍流过程对河口物质输运与能量交换至关重要。受传统观测方法的限制, 河口浅水区域的剖面观测资料至今较为匮乏, 进而限制了湍流过程的研究。为此, 采用新型5波束声学多普勒流速剖面仪(Nortek Signature 1 000 kHz AD2CP)在长江口开展湍流剖面观测, 获取高频、低噪的高质量湍流剖面数据, 并与声学多普勒点式流速仪(acoustic doppler velocimeters, ADV)同步观测的数据进行对比。结果表明, 通过AD2CP与ADV获得的近底部边界层摩阻流速u*、拖曳系数Cd、雷诺应力SR等特征参数基本一致, 底摩擦与波浪能量为河口区域湍动能的主要输入源。湍流垂向结构存在显著的非局地平衡, 即温盐等斜压作用引起的浮力通量、对流项以及强波浪作用影响的脉动压力做功、黏性输运等因素可能为长江口湍流非局地平衡的主因。  相似文献   

4.
海气湍流热通量(潜热和感热)是研究海气相互作用和大洋环流的关键要素, 认识其变化机理对理解“海洋动力过程及气候效应”有重要意义。然而, 受观测手段和计算能力两方面的限制, 过去对海气湍流热通量日变化研究存在“特征认识较粗、机制理解较疏”的现象。本文探讨了在不同边界层稳定性下海气湍流热通量日变化研究中的问题与难点, 并讨论了“不同边界层稳定性下海气湍流热通量日变化过程和机理”这一关键科学问题。本文提出, 可基于海洋浮标、平台和波浪滑翔机等综合观测数据和高时空分辨率再分析资料, 利用块体算法和脉动分离方法, 揭示全球海气湍流热通量的精细化日变化特征和决定因素, 以及海气湍流热通量日变化强度(日内小时级变化的标准差)与极端天气过程和气候事件的动力关联。同时, 为更精准认识日变化过程, 在技术上可通过耦合高频海表流速和校正边界层物理参数观测高度等方式提升海气湍流热通量估算的精确度。本文提出可将多时空尺度海气湍流热通量变化维度转换到边界层稳定性上, 以便集中认识其日变化特征和机理, 支撑全球海气能量平衡的科学认识。  相似文献   

5.
通过在珠江黄茅海河口进行的25 h定点连续观测,分析了潮流底边界层在憩流时刻的动力特征。结果表明,憩流期非恒定性增强,改变了平均流和湍流结构。主要表现:1)平均流结构出现三种不同类型,分别是对数分布(摩擦力主导)、垂向均匀分布(惯性主导)和过渡状态(摩擦力和惯性力平衡);2)湍流各向异性增强,湍谱惯性子区带宽减小。各湍流特征参数在转流时刻达到最小值,表明惯性作用抑制了湍流的发育。  相似文献   

6.
海底边界层是溶质和悬浮颗粒物在海床与水体间交换的重要场所,也是沉积物质的主要成岩作用区,对海洋、湖泊有着重要的生物、化学、地质学意义。底栖溶解氧消耗速率是评估早期碳矿化作用的重要指示剂,也是研究元素循环周转的重要指标。溶解氧通量原位监测技术是获取底栖溶解氧消耗速率、了解化学物质输运机制,进而研究底栖生态系统、环境污染影响、生物地球化学进程的重要手段。针对传统溶解氧观测方法在效率和准确度上的局限性,介绍了目前底边界层原位氧通量测量技术的发展现状,对包括底栖培养室、微电极剖面、涡动相关技术和平面光极系统在内的观测特点进行了对比分析,讨论了各自的不足与局限,提出了今后需要关注的改进方向。  相似文献   

7.
根据流速剖面估计海底粗糙长度的研究   总被引:3,自引:1,他引:2  
由于底床的摩擦作用,河口海岸近底层的水体流动与远离海底上层的水体流动产生很大的差别,形成重要的底边界层。在近底层由于水层与床面有频繁的物质交换,所以研究河口海岸边界层对水流、泥沙、温度、盐度垂向混合、底沙运动等物质过程有着重要的作用。底床粗糙度是研究河口海岸沉积物运移和水流结构的重要因素,它由颗粒粗糙度、底形粗糙度和推移质输沙粗糙度组成。目前还没有一个经验公式来计算底床粗糙度,但是在无波浪的情况下粗糙度可以通过拟合流速的对数分布(卡门-普朗特公式)来求得。利用对数拟合方法必须满足两个条件:一是必须测量近海底三个层面以上的流速,二是测得的流速剖面必须满足对数分布。  相似文献   

