首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In seismic base isolation, most of the earthquake‐induced displacement demand is concentrated at the isolation level, thereby the base‐isolation system undergoes large displacements. In an attempt to reduce such displacement demand, this paper proposes an enhanced base‐isolation system incorporating the inerter, a 2‐terminal flywheel device whose generated force is proportional to the relative acceleration between its terminals. The inerter acts as an additional, apparent mass that can be even 200 times higher than its physical mass. When the inerter is installed in series with spring and damper elements, a lower‐mass and more effective alternative to the traditional tuned mass damper (TMD) is obtained, ie, the TMD inerter (TMDI), wherein the device inertance plays the role of the TMD mass. By attaching a TMDI to the isolation floor, it is demonstrated that the displacement demand of base‐isolated structures can be significantly reduced. Due to the stochastic nature of earthquake ground motions, optimal parameters of the TMDI are found based on a probabilistic framework. Different optimization procedures are scrutinized. The effectiveness of the optimal TMDI parameters is assessed via time history analyses of base‐isolated multistory buildings under several earthquake excitations; a sensitivity analysis is also performed. The enhanced base‐isolation system equipped with optimal TMDI attains an excellent level of vibration reduction as compared to the conventional base‐isolation scheme, in terms not only of displacement demand of the base‐isolation system but also of response of the isolated superstructure (eg, base shear and interstory drifts); moreover, the proposed vibration control strategy does not imply excessive stroke of the TMDI.  相似文献   

2.
A variant type of tuned mass damper (TMD) termed as ‘non‐traditional TMD (NTTMD)’ is recently proposed. Mainly focusing on the employment of TMD for seismic response control, especially for base‐isolated or high‐rise structures, this paper aims to derive design formulae of NTTMDs based on two methodologies with different targets. One is the fixed points theory with the performance index set as the maximum magnitude of the frequency response function of the relative displacement of the primary structure with respect to the ground acceleration, and the other is the stability maximization criterion (SMC) to make the free vibration of the primary structure decay in the minimum duration. Such optimally designed NTTMDs are compared with traditional TMDs by conducting both numerical simulations and experiments. The optimum‐designed NTTMDs are demonstrated to be more effective than the optimum‐designed traditional TMDs, with smaller stroke length required. In particular, the effectiveness of the TMDs combined with a base‐isolated structure is investigated by small‐scale model experimental tests subjected to a time scaled long period impulsive excitation, and it is demonstrated that the SMC‐based NTTMD can suppress structural free vibration responses in the minimum duration and requires much smaller accommodation space. Additionally, a small‐scale shaking table experiment on a high‐rise bending model attached with a SMC‐based NTTMD is conducted. This study indicates that NTTMD has a high potential to apply to seismic response control or retrofit of structures such as base‐isolated or central column‐integrated high‐rise structures even if only a limited space is available for accommodating TMDs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The paper concerns the optimal design and performance evaluation of a Tuned Mass Damper Inerter (TMDI) to reduce dynamic vibrations. The system exploits properties of the inerter, a two‐terminal mechanical device able to produce a force proportional to the relative acceleration between terminals, with the ability of generating an apparent mass even two orders of magnitude greater than its own physical mass. A primary single‐degree‐of‐freedom structure is equipped with a classical linear Tuned Mass Damper (TMD), the secondary structure, whose mass is connected to the ground via an inerter. The optimal design of the TMDI is conducted by assuming a white noise process as base input and utilizing three different design methodologies: displacement minimization, acceleration minimization and maximization of the ratio between the energy dissipated in the secondary system and the total input energy. Optimal results obtained with the different methodologies are carried out and compared. Two limit cases are also considered when the inerter is not contemplated: conventional and non‐conventional TMDs, characterized by a low and a large mass ratio, respectively. The TMDI performance is evaluated and compared with conventional and non‐conventional TMDs; moreover, its robustness is assessed with a sensitivity analysis varying the design parameters. Attention is focused not exclusively on the primary structure response but also on the secondary one. Finally, the effectiveness of the optimally designed TMDI is evaluated having considered earthquake base excitation. Results demonstrate the effectiveness of TMDI systems for dynamic response reduction with superior performances and robustness than classical TMDs. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
The tuned mass damper inerter (TMDI) couples the classical tuned mass damper (TMD) with an inerter, a mechanical device whose generated force is proportional to the relative acceleration between its terminals, thus providing beneficial mass‐amplification effects. This paper deals with a dynamic layout in which the TMDI is installed below the isolation floor of base‐isolated structures in order to enhance the earthquake resilience and reduce the displacement demand. Unlike most of the literature studies that assumed a linearized behavior of the isolators, the aim of this paper is to investigate the effectiveness of the TMDI while accounting for the nonlinearity of the isolators. Two nonlinear constitutive behaviors are considered, a Coulomb friction model and a Bouc‐Wen hysteretic model, representative of friction pendulum and of lead‐rubber‐bearing isolators, respectively. Optimal design is based on the stochastic dynamic analysis of the system, by modeling the base acceleration as a Kanai‐Tajimi filtered stationary random process and resorting to the stochastic linearization technique to handle the nonlinear terms. Different tuning criteria based on displacement, acceleration, and energy‐based performance indices are defined, and their implications in a design process are discussed. It is proven that the improved robustness of the TMDI reduces its performance sensitivity to the tuning frequency and to the earthquake frequency content, which are well‐known shortcomings of TMD‐like systems. This important feature makes the TMDI particularly suitable for nonlinear base‐isolated structures that are affected by unavoidable uncertainties in the isolators' properties and that may experience changes of isolators effective stiffness depending on the excitation level.  相似文献   

