首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The problem of the distribution of the poloidal electric field in the mantle, originating from the core-mantle boundary, is formulated in terms of propagator matrices suitable for calculations for a wide variety of piece-wise continuous models of the mantle. The elements of the propagator matrix for some interesting variations of the electric conductivity are presented.  相似文献   

2.
A spherical model of the Earth including a heterogeneous upper mantle and excited by the magnetic field of a magnetospheric ring current is constructed. The obtained synthetic data are used for testing a new approach to gradient geomagnetic sounding ensuring the immunity of the sought impedance to distortions caused by lateral heterogeneity of the Earth. It is shown that this approach significantly increases the informativeness of deep electromagnetic sounding.  相似文献   

3.
Electric conductivity of the lower mantle. Methods and results   总被引:1,自引:0,他引:1  
The methods and results of estimating the electric conductivity of the Earth’s lower mantle are discussed. It has been indicated that the available estimates are qualitative since, first, the spatial-temporal characteristics of the geomagnetic variations on the Earth’s surface have been insufficiently accurate until recently and, second, the models of variations on the core surface are hypothetical. The situation is similar to the problem of determining filter parameters without knowing a filter entry. Nevertheless, the estimates of admissible conductivity limits at the mantle-core boundary and the general form of the conductivity radial dependence have been obtained based on the Earth thermodynamic model and certain global characteristics of the secular geomagnetic variations.  相似文献   

4.
New, unique information on the inertial and dissipative coupling of the liquid core and the mantle has been retrieved from modern high-precision (radiointerferometer and GPS) data on tidal variations in the rotation velocity and nutation of the Earth. Comparison of theoretical and observed data provided new estimates for the dynamic flattening of the outer liquid and the inner solid cores, mantle quality factor, viscosity of the liquid core, and electromagnetic coupling of the liquid core and the mantle [Molodensky, 2004, 2006]. As was shown in the first part of the paper [Molodensky, 2008] (further referred to as [I]), generation of eddy flows in Proudman-Taylor columns, whose orientation is controlled by the topography of the liquid core-mantle boundary, should be taken into account for correct estimation of the inertial coupling (see formulas (8) and (34) in [I]). The range of periods within which this effect plays a significant role is determined by the decay time of these flows. This time is estimated in the paper for the case where dissipation is related to viscous friction at the core-mantle boundary or with the electromagnetic coupling of the liquid core and the mantle. Because of significant uncertainties in modern data on the viscosity of the liquid core, the magnetic field intensity at the core-mantle boundary, and the electrical conductivity of the lower mantle, the dissipative coupling of the liquid core and the mantle cannot be calculated as yet. However, as shown in the paper, the decay time of eddy flows is connected with the attenuation time of subdiurnal free nutation and with the liquid core viscosity. This enables the estimation of the frequency dependence of the dissipative coupling in a fairly wide range. It is shown that the range of periods for which relations (8) and (34) in [I] are valid encompasses the best-studied length-of-day variations and, therefore, these relations are applicable to analysis of the majority of modern data.  相似文献   

5.
The main results in the theory of the interpretation of geopotential fields are generalized to the case of arbitrary variable electromagnetic fields by means of elaborating electrodynamic analogues for the integral of the Cauchy type.The generalized Kertz method for separating a variable electromagnetic field into parts related to the sources located in different regions of space is elaborated on the basis of this technique. The generalized Kertz method allows the selection of external and internal, normal and anomalous parts of the geomagnetic field, as well as the separation of geomagnetic anomalies into the surface and deep components caused by conductivity inhomogeneities in the Earth's crust and upper mantle.The theory of analytical continuation of variable electromagnetic fields in a conducting medium is also developed in the present work using the technique of analogues for the integral of the Cauchy type. It is shown that analytical continuation of a field downwards permits the determination of the location and form of deep geoelectric inhomogeneities according to the configuration of the isolines of flux functions for magnetic and electric fields.  相似文献   

