首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
本文将自适应技术与有限时间技术相结合,研究了分布式自治水下机器人(Autonomous Underwater Vehicle,简称AUV)系统的自适应有限时间一致性跟踪控制问题。首先,应用图论相关知识描述多AUV间的通信拓扑;其次,对每个跟随AUV的运动与受力进行了分析,建立了基于位置姿态与速度姿态的二阶系统模型;然后,设计了非奇异快速终端滑模,并基于此对每个跟随AUV构建了连续分布式控制律,利用自适应律估计阻尼,恢复力和外部干扰的上界;最后,利用SIMULINK仿真来验证跟随AUV的位置与速度跟踪效果,直观地阐明了本文所提算法的有效性。  相似文献   

2.
水下滑翔机(Autonomous Underwater Glider,AUG)是一种浮力驱动的自主水下航行器 (Autonomous Underwater Vehicle,AUV),通过调整滑动质量块来改变重心与浮心的相对位置,从而控制自身的运动姿态。完成了水下滑翔机的外形设计,同时,对其各系统组成部分进行了初步设计与布局。利用 MATLAB 软件基于计算得到的流体动力参数对滑翔机进行运动特性分析,得出定常运动状态下攻角、俯仰角和水平速度等参量随重心水平位移和净浮质量之间的关系。最后使用 Simulink 软件对垂直面内滑翔机的运动模型进行弹道仿真,验证了水下滑翔机总体设计方法的有效性和可行性。  相似文献   

3.
以X 舵智能水下机器人(Autonomous Underwater Vehicle,AUV)为研究对象,提出了一种改进 Super-Twisting 滑模与非线性干扰观测器结合的 AUV 控制方法。首先,对 AUV 进行了运动学、动力学以及 X 舵分配进行了建模;之后,按照 Super-Twisting 理论设计了 AUV 控制器;然后,考虑到原算法中符号函数引起的控制输出抖振现象,提出了基于 Sigmoid 函数的改进 Super-Twisting 控制器,考虑到未建模动态以及外部环境干扰,设计了非线性干扰观测器对集总干扰进行补偿;最后,通过仿真验证了所提控制器的有效性。仿真表明,在干扰影响条件下,所提方法能够在大幅降低输出抖振并保证良好的控制精度。  相似文献   

4.
GDROV是用于堤坝探测的水下机器人,设计上属于开架式机器人,其精确的数学模型很难获得.采用基于模糊逻辑的直接自适应控制方法,利用模糊基函数网络逼近理想控制输出,通过模糊逻辑动态调整控制器的参数自适应律,可有效解决水下机器人控制问题.建立GDROV的水动力模型,给出基于模糊逻辑的直接自适应控制算法,最后通过仿真试验和外场试验验证了该控制器对模型的不确定性具有较强的鲁棒性,且具有良好的跟踪性能.  相似文献   

5.
水下拖曳系统在工作过程中拖体的俯仰角控制一直是水下拖体姿态控制的重要环节,设计了一种基于 RBF 神经网络的水下拖体直接自适应控制器,在闭环系统中利用 RBF 神经网络的局部无限逼近非线性函数的特性。将 RBF 神经网络的输出代替水下拖体动力学模型中的非线性不确定项,配合传统的 PD 控制器, 无需预先离线学习,在线学习更新神经网络权值,控制律和神经网络权值更新律经 Lyapunov 定理证明为稳定, 跟踪误差收敛到 0,通过计算机仿真比较该控制器与传统 PD 控制器的控制效果。  相似文献   

6.
开架式水下机器人运动的模糊非线性PD控制方法   总被引:4,自引:0,他引:4  
由于水下机器人系统的非线性动力学特性和工作环境的复杂性和不确定性,如何更好地设计水下机器人作业时的运动控制器一直是其实用化过程中没能得到很好解决的问题。结合模糊逻辑和S面控制,利用T—S推理结构,设计了一种兼具局部和全局调整功能的模糊非线性PD(m)控制器,仿真结果表明,其控制效果要优于采用单一控制参数的S面控制器。  相似文献   

7.
以欠驱动自主水下机器人(Autonomous Underwater Vehicle,AUV)为试验平台,提出了一种水平面动力定位控制方法。根据自研 AUV 平台的运动执行机构配置,针对其欠驱动特性设计运动控制器,控制纵向推力与转艏力矩,经过路径跟踪与区域镇定两个阶段,使航行器先沿预设路径快速接近目标点,再低速逐渐调整水平位置,最终在该点附近小范围内保持悬停。结合试验数据证明:航行器可抵达并稳定在目标点附近 2 m 范围内,并且在受到外力扰动偏离后能够重新返回,从而验证该动力定位控制方法的有效性。  相似文献   