5.
A continuously variable semi‐active damper is used in a tuned mass damper (TMD) to reduce the level of vibration of a single‐degree‐of‐freedom system subjected to harmonic base excitations. The ground hook dampers as have been used in the auto‐industry are being studied here. Using these dampers a new class of tuned mass dampers, named as ground hook tuned mass dampers (GHTMD) is being introduced. In order to generalize the design properties of the GHTMDs, they are defined in terms of non‐dimensional parameters. The optimum design parameters of GHTMDs for lightly damped systems are obtained based on the minimization of the steady‐state displacement response of the main mass. These parameters are computed for different mass ratios and main system damping ratios. Frequency responses of the resulting systems are compared to that of equivalent TMDs using passive dampers. In addition, other characteristics of this system as compared to the passive TMDs are discussed. A design guide to obtain the optimum parameters of GHTMD using the developed diagrams in this paper based on non‐dimensional values is presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
A new method to design multiple tuned mass dampers (multiple TMDs) for minimizing excessive vibration of structures has been developed using a numerical optimizer. It is a very powerful method by which a large number of design variables can be effectively handled without imposing any restriction before the analysis. Its framework is highly flexible and can be easily extended to general structures with different combinations of loading conditions and target controlled quantities. The method has been used to design multiple TMDs for SDOF structures subjected to wide‐band excitation. Some novel results have been obtained. To reduce displacement response of the structure, the optimally designed multiple TMDs have distributed natural frequencies and distinct damping ratios at low damping level. The obtained optimal configuration of TMDs was different from the earlier analytical solutions and was proved to be the most effective. A robustness design of multiple TMDs has also been presented. Robustness is defined as the ability of TMDs to function properly despite the presence of uncertainties in the parameters of the system. Numerical examples of minimizing acceleration structural response have been given where the system parameters are uncertain and are modeled as independent normal variates. It was found that, in case of uncertainties in the structural properties, increasing the TMD damping ratios along with expanding the TMD frequency range make the system more robust. Meanwhile, if TMD parameters themselves are uncertain, it is necessary to design TMDs for higher damping ratios and a narrower frequency range. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Floor isolation system (FIS) achieving very small floor accelerations has been used to ensure human comfortability or protect important equipments in buildings. Tuned mass damper (TMD) with large mass ratios has been demonstrated to be robust with respect to the changes in structural properties. This paper presents the concept of a TMD floor vibration control system, which takes advantages of both the FIS and TMD. Such a system is called ‘TMD floor system’ herein. The TMD floor system (TMDFS) in which building floors serve as TMDs can achieve large mass ratio without additional masses. Furthermore, multiple TMD floors installed in a building can control multimode vibrations. Then, an optimal design process, where the objective function is set as the maximum magnitude of the frequency response functions of inter‐storey drifts, is proposed to determine the TMD floor parameters. Additionally, the multimode approach is applied to determine the optimal locations of TMD floors if not all of the floors in a building can serve as TMDs. In addition to the numerical simulations, a scaled model shaking table experiment is also conducted. Both the numerical and experimental results show that the absolute accelerations of the TMD floors are smaller than those of the main structural storeys, which indicates the TMDFS maintains the merit of FIS while greatly reducing seismic responses of main structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The seismic performance of tuned mass dampers (TMDs) on structures undergoing inelastic deformations may largely depend on the ground motion intensity. By estimating the impact of each seismic intensity on the overall cost of future seismic damages, lifecycle cost (LCC) proves a rational metric for evaluating the benefits of TMDs on inelastic structures. However, no incorporation of this metric into an optimization framework is reported yet. This paper presents a methodology for the LCC‐optimal design of TMDs on inelastic structures, which minimizes the total seismic LCC of the combined building‐TMD system. Its distinctive features are the assumption of a mass‐proportional TMD cost model, the adoption of an iterative suboptimization procedure, and the initialization of the TMD frequency and damping ratios according to a conventional linear TMD design technique. The methodology is applied to the seismic improvement of the SAC‐LA benchmark buildings, taken as representative of standard steel moment‐resisting frame office buildings in LA, California. Results show that, despite their limited performance at the highest intensity levels, LCC‐optimal TMDs considerably reduce the total LCC, to an extent that depends on both the building vulnerability and the TMD unit cost. They systematically present large mass ratios (around 10%) and frequency and damping ratios close to their respective linearly designed optima. Simulations reveal the effectiveness of the proposed design methodology and the importance of adopting a nonlinear model to correctly evaluate the cost‐effectiveness of TMDs on ordinary structures in highly seismic areas.  相似文献   