6.
Understanding the processes that occur in the transition from the Pacific Ocean to Eurasia is key to constructing the tectonic models of the Earth’s shells and the convection models of the upper mantle. The electromagnetic methods permit estimating the temperature and fluid content (and/or carbon (graphite) content) in the Earth’s interior. These estimates are independent of the traditionally used estimates based on seismic methods because the dependence of electrical conductivity on the physical properties of the rock is based on different principles than the behavior of the elastic waves. The region is characterized by a complicated geological structure with intense three-dimensional (3D) surface heterogeneities, which significantly aggravate the retrieval of the information about the deep horizons in the structure of the Earth’s mantle from the observed electromagnetic (EM) fields. The detailed analysis of the nature of the deep electrical conductivity and structural features of the transition from the Pacific to Eurasia included numerical modeling of the typical two- and three-dimensional models has been carried out. Based on this analysis, the approaches that increase the reliability of the interpretation of the results of the EM studies are suggested.  相似文献   

7.
A procedure is suggested of a more effective and faster computation of the impedance, the transfer function and amplitudes of the induced field in a spherically symmetric model of the electrical conductivity. The existing induction data have been supplemented by about 80 new values derived from the analysis of daily means. The fit of the existing 1-D models of the electrical conductivity of the mantle to the set of induction data is investigated. The characteristic equation for the free electromagnetic oscillations of a radially inhomogeneous Earth is derived and its possible importance in solving the inverse problem of electric conductivity is pointed out.  相似文献   

8.
地磁测深研究的周期范围通常为10~5~10~7s,缺少反映浅部电性结构的短周期信息,而C-响应受浅部电阻率影响明显,因此本文提出在反演中增加浅部(约200 km)电阻率约束以提高深部反演的稳定性和可靠性.在磁层环状电流满足P_1~0假设的条件下,球坐标系中一维导电薄球层状地球的C-响应和电导率分布关系由边界条件通过递推的方法计算得到.反演采用有限内存拟牛顿(L-BFGS)法;浅部电阻率约束通过将目标函数对模型参数的梯度设为零来实现;通过置信区间分析评价约束反演结果的可靠性.合成数据的无约束反演虽然最终的拟合效果很好,但浅部电阻率受初始模型影响,差异较大;采用浅部约束后,反演结果对初始模型依赖性明显减小,同时还能显著提高200~600 km范围内反演结果的准确性.对全球近地轨道卫星观测的C-响应数据约束反演后结果与前人一致,表现为地幔电导率整体上随着深度的增加而增加.参数置信区间分析表明,由于约束反演加入了浅部信息,电阻率的变化范围更加紧致,说明反演结果更加可靠.因此,有必要通过其他地球物理方法,如长周期大地电磁测深等获得浅部电阻率分布,作为先验信息参加反演,进行浅部约束的C-响应反演,获得更可靠的一维全深度电性结构,为地磁测深数据解释奠定基础.  相似文献   

9.
The results of synchronous observations of the electric field on the shallow crustal layers of the Earth’s crust and the microseismic vibrations are presented. On the basis of the coincidence of the statistics of the electric and microseismic pulses of the relaxation type, and, also, the fact that the indicated pulses accompany each other, the conclusion is reached about the unique source of both pulses. The constrained rotation of the structural block during its relaxation is considered as such a source. A mechanism is proposed for the generation of electromagnetic signals, connected with the separation of electric charges as a result of the rapid change in the stress-strain state of the rocks of a complex hierarchic-block structure. A model developed by the authors, for the generation of electromagnetic signals during the relaxation processes in the Earth’s crust of a heterogeneous structure, is presented.  相似文献   