8.
河口海岸底部边界层和细颗粒泥沙过程??   总被引:4,自引:1,他引:3  
时钟 《海洋科学》2000,24(11):26-30
水动力、细颗粒泥沙过程是淤泥质河口海岸变化的重要物理过程 ;并具有这样的特征 :强密度梯度、高度不稳定和非均匀流、高浓度泥沙、底床与流相互作用、难确定的底床/水界面。淤泥质河口海岸水动力、细颗粒泥沙过程的研究主要起因于:1)海洋科学的基础理论研究 ;2)港口航道的建设、维持(整治、疏浚)、海岸防护工程实践等需要。就淤泥质河口海岸水动力、细颗粒泥沙过程而言 ,水流最重要的部分是底部边界层。为计算河口海岸水流中的底床切应力 ,必需考虑边界层。在淤泥质河口海岸底部边界层内 ,强劲的潮流、波致流可以引起淤泥底床沉积…  相似文献   

9.
河口物质输运、能量交换与底边界层内的水动力过程密切相关,底边界层参数(如切应力、拖曳系数)的确定至关重要。挪威Nortek公司生产的新型声学多普勒流速剖面仪AD2CP相比传统ADCP具有高频、低噪的优点,可用于高频(16Hz)流速剖面观测,而被广泛应用于底边界层观测的ADV只能测量单点高频流速。本文采用AD2CP在长江口南槽最大浑浊带区域进行座底式观测,并与同步近底部三脚架上ADV的观测结果进行对比。结果表明,使用AD2CP测得的近底部平均流速与ADV的测量结果吻合良好;使用惯性耗散法计算了底切应力,基于ADV的单点高频流速数据计算结果为2.16×10~(-2)~5.69×10~(-1)N/m~2,基于AD2CP的结果为2.09×10~(-2)~4.26×10~(-1)N/m~2,二者范围大致相当。在此基础上,基于AD2CP数据计算出摩阻流速为4.55×10~(-3)~2.06×10~(-2)m/s、底拖曳系数范围为1.84×10~(-4)~2.49×10~(-3),与ADV的计算结果基本一致。此外,由于AD2CP可以获得高频的流速剖面数据,优于单点ADV,具备观测近底部边界层参数和边界层内湍流剖面的潜力。  相似文献   

10.
海洋湍流观测技术   总被引:3,自引:0,他引:3  
湍流在海洋能量和水体的交换演化中起着非常重要的作用。海洋湍流研究的发展和海洋湍流观测仪器的研发密切相关。世界上湍流观测仪器的研发起步于上世纪50年代,但是我国在湍流观测设备方面到目前为止仅仅处于起步和引进国外设备阶段。针对我国的情况,文中对海洋湍流观测的平台、探头测量原理及其数据修正、资料后处理等关键技术做一个总结性的介绍,为我国使用引进的海洋湍流设备和自主开发海洋湍流测量设备提供参考。  相似文献   

11.
This paper derives local formulae to estimate bed roughness and suspended transport and present a method to calculate net sediment transport at tidal inlet systems, combining field data and a range of well established empirical formulations. To accomplish this, measurements spanning a spring-tidal cycle of mean water levels, waves, near-bed flow turbulence and bed forms were obtained from the Ancão Inlet, Ria Formosa lagoon system, Portugal. High-resolution hydrodynamic data were gathered using acoustic equipments and by measuring sediment properties (grain-size diameter and bed form dimensions) under fair-weather conditions. The results compared favourably with available direct and indirect field observations of sediment transport rates. The approach appears to be robust and widely applicable and so can be applied to the same conditions in any tidal inlet system. This is of particular importance when attempting to understand sediment transport at inlet mouths, and has practical applications in a range of coastal engineering and coastal management areas concerned with navigation safety, coastal erosion, ecosystem health and water quality. The study discusses the applicability of the method on evaluating system flushing capacity, giving important insights on multiple inlet evolution, particularly with regard to their persistence through time. The methodological framework can be applied to assess the long-term stability of single- and multiple-inlet systems, provided that estimates of sediment storage at ebb-tidal deltas are available and sediment transport estimates during storm events are statistically considered.  相似文献   