9.
The effectiveness of tuned mass dampers (TMD) in vibration control of buildings was investigated under moderate ground shaking caused by long‐distance earthquakes with frequency contents resembling the 1985 Mexico City (SCT) or the 1995 Bangkok ground motion. The elastic–perfectly plastic material behaviour was assumed for the main structure, with linear TMDs employed by virtue of their simplicity and robustness. The accumulated hysteretic energy dissipation affected by TMD was examined, and the ratio of the hysteretic energy absorption in the structure with TMD to that without it is proposed to be used, in conjunction with the peak displacement ratio, as a supplementary TMD performance index since it gives an indication of the accumulated damage induced in the inelastic structures. For the ground motions considered, TMD would be effective in reducing the hysteretic energy absorption demand in the critical storeys for buildings in the 1.8–2.8 s range. The consequence is reduction in damage of the buildings which would otherwise suffer heavy damage in the absence of TMD, resulting in economical restorability in the damage control limit state. This is of practical significance in view of the current trend toward performance‐based design. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
基础隔震技术广泛应用于建筑结构以减轻结构的地震响应.值得注意的是,在隔震体系中减小主结构的加速度响应是以牺牲隔震器变形为代价的.调谐惯容系统(TID)和隔震器组成的混合隔震体系可减小隔震层的位移响应.与传统调谐质量阻尼器(TMD)结构类似,TID 由惯容、调谐弹簧和阻尼元件组成.因此,可直接利用 TMD减震系统的设计公式来确定 TID 的最优参数.首先基于单自由度体系(SDOF)附加 TID的运动方程,推导分析两种 TID和 TMD设计公式,对两者设计公式的前提条件和适用性进行深入的探讨.其后,借助基础隔震体系的benchmark模型来检验设计 TID的可行性和有效性.数值模拟结果表明,在不增加主结构绝对加速度响应的情况下, TID能够显著减小基础隔震结构的位移响应和基底剪力.  相似文献   

11.
The optimal design and effectiveness of three control systems, tuned viscous mass damper(TVMD), tuned inerter damper(TID) and tuned mass damper(TMD), on mitigating the seismic responses of base isolated structures, were systematically studied. First, the seismic responses of the base isolated structure with each control system under white noise excitation were obtained. Then, the structural parameter optimizations of the TVMD, TID and TMD were conducted by using three different objectives. The results show that the three control systems were all effective in minimizing the root mean square value of seismic responses, including the base shear of the BIS, the absolute acceleration of structural SDOF, and the relative displacement between the base isolation floor and the foundation. Finally, considering the superstructure as a structural MDOF, a series of time history analyses were performed to investigate the effectiveness and activation sensitivity of the three control systems under far field and near fault seismic excitations. The results show that the effectiveness of TID and TMD with optimized parameters on mitigating the seismic responses of base isolated structures increased as the mass ratio increases, and the effectiveness of TID was always better than TMD with the same mass ratio. The TVMD with a lower mass ratio was more efficient in reducing the seismic response than the TID and TMD. Furthermore, the TVMD, when compared with TMD and TID, had better activation sensitivity and a smaller stroke.  相似文献   