10.
Writing the angular momentum theorem for the Earth and for its fluid core, we show that there are couplings between the core and the mantle induced by viscomagnetic torque, by external active torque, by topographic torque acting at the core-mantle boundary (CMB) but also by viscoelastic deformations of the CMB which may perturb the axial rotations of the Earth and of the core. We compute these deformations at the CMB induced by the Pleistocenic deglaciation. The time-dependence of inertia tensor perturbations, i.e. the rheology of the mantle, is very important in the calculation of the coupling. Taking into account the passive viscomagnetic torque of tangential traction acting at the CMB, we investigate, for different values and various temporal evolutions of the topographic torque, the perturbations in the rotations of the Earth and of the core induced by the deglaciation, by the constant torque of tidal friction and by the 18.6 year tidal potential. We show that, for these excitation sources, the existence of a constant topographic torque involves the core oscillating with respect to the mantle and thus forbids any large drift of the core with respect to the mantle. However, it seems theoretically possible to have an excitation source with enough energy which involves a shift of the core with respect to the mantle. If the pressure within the fluid core varies with time, the motion of the core with respect to the mantle could be drastically different.  相似文献   

11.
横向黏度变化的全地幔对流应力场初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
朱涛 《地震学报》2011,33(5):582-594
将地幔地震波速度异常转换为地幔横向黏度变化(达到3个数量级),在球坐标系下计算了瑞雷数为106、上边界为刚性、下边界为应力自由等温边界条件下的岩石层底部的地幔对流极型和环型应力场.结果表明,地幔对流极型应力场与地表大尺度构造具有良好的对应关系:俯冲带和碰撞带的应力呈现挤压状态,而洋中脊处的应力则呈现拉张状态.地幔对流环...  相似文献   

12.
This paper tries to formulate the C-response of geomagnetic depth sounding(GDS)on an Earth model with finite electrical conductivity. The computation is performed in a spherical coordinate system. The Earth is divided into a series of thin spherical shells. The source is approximated by a single spherical harmonic P10 due to the spatial structure of electrical currents in the magnetosphere. The whole solution space is separated into inner and external parts by the Earth surface. Omitting displacement current, the magnetic field in the external space obeys Laplacian equation, while in the inner part, due to the finite conductivity, the electromagnetic fields obey Helmholtz equation. To connect the magnetic fields in the inner and external space, the continuity condition of magnetic fields is used on the Earth surface. The external magnetic fields are expressed by the inner and external source coefficients, from which a new parameter called C-response is computed from the inner coefficient divided by the external coefficient, thus normalizing the actual source strength. The inner magnetic fields in each layer can be recursively derived by the continuity boundary condition of both normal and tangential components of the magnetic field from the initial boundary condition at core-mantle-boundary. The consistency of our C-responses with that from a typical 1-D global model validates the accuracy of the proposed algorithm. Numerical results also show that the C-response estimated from the geomagnetic transfer function method will deviate exceeding 5%from the actual response at longer periods than about 106s, which means that ignoring the curvature of the Earth at extreme long periods will make inversion result unreliable. Therefore, an accurate C-response should be computed in order to lay a solid foundation for reliable inversion.  相似文献   

13.
One of the significant problems of modern deep magnetotellurics is the recognition of anisotropy in the crustal and mantle conductive zones. In the paper we perform numerical experiment comparing several 2D models of crustal and mantle isotropic and anisotropic prismatic conductors. Anisotropy is modeled by alternating horizontal or vertical thin layers of different resistivities (the vertical layers are parallel to the prism strike). Using these models, we examine conditions under which the magnetotelluric and magnetovariational response functions distinguish between isotropy and anisotropy. The resolution of MT and MV studies depends on the sediments conductance, lithosphere resistance and deep conductor width. Calculations show that the most favorable conditions for anisotropy studies are observed in the active regions characterized by small sediments conductance (10–20 S) and moderate lithosphere resistance (108 Ohm·m2). However, in the stable regions, where sediments conductance exceeds 50–100 S and the lithosphere resistance comes up to 109 Ohm·m2, the crustal and mantle anisotropic and isotropic conductors manifest themselves in the equivalent magnetotelluric and magnetovariational functions, which cannot distinguish between anisotropy and isotropy and admit both the interpretations.  相似文献   

