首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   4篇
测绘学   1篇
大气科学   6篇
地球物理   7篇
地质学   5篇
海洋学   8篇
天文学   11篇
自然地理   3篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
排序方式: 共有41条查询结果,搜索用时 125 毫秒
1.
Passive tuned mass dampers (TMDs) are widely used in controlling structural vibrations. Although their principle is well established, the search for improved arrangements is still under way. This effort has recently produced an innovative paradigm of bidirectional pendulum TMD (BTMD) that, moving along a specially designed three-dimensional (3D) surface, can simultaneously control two in-plane orthogonal structural modes. In existing versions of BTMDs, energy dissipation is provided either by ordinary horizontal viscous dampers or by an original arrangement of vertical friction dampers. In this paper, a new paradigm is proposed, in which energy dissipation comes from the tangential friction arising along the pendulum surface out of an optimal spatially variable friction coefficient pattern. Within this paradigm, if the friction coefficient is taken proportional to the modulus of the pendulum surface gradient, the dissipation model results nonlinear homogeneous in the small-displacement domain, and the performance of the absorber, herein called the homogeneous tangential friction BTMD (HT-BTMD), results independent from the excitation level. The present work introduces this concept, derives the analytical model of the HT-BTMD, establishes a method for its optimal design, and numerically verifies its seismic effectiveness in comparison with viscously damped devices. The validity and feasibility of the concept are demonstrated through experimental tests on a small-scale lab prototype, which also show the efficacy of a stepwise approximation of the homogeneous friction pattern. The new device proves a competing alternative to existing BTMDs, and homogeneous tangential friction proves a promising new paradigm to provide pendular systems with amplitude-independent structural damping.  相似文献   
2.
The seismic performance of tuned mass dampers (TMDs) on structures undergoing inelastic deformations may largely depend on the ground motion intensity. By estimating the impact of each seismic intensity on the overall cost of future seismic damages, lifecycle cost (LCC) proves a rational metric for evaluating the benefits of TMDs on inelastic structures. However, no incorporation of this metric into an optimization framework is reported yet. This paper presents a methodology for the LCC‐optimal design of TMDs on inelastic structures, which minimizes the total seismic LCC of the combined building‐TMD system. Its distinctive features are the assumption of a mass‐proportional TMD cost model, the adoption of an iterative suboptimization procedure, and the initialization of the TMD frequency and damping ratios according to a conventional linear TMD design technique. The methodology is applied to the seismic improvement of the SAC‐LA benchmark buildings, taken as representative of standard steel moment‐resisting frame office buildings in LA, California. Results show that, despite their limited performance at the highest intensity levels, LCC‐optimal TMDs considerably reduce the total LCC, to an extent that depends on both the building vulnerability and the TMD unit cost. They systematically present large mass ratios (around 10%) and frequency and damping ratios close to their respective linearly designed optima. Simulations reveal the effectiveness of the proposed design methodology and the importance of adopting a nonlinear model to correctly evaluate the cost‐effectiveness of TMDs on ordinary structures in highly seismic areas.  相似文献   
3.
Taking into consideration a probe moving in an elliptical orbit around a celestial body, the possibility of determining conditions which lead to constant values on average of all the orbit elements has been investigated here, considering the influence of the planetary oblateness and the long-term effects deriving from the attraction of several perturbing bodies. To this end, three equations describing the variation of orbit eccentricity, apsidal line and angular momentum unit vector have been first retrieved, starting from a vectorial expression of the Lagrange planetary equations and considering for the third-body perturbation the gravity-gradient approximation, and then exploited to demonstrate the feasibility of achieving the above-mentioned goal. The study has led to the determination of two families of solutions at constant mean orbit elements, both characterised by a co-planarity condition between the eccentricity vector, the angular momentum and a vector resulting from the combination of the orbital poles of the perturbing bodies. As a practical case, the problem of a probe orbiting the Moon has been faced, taking into account the temporal evolution of the perturbing poles of the Sun and Earth, and frozen solutions at argument of pericentre 0\(^{\circ }\) or 180\(^{\circ }\) have been found.  相似文献   
4.