12.
A critical review of conceptual and mathematical models developed in recent decades on sediment transport in the swash zone is presented. Numerous studies of the hydrodynamics and sediment transport in the swash zone in recent years have pointed out the importance of swash processes in terms of science advancement and practical applications. Evidently, the hydrodynamics of the swash zone are complex and not fully understood. Key hydrodynamic processes include both high-frequency bores and low-frequency infragravity motions, and are affected by wave breaking and turbulence, shear stresses and bottom friction. The prediction of sediment transport that results from these complex and interacting processes is a challenging task. Besides, sediment transport in this oscillatory environment is affected by high-order processes such as the beach groundwater flow. Most relationships between sediment transport and flow characteristics are empirical, based on laboratory experiments and/or field measurements. Analytical solutions incorporating key factors such as sediment characteristics and concentration, waves and coastal aquifer interactions are unavailable. Therefore, numerical models for wave and sediment transport are widely used by coastal engineers. This review covers mechanisms of sediment transport, important forcing factors, governing equations of wave-induced flow, groundwater interactions, empirical and numerical relations of cross-shore and longshore sediment transport in the swash zone. Major advantages and shortcomings of various numerical models and approaches are highlighted and reviewed. These will provide coastal modelers an impetus for further detailed investigations of fluid and sediment transport in the swash zone.  相似文献   

13.
底边界层中沉积物的再悬浮和沉降是控制陆架海悬浮沉积物的输运的关键过程。沉积物输运过程的数值*模拟也依赖于沉积物侵蚀和沉降的关键参数的研究。本文根据济州岛西南泥质区的坐底观测估算了此处临界应力。通过底边界层声学仪器ADV和PC-ADP的流速和悬浮物浓度同步观测,基于湍生成与耗散平衡假设,使用惯性耗散法计算沉降速度。这种方法得到的沉降速度ws平均值为0.91 mm s-1,标准差为0.20 mm s-1,此结果远大于Soulbsy(1997)和LISST-ST现场观测粒径分析仪等经验方法的结果。这主要是由于两种方法的本质不同,惯性耗散法形象的刻画了底边界层的水动力,并且更加合理的现场估计沉降速度ws,然而Soulsby的方法通常适用于静水环境。我们提出了一种估计临界应力的新方法,根据悬浮颗粒物浓度时空变化的统计分析(深度平均的悬浮颗粒物浓度对时间求导数)和对应的底应力估算侵蚀临界应力τce和沉降临界应力τcd。侵蚀临界应力τce和沉降临界应力τce的变化范围为0.11-0.25 Pa,对应的中值分别为0.20 Pa和0.16 Pa,这也证实了侵蚀临界应力略大于沉降临界应力。除此之外,我们还使用了另一种方法估算临界应力,通过沉降速度间接估算的临界应力范围为0.06-0.17 Pa。  相似文献   

14.
《Coastal Engineering》2006,53(11):897-913
For the general purposes of morphodynamic computations in coastal zones, simple formula-based models are usually employed to evaluate sediment transport. Sediment transport rates are computed as a function of the bottom shear stress or the near bed flow velocity and it is generally assumed that the sediment particles react immediately to changes in flow conditions. It has been recognized, through recent laboratory experiments in both rippled and plane bed sheet flow conditions that sediment reacts to the flow in a complex manner, involving non-steady processes resulting from memory and settling/entrainment delay effects. These processes may be important in the cross-shore direction, where sediment transport is mainly caused by the oscillatory motions induced by surface short gravity waves.The aim of the present work is to develop a semi-unsteady, practical model, to predict the total (bed load and suspended load) sediment transport rates in wave or combined wave-current flow conditions that are characteristic of the coastal zone. The unsteady effects are reproduced indirectly by taking into account the delayed settling of sediment particles. The net sediment transport rates are computed from the total bottom shear stress and the model takes into account the velocity and acceleration asymmetries of the waves as they propagate towards the shore.A comparison has been carried out between the computed net sediment transport rates with a large data set of experimental results for different flow conditions (wave-current flows, purely oscillatory flow, skewed waves and steady currents) in different regimes (plane bed and rippled bed) with fine, medium and coarse uniform sand. The numerical results obtained are reasonably accurate within a factor of 2. Based on this analysis, the limits and validity of the present formulation are discussed.  相似文献   

15.
A bottom-mounted instrumental tripod was deployed in the tidally energetic Zhujiang (Pearl River) Estuary to examine the contrasting properties of the bottom boundary layer (BBL) flows between estuarine and tide-affected river systems. Three aspects of the BBL flows were investigated to understand the mechanism of the turbulence responses to the large-scale ambient forcing: the flow structures (profile, anisotropy, and spectra), shearing strains and stresses, and the balance of turbulent kinetic energy (TKE). Single log-law profiles and turbulence anisotropy predominated in the two systems, but the non-log regime and stronger anisotropy occurred more frequently at the slack tide in the estuary. The ADV-based turbulence intensities and shearing strains both exceeded their low-frequency counterparts (frictional velocities and mean shears) derived from the logarithmic law. On the contrary, the ADV-based Reynolds stresses were smaller than the log profile-derived bottom stresses, so the hypothesis of a constant stress layer cannot be well satisfied, especially in the river. The bandwidth of the inertial subrange in the river was of one decade larger than in the estuary. The balance between shear production and viscous dissipation was better achieved in the straight river. This first-order balance was significantly broken in the estuary and in the meandering river, by non-shear production/dissipation due to wave-induced fluctuations or salinity/sediment stratification. All these disparities between two systems in turbulence properties are essentially controlled by the anisotropy induced by the large-scale processes such as secondary currents, density stratification. In conclusion, the acceleration of unsteady flows determines the profile structure of the BBL flow, and turbulence anisotropy results in the invalidation of the phenomenological relations such as the constant stress hypothesis and the first-order TKE balance.  相似文献   