8.
水下滑翔器嵌入式控制系统采用Philips公司的LPC2478为主控芯片,搭载多路高精度传感器以及伺服执行系统。通过对水下滑翔器的结构分析,构建出水下滑翔器的动力学模型,采用神经网络PID控制算法调节动力学模型中的俯仰角和横滚角,实现水下滑翔器在水下运行时的姿态调节与航迹控制。引入高斯大地线算法,分析处理经纬度坐标与航向角数据,计算得到水下滑翔器的航行距离与航向角偏差数据,从而控制伺服系统实现导航控制。同时,鉴于水面环境与水下环境的差异,为提高水下滑翔器的导航精度,引入水下航位推算算法,推算出水下滑翔器在水下的航向与姿态角,提高其在水下运行的精确度。  相似文献   

9.
在水下滑翔机的设计过程中,为了能够预先估计其水动力特性和操纵特性,避免大量的约束模型实验,需要建立动力学模型以仿真分析水下滑翔机的动力学行为。动力学建模是研究水下滑翔机水动力特性的理论基础,是运动控制的分析依据。通过软件来模拟滑翔机上浮/下潜平衡状态的姿态,并对其进行受力分析得出此姿态对应的理论俯仰角,与实验数据进行了对比,结果基本吻合,为水下滑翔机的设计与控制提供了参考。  相似文献   

10.
海洋机器人具有观测范围大、作业灵活、机动性好、可控性强等突出优点,在海洋科学观测与海洋科学实验中发挥了重要作用,促进了物理海洋和海洋生物地球化学的发展。为阐明海洋机器人在海洋科学观测和实验中的应用情况,以水下滑翔机、自主水下机器人(Autonomous Underwater Vehicle,AUV)和无人帆船3种典型的观测型海洋机器人为例介绍了海洋机器人在海洋科学观测中的应用现状;以原位采样与固定、原位培养与分析海洋机器人为例介绍了海洋机器人在海洋科学实验中的应用现状;最后结合未来海洋科学研究需求,从需求牵引的角度对基于机器人的科学观测与实验系统的发展趋势进行了展望。  相似文献   

11.
邓春楠  葛彤  吴超 《海洋工程》2013,31(6):53-58
水下环境复杂多变,由于水流的不可预知性和多变性,潜器的水动力系数往往无法准确获取,使得依赖这种参数的潜器运动控制算法的应用受到了很大的局限。为了解决控制器对模型参数的依赖,设计了一种基于高阶滑模控制算法的模型无关控制器,并通过设置合理的过渡过程,解决了这种控制算法依赖初值的弊端。仿真结果表明,位置和姿态的控制能够快速的收敛,误差很小并且不依赖于初始条件,控制器需调节参数很少,并且算法简单,适用于工程的实际需要。  相似文献   

12.
Kihun  Hang S.   《Ocean Engineering》2007,34(8-9):1138-1150
This paper describes the estimation of hydrodynamic coefficients and the control algorithm based on a nonlinear mathematical modeling for a test bed autonomous underwater vehicle (AUV) named by SNUUV I (Seoul National University Underwater Vehicle I).A six degree of freedom mathematical model for SNUUV I is derived with linear and nonlinear hydrodynamic coefficients, which are estimated with the help of a potential code and also the system identification using multi-variable regression.A navigation algorithm is developed using three ranging sonars, pressure sensor and two inclinometers keeping towing tank applications in mind. Based on the mathematical model, a simulation program using a model-based control algorithm is designed for heading control and wall following control of SNUUV I.It is demonstrated numerically that the navigation system together with controller guides the vehicle to follow the desired heading and path with a sufficient accuracy. Therefore the model-based control algorithm can be designed efficiently using the system identification method based on vehicle motion experiments with the appropriate navigation system.  相似文献   

13.
This paper develops an adaptive fuzzy controller for the dynamic positioning (DP) system of vessels with unknown dynamic model parameters and unknown time-varying environmental disturbances. The controller is designed by combining the adaptive fuzzy system with the vectorial backstepping method. An adaptive fuzzy system is employed to approximate the uncertain term induced by unknown dynamic model parameters and unknown time-varying environmental disturbances. It is theoretically proved that the proposed adaptive fuzzy DP controller can make the vessel be maintained at the desired values of its position and heading with arbitrary accuracy, while guaranteeing the uniform ultimate boundedness of all signals in the closed-loop DP control system of vessels. Simulation studies with comparisons on a supply vessel are carried out, and the results illustrate the effectiveness of the proposed control scheme.  相似文献   