12.
Tuned mass dampers(TMDs) have been widely used in recent years to mitigate structural vibration.However,the damping mechanisms employed in the TMDs are mostly based on viscous dampers,which have several well-known disadvantages,such as oil leakage and difficult adjustment of damping ratio for an operating TMD.Alternatively,eddy current damping(ECD) that does not require any contact with the main structure is a potential solution.This paper discusses the design,analysis,manufacture and testing of a large-scale horizontal TMD based on ECD.First,the theoretical model of ECD is formulated,then one large-scale horizontal TMD using ECD is constructed,and finally performance tests of the TMD are conducted.The test results show that the proposed TMD has a very low intrinsic damping ratio,while the damping ratio due to ECD is the dominant damping source,which can be as large as 15% in a proper configuration.In addition,the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results,and the source of this error is investigated.Moreover,it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates.In view of practical applications,possible improvements and feasibility considerations for the proposed TMD are then discussed.It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.  相似文献   

13.
There are many traditional methods to find the optimum parameters of a tuned mass damper (TMD) subject to stationary base excitations. It is very difficult to obtain the optimum parameters of a TMD subject to non‐stationary base excitations using these traditional optimization techniques. In this paper, by applying particle swarm optimization (PSO) algorithm as a novel evolutionary algorithm, the optimum parameters including the optimum mass ratio, damper damping and tuning frequency of the TMD system attached to a viscously damped single‐degree‐of‐freedom main system subject to non‐stationary excitation can be obtained when taking either the displacement or the acceleration mean square response, as well as their combination, as the cost function. For simplicity of presentation, the non‐stationary excitation is modeled by an evolutionary stationary process in the paper. By means of three numerical examples for different types of non‐stationary ground acceleration models, the results indicate that PSO can be used to find the optimum mass ratio, damper damping and tuning frequency of the non‐stationary TMD system, and it is quite easy to be programmed for practical engineering applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Velocity adjustable TMD and numerical simulation of seismic performance   总被引:2,自引:0,他引:2  
A new type of velocity adjustable tuned mass damper (TMD) consisting of impulse generators and clutches is presented. The force impulse is generated by a joining operation of electromagnets and springs and MR dampers are used as clutches. Rules for velocity adjustment are established according to the working mechanism of TMD. The analysis program is developed on a VB platform. Seismic response of SDOF structures with both passive TMD and velocity adjustable TMD are analyzed. The results show that (1) the control effectiveness of passive TMDs is usually unstable; (2) the control effectiveness of the proposed semi-active TMDs is much better than passive TMDs under typical seismic ground motions; and (3) unlike the passive TMD system, the proposed velocity adjustable TMDs exhibit good control effectiveness even when the primary structure performance becomes inelastic during severe earthquakes.  相似文献   

15.
Analytical results are developed for vibration control of structures with one or more Tuned Mass Dampers (TMDs). The input is a harmonic load with a range of possible frequencies. The control objective is to reduce the maximum amplitude of the structural response. Perturbation theory is used with three sets of small parameters: the ratio of TMD and structural modal masses, the damping of the system, and the differences between the structural and loading frequencies. It is shown analytically that for structures with widely spaced natural frequencies, the response can be approximated accurately by the response of the well-known single-mode structure/TMD system. For structures with p closely spaced natural frequencies, more general analytical results are developed to describe the coupling between the motions of the p modes of the structure and the multiple TMDs. The results show that at least p TMDs with properly placed attachments to the structure are necessary to control the response. If fewer TMDs are used, the maximum frequency response has a lower bound which is independent of the properties of the TMDs. The TMD placement is shown to be always important, regardless of the spacing of the structure's natural frequencies. The results are illustrated for both lumped-mass and continuous structures.  相似文献   