14.
The differential axial and equatorial rotations of both cores associated with the Quaternary glacial cycles were evaluated based on a realistic earth model in density and elastic structures. The rheological model is composed of compressible Maxwell viscoelastic mantle, inviscid outer core and incompressible Maxwell viscoelastic inner core. The present study is, however, preliminary because I assume a rigid rotation for the fluid outer core. In models with no frictional torques at the boundaries of the outer core, the maximum magnitude of the predicted axial rotations of the outer and inner cores amounts to ∼2° year−1 and ∼1° year−1, respectively, but that for the secular equatorial rotations of both cores is ∼0.0001° at most. However, oscillating parts with a period of ∼225 years are predicted in the equatorial rotations for both cores. Then, I evaluated the differential rotations by adopting a time-dependent electromagnetic (EM) torque as a possible coupling mechanism at the core-mantle boundary (CMB) and inner core boundary (ICB). In a realistic radial magnetic field at the CMB estimated from surface magnetic field, the axial and equatorial rotations couple through frictional torques at the CMB, although these rotations decouple for dipole magnetic field model. The differential rotations were evaluated for conductivity models with a conductance of 108 S of the lowermost mantle inferred from studies of nutation and precession of the Earth and decadal variations of length of day (LOD). The secular parts of equatorial rotations are less sensitive to these parameters, but the magnitude for the axial rotations is much smaller than for frictionless model. These models, however, produce oscillating parts in the equatorial rotations of both cores and also in the axial rotations of the whole Earth and outer and inner cores. These oscillations are sensitive to both the magnitude of radial magnetic field at the CMB and the conductivity structure. No sharp isolated spectral peaks are predicted for models with a thin conductive layer (∼200 m) at the bottom of the mantle. In models with a conductive layer of ∼100 km thickness, however, sharp spectral peaks are predicted at periods of ∼225 and ∼25 years for equatorial and axial rotations, respectively, although these depend on the strength of radial magnetic field at the CMB. While the present study is preliminary in modelling the fluid outer core and coupling mechanism at the CMB, the predicted axial rotations of the whole Earth may be important in explaining the observed LOD through interaction between the equatorial and axial rotations.  相似文献   

15.
The following general question is addressed: what can be learned about a planetary interior from measurements of the global planetary magnetic field at (or near) its surface? The discussion is placed in the context of Earth, for clarity, but the considerations apply to terrestrial planets in general (so long as the observed magnetism is either predominantly of internal origin, or else external source effects can be successfully filtered out of the observations). Attention is given to the idealized but typical situation of a rotating but spherically symmetric planet containing a highly conducting uniform fluid core surrounded by a nearly insulating rigid mantle, whose conductivity, a function of at most radius only, falls monotonically from its largest value at the base of the planetary mantle to zero at the planetary surface; the largest value of mantle conductivity as well as the mean value for the whole mantle and the mantle conductance are assumed small compared to the corresponding values of the core. Exterior to the planet is vacuum in the sense of an electrically uncharged insulator. The core fluid is inviscid, Boussinesq and gravitationally driven.Complete and perfect observations of either the instantaneous internal vector magnetic field together with its secular variation at a single epoch, or more realistically, the instantaneous internal vector magnetic field alone at two separated epochs are presumed available; the time separation between measurement epochs is long compared the Ohmic diffusion time of the planetary mantle, but small compared to that of the liquid core.Under such circumstances we describe how information about each of the following planetary properties can, in principle (though not without practical difficulty) be retrieved from the observations: (1) depth of the core-mantle boundary (a result of Hide); (2) depth to the current and motion sources responsible for the planetary dynamo; (3) presence or absence of small-scale turbulence in the upper reaches of the core; (4) large-scale horizontal fluid motion at the top of the core; (5) strength of horizontal currents, zonal magnetic fields, Coriolis and Lorentz forces at the top of the core; and (6) current system in the mantle and strength of electromagnetic core-mantle coupling.  相似文献   