14.
Hyun-Sik Kim  Yong-Ku Shin   《Ocean Engineering》2007,34(8-9):1080-1088
Generally, the underwater flight vehicle (UFV) depth control system operates with the following problems: it is a multi-input multi-output (MIMO) system, it requires robustness, a continuous control input, and further, it has the speed dependency of controller parameters. To solve these problems, an expanded adaptive fuzzy sliding mode controller (EAFSMC), which is based on the decomposition method designed by using an expert knowledge and the decoupled sub-controllers and composition method designed by using the fuzzy basis function expansions (FBFEs), is proposed. To verify the performance of the EAFSMC, the depth control of UFV in various operating conditions is performed. Simulation results show that the EAFSMC solves all problems experienced in the UFV depth control system online.  相似文献   

15.
In this paper, a novel model reference adaptive controller with anti-windup compensator (MRAC_AW) is proposed for an autonomous underwater vehicle (AUV). Input saturations and parametric uncertainties are among the practical problems in the control of autonomous vehicles. Hence, utilizing a proper adaptive controller with the ability to handle actuator saturations is of a particular value. The proposed technique of this paper incorporates the well-posed model reference adaptive control with integral state feedback and a modern anti-windup scheme to present an appropriate performance in practical conditions of an AUV. Stability of the proposed method is analyzed by Lyapunov theory. Then, the proposed controller is implemented in the hardware in the loop simulation of AUV. For this purpose, the introduced method is implemented in an onboard computer to be checked in a real-time dynamic simulation environment. Obtained results in the presence of real hardware of system, actuators, computational delays and real-time execution verify the effectiveness of proposed scheme.  相似文献   

16.
Fuzzy logic is a viable control strategy for depth control of undersea vehicles. It has been applied to the low speed ballast control problem for ARPA's Unmanned Undersea Vehicle (UUV), designed and built by Draper Laboratory. A fuzzy logic controller has been designed and tested in simulation that issues pump commands to effect changes in the UUV depth, while also regulating the pitch angle of the vehicle. The fuzzy logic controller performs comparably to the current ballast control design. The controller is also less sensitive to variations in the vehicle configuration and dynamics. The benefits of the fuzzy logic approach for this problem are: 1) simplicity, by not requiring a dynamic model, thus allowing for rapid development of a working design and less sensitivity to plant variations; 2) better matching of the control strategy and complexity with performance objectives and limitations; 3) the insight provided and easy modification of the controller, through the use of linguistic rules  相似文献   

17.
In the case of Autonomous Underwater Vehicle(AUV) navigating with low speed near water surface,a new method for design of roll motion controller is proposed in order to restrain wave disturbance effectively and improve roll stabilizing performance.Robust control is applied,which is based on uncertain nonlinear horizontal motion model of AUV and the principle of zero speed fin stabilizer.Feedback linearization approach is used to transform the complex nonlinear system into a comparatively simple linear system.For parameter uncertainty of motion model,the controller is designed with mixed-sensitivity method based on H-infinity robust control theory.Simulation results show better robustness improved by this control method for roll stabilizing of AUV navigating near water surface.  相似文献   

18.
This paper addresses the trajectory tracking problem for the low-speed maneuvering of fully actuated underwater vehicles. It is organized as follows. First, a brief review of previously reported control studies and plant models is presented. Second, an experimentally validated plant model for The Johns Hopkins University Remotely Operated Underwater Vehicle (JHUROV) is reviewed. Third, the stability of linear proportional-derivative (PD) control and a family of fixed and adaptive model-based controllers is examined analytically and demonstrated with numerical simulations. Finally, we report results from experimental trials comparing the performance of these controllers over a wide range of operating conditions. The experimental results corroborate the analytical predictions that the model-based controllers outperform PD control over a wide range of operating conditions. The exactly linearizing model-based controller is outperformed by its nonexactly linearizing counterpart. The adaptive controllers are shown to provide reasonable online plant parameter estimates, as well as velocity and position tracking consistent with theoretical predictions-providing good velocity tracking and, with the appropriate parameter update law, position tracking. The effects of reference trajectory, "bad" model parameters, feedback gains, adaptation gains, and thruster saturation are experimentally evaluated. To the best of our knowledge, this is the first reported comparative experimental study of this class of model-based controllers for underwater vehicles.  相似文献   

19.
This work demonstrates the feasibility of applying a sliding mode fuzzy controller to motion control and line of sight guidance of an autonomous underwater vehicle. The design method of the sliding mode fuzzy controller offers a systematical means of constructing a set of shrinking-span and dilating-span membership functions for the controller. Stability and robustness of the control system are guaranteed by properly selecting the shrinking and dilating factors of the fuzzy membership functions. Control parameters selected for a testbed vehicle, AUV-HM1, are evaluated through tank and field experiments. Experimental results indicate the effectiveness of the proposed controller in dealing with model uncertainties, non-linearities of the vehicle dynamics, and environmental disturbances caused by ocean currents and waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号