16.
It is well established that small tuned mass dampers (TMDs) attached to structures are very effective in reducing excessive harmonic vibrations induced by external loads but are not as interesting within the context of earthquake engineering problems. For this reason, large mass ratio TMDs have been proposed with the objective of adding a significant amount of damping to structures, thus constituting a good means of reducing structural response in these cases. This solution has other important and attractive dynamic features such as robustness to system uncertainties and reduction of the motion of the inertial mass. In this context, this paper aims to describe an alternative methodology to existing procedures used to tune these devices to earthquake loads and to present some additional considerations regarding its performance in controlling seismic vibrations. The main feature of the proposed method consists of establishing a direct proportion between the damping ratios of the structure's first two vibration modes and the adopted mass ratio. By equalizing the damping ratios of the system's main vibration modes, this proposal also facilitates the use of simplified methods, such as modal analysis based on response spectra. To demonstrate the usefulness of this alternative methodology, an application example is presented, which was also used to perform a parametric study involving other tuning methods and to estimate mass ratio values from which there is no significant advantage in increasing the TMD mass. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The optimum parameters of tuned mass dampers (TMD) that result in considerable reduction in the response of structures to seismic loading are presented. The criterion used to obtain the optimum parameters is to select, for a given mass ratio, the frequency (tuning) and damping ratios that would result in equal and large modal damping in the first two modes of vibration. The parameters are used to compute the response of several single and multi-degree-of-freedom structures with TMDs to different earthquake excitations. The results indicate that the use of the proposed parameters reduces the displacement and acceleration responses significantly. The method can also be used in vibration control of tall buildings using the so-called ‘mega-substructure configuration’, where substructures serve as vibration absorbers for the main structure. It is shown that by selecting the optimum TMD parameters as proposed in this paper, significant reduction in the response of tall buildings can be achieved. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
To reduce floor acceleration of base‐isolated structures under earthquakes, a tuned mass damper (TMD) system installed on the roof is studied. The optimal tuning parameters of the TMD are analyzed for linear base isolation under a generalized ground motion, and the performance of the TMD is validated using a suite of recorded ground motions. The simulation shows that a TMD tuned to the second mode of a base‐isolated structure reduces roof acceleration more effectively than a TMD tuned to the first mode. The reduction ratio, defined as the maximum roof acceleration with the TMD relative to that without the TMD, is approximately 0.9 with the second‐mode TMD. The higher effectiveness of the second‐mode TMD relative to the first‐mode TMD is attributed primarily to the unique characteristics of base isolation, ie, the relatively long first‐mode period and high base damping. The modal acceleration of the second mode is close to or even higher than that of the first mode in base‐isolated structures. The larger TMD mass ratio and lower modal damping ratio of the second‐mode TMD compared to the first‐mode TMD increases its effect on modal acceleration reduction. The reduction ratio with the second‐mode TMD improves to 0.8 for bilinear base isolation. Because of the detuning effect caused by the change in the first‐mode period in bilinear isolation, the first‐mode TMD is ineffective in reducing roof acceleration. Additionally, the displacement experienced by the second‐mode TMD is considerably smaller than that of the first‐mode TMD, thereby reducing the installation space for the TMD.  相似文献   

19.
Although the design and applications of linear tuned mass damper (TMD) systems are well developed, nonlinear TMD systems are still in the developing stage. Energy dissipation via friction mechanisms is an effective means for mitigating the vibration of seismic structures. A friction‐type TMD, i.e. a nonlinear TMD, has the advantages of energy dissipation via a friction mechanism without requiring additional damping devices. However, a passive‐friction TMD (PF‐TMD) has such disadvantages as a fixed and pre‐determined slip load and may lose its tuning and energy dissipation abilities when it is in the stick state. A novel semi‐active‐friction TMD (SAF‐TMD) is used to overcome these disadvantages. The proposed SAF‐TMD has the following features. (1) The frictional force of the SAF‐TMD can be regulated in accordance with system responses. (2) The frictional force can be amplified via a braking mechanism. (3) A large TMD stroke can be utilized to enhance control performance. A non‐sticking friction control law, which can keep the SAF‐TMD activated throughout an earthquake with an arbitrary intensity, was applied. The performance of the PF‐TMD and SAF‐TMD systems in protecting seismic structures was investigated numerically. The results demonstrate that the SAF‐TMD performs better than the PF‐TMD and can prevent a residual stroke that may occur in a PF‐TMD system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The dynamic response of tall civil structures due to earthquakes is very important to civil engineers. Structures exposed to earthquakes experience vibrations that are detrimental to their structural components. Structural pounding is an additional problem that occurs when buildings experience earthquake excitation. This phenomena occurs when adjacent structures collide from their out‐of‐phase vibrations. Many energy dissipation devices are presently being used to reduce the system response. Tuned mass dampers (TMD) are commonly used to improve the response of structures. The stiffness and damping properties of the TMD are designed to be a function of the natural frequency of the building to which it is connected. This research involves attaching adjacent structures with a shared tuned mass damper (STMD) to reduce both the structures vibration and probability of pounding. Because the STMD is connected to both buildings, the problem of tuning the STMD stiffness and damping parameters becomes an issue. A design procedure utilizing a performance function is used to obtain the STMD parameters to result in the best overall system response. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号