5.
Comparison of modern submarine fans and ancient turbidite sequences is still in its infancy, mainly because of the incompatibility of study approaches. Research on modern fan systems mainly deals with morphologic aspects and surficial sediments, while observations on ancient turbidite formations are mostly directed to vertical sequences. The lack of a common data set also results from different scales of observation. To review the current status of modern and ancient turbidite research, an international group of specialists formed COMFAN (Committee on Fans) and met in September 1982 at the Gulf Research and Development Company research facilities in Pennsylvania. Margin setting represents fan and/or source area  相似文献   
6.
During the few days centered about new Moon, the lunar surface is optically hidden from Earth-based observers. However, the Moon still offers an observable: an extended sodium tail. The lunar sodium tail is the escaping “hot” component of a coma-like exosphere of sodium generated by photon-stimulated desorption, solar wind sputtering and meteoroid impact. Neutral sodium atoms escaping lunar gravity experience solar radiation pressure that drives them into the anti-solar direction forming a comet-like tail. During new Moon time, the geometry of the Sun, Moon and Earth is such that the anti-sunward sodium flux is perturbed by the terrestrial gravitational field resulting in its focusing into a dense core that extends beyond the Earth. An all-sky camera situated at the El Leoncito Observatory (CASLEO) in Argentina has been successfully imaging this tail through a sodium filter at each lunation since April 2006. This paper reports on the results of the brightness of the lunar sodium tail spanning 31 lunations between April 2006 and September 2008. Brightness variability trends are compared with both sporadic and shower meteor activity, solar wind proton energy flux and solar near ultra violet (NUV) patterns for possible correlations. Results suggest minimal variability in the brightness of the observed lunar sodium tail, generally uncorrelated with any single source, yet consistent with a multi-year period of minimal solar activity and non-intense meteoric fluxes.  相似文献   
7.
We have recently set up a new procedure for characterising the water soluble organic compounds (WSOC) in fog water, for which information is still rather limited. Fog samples collected during the 1998–1999 fall–winter season in the Po Valley (Italy) were analysed following this procedure, which allows a quantitative determination of three main classes of organic compounds (neutral species, mono- and di-carboxylic acids, polycarboxylic acids), together accounting for ca. 85% of the total WSOC. This procedure also provides information on the main chemical characteristics of these three classes of compounds (functional groups, aliphatic vs. aromatic character, etc.). The enhanced chemical knowledge on fog/cloud chemical composition opens new scenarios as far as chemical and microphysical processes in clouds and fogs are concerned.  相似文献   
8.
Thermal treatments of anorthite carried out at up to 1,547° C show that the unit cell parameter changes as a function of the treatment temperature. The best fit curve found by non-linear least squares analysis is: =91.419-(0.327·10-6)T 2+(0.199·10-12)T 4-(0.391·10)T 6. The results obtained support significant Al,Si disorder (Al0.10, where Al=t 1(0)-1/3 [t 1(m)+t 2(0)+t 2(m)], Ribbe 1975), in anorthite equilibrated near the melting point and confirm a high temperature series differentiated from the low temperature series for calcic plagioclases in the An85–An100 range also. In the plot vs. An-content the high and low temperature curves intersect at An85 composition and progressively diverge in the An85–An100 range. The trends of the high and low temperature curves in this range are interpretable on the basis of the degree of Al, Si order in the average structures of calcic plagioclases.  相似文献   
9.
10.
We describe the design, integration, and operation of the infrared test cameras for the commissioning of the Large Binocular Telescope. The design and construction phase lasted slightly more than one year from February 2007 to April 2008 and was the result of a joint collaboration among INAF Osservatorio Astronomico di Bologna, Università di Bologna Dipartimento di Astronomia (Italy) and the Max-Planck-Institut für Astronomie (Heidelberg, Germany). Thereafter, the camera was delivered to the LBT Observatory (USA) for commissioning of the telescope active optics and, more recently, for commissioning of the first light adaptive optics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号