16.
- The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water quality. The eddy viscosities and diffusivities are computed from the Prandtl mixing length model. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter. The model simulates full oxygen and nutrient balance, primary productivity and the transport, reaction mechanism and fate of pollutants over tidal time-scales. The model is applied to numerical simulation of tidal flows and water quality in Dalian Bay. The model has been calibrated against a limited data set of historical water quality observations and in general demonstra  相似文献   

17.
This paper summarises the main findings of the Conscience research project, whose primary objective was to define and validate, through pilot applications, a methodology to support the implementation, for European coasts, of concepts such as coastal resilience, favorable sediment status, strategic sediment reservoirs and coastal sediment cells. The Conscience conceptual framework to managing coastal erosion has proved to be an efficient tool, because it provides a consistent approach where objective (data) and subjective (desired status) information are analyzed and compared from the standpoint of a consensus target (objective). Moreover, this is done using the best available knowledge and observations, considering always their level of uncertainty, to conduct a sustainable management policy for coastal erosion. The methodology has been tested in field cases from The Netherlands, Poland, Romania, Spain, United Kingdom and Ireland, to cover different time and space scales, together with a wide range of processes and different management objectives.  相似文献   

18.
《Coastal Engineering》2005,52(1):43-62
A vertical two-dimensional (2D) numerical model for time dependent local scour below offshore pipelines subject to unidirectional steady flow is developed. The governing equations for the flow and sediment transport are solved by using finite difference method in a general curvilinear coordinate system. The performance of two turbulence models, the standard kɛ model and Smagorinsky subgrid scale (SGS) model, on modeling time dependent scour processes is examined. Both suspended load and bed load are considered in the scour model. The suspended-load model is verified against two channel sediment transport cases. The change of bed level is calculated from the continuity equation of total sediment transport. A new time marching scheme and a sand slide scheme are proposed for the scour calculation. It is found that the proposed time marching scheme and sand slide model work well for both clear-water and live-bed scour situations and the standard kɛ turbulence closure is more preferable than the SGS model in the 2D scour model developed in this study.  相似文献   

19.
In order to study the mechanism of flow-sediment movement, it is essential to obtain measured data of water hydrodynamic and sediment concentration process with high spatial and temporal resolution in the bottom boundary layer (BBL). Field observations were carried out in the northwest Caofeidian sea area in the Bohai Bay. Near 2 m isobath (under the lowest tidal level), a tripod system was installed with AWAC (Acoustic Wave And Current), ADCP (Acoustic Doppler Current Profilers), OBS-3A (Optical Backscatter Point Sensor), ADV (Acoustic Doppler Velocimeters), etc. The accurate measurement of the bottom boundary layer during a single tidal period was carried out, together with a long-term sediment concentration measurement under different hydrological conditions. All the measured data were used to analyze the characteristics of wave-current-sediment movement and the BBL. Analysis was performed on flow structure, shear stress, roughness, eddy viscosity and other parameters of the BBL. Two major findings were made. Firstly, from the measured data, the three-layer distribution model of the velocity profiles and eddy viscosities in the wave-current BBL are proposed in the observed sea area; secondly, the sediment movement is related closely to wind-waves in the muddy coast area where sediment is clayey silt: 1) The observed suspended sediment concentration under light wind conditions is very low, with the peak value generally smaller than 0.1 kg/m3 and the average value being 0.03 kg/m3; 2) The sediment concentration increases continuously under the gales over 6-7 in Beaufort scale, under a sustained wind action. The measured peak sediment concentration at 0.4 m above the seabed is 0.15-0.32 kg/m3, and the average sediment concentration during wind-wave action is 0.08-0.18 kg/m3, which is about 3-6 times the value under light wind conditions. The critical wave height signaling remarkable changes of sediment concentration is 0.5 m. The results show that the suspended load sediment concentration is mainly influenced by wave-induced sediment suspension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号