16.
把磁场观测数据向导电区域延拓,是地球电磁学的经典问题之一.从准静态近似和非零矢势规范的电磁场方程出发,依据矢量的球面分解唯一性定理,本文建立支配三维非均匀电寻率分布全球地慢中的环型场、极型场和电位势场的耦合方程组烤虑地球深部研究对认识全球地幔非均匀性横向变化尺度的限制,提出横向缓变意义下三维非均匀地幔中电场和磁场的摄动理论,其零级近似不要求电导率分布一维球对称.作为零级近似可解的例证,研究了地幔深源极型场的反扩散问题,在利用地面磁场观测反演到核幔边界时,可以考虑地幄横向非均匀性影响.  相似文献   

17.
It is one of the classical problems in Earth′s electromagnetism that continuation of the observatory data of magnetic field into the conducting region. This paper built the coupling vector equations governing the poloidal, toroidal and potential fields in 3-D inhomogeneous conducting mantle. Considering the limitation on variable scale of inhomogeneities in global mantle from study of the Earth′s deep interior, a perturbation theory of gradually lateral variation was presented. It is unnecessary that the 1-D spherical symmetric distribution of electric conductivity as zero-degree approximation. Serving as a example of solvability of the zero-degree approximation, it was demonstrated how the gradually lateral variation of electric conductivity effect on anti-diffusive problem of poloidal field in Earth′s mantel.  相似文献   

18.
The geomagnetic field and secular variation exhibit asymmetrical spatial features which are possibly originating from an heterogeneous thermal control of the Earth's lower mantle on the core. The identification of this control in magnetic data is subject to several difficulties, some of which can be alleviated by the use of core surface flow models. Using numerical dynamos driven by heterogeneous boundary heat flux, we confirm that within the parameter space accessible to simulations, time average surface flows obey a simple thermal wind equilibrium between the Coriolis and buoyancy forces, the Lorentz, inertial and viscous forces playing only a secondary role, even for Elsasser numbers significantly larger than 1. Furthermore, we average the models over the duration of three vortex turnovers, and correlate them with a longer time average which fully reveals the signature of boundary heterogeneity. This allows us to quantify the possibility of observing mantle control in core surface flows averaged over a short time period. A scaling analysis is performed in order to apply the results to the Earth's core. We find that three vortex turnovers could represent between 100 and 360 years of Earth time, and that the heat flux heterogeneity at the core-mantle boundary could be large enough to yield an observable signature of thermal mantle control in a time average core surface flow within reach of the available geomagnetic data.  相似文献   

19.
Several aspects of core-mantle interactions were considered during a Royal Astronomical Society Discussion Meeting on 12th May 1989, including modelling the geomagnetic field at the core surface, the morphology of the field between 1600 and 1820 AD, dynamo theory, Taylor's constraint, fluid motions at the top of the core that reproduce the observed secular variation, pressure coupling between the core and mantle and its geophysical consequences, topographic core-mantle coupling, angular momentum transfer at the core-mantle interface, the detection and implications of core oscillations, particularly those with associated fluctuations in the Earth's rotation rate, and the seismological determination of the core-mantle boundary topography from lateral inhomogeneities in the mantle.  相似文献   

20.
IGRF在地磁研究中的应用   总被引:5,自引:5,他引:0       下载免费PDF全文
IGRF(国际地磁参考场)资料在地磁学的基础研究中得到广泛的应用.利用IGRF国内外学者研究了高斯分析、地球磁场模型及其源场可能位置、重磁关系、核幔耦合、地磁场能量、地球非偶极子磁场以及长期变化场的西向漂移等,研究了IGRF在我国地区的误差以及产生的原因.在研制中国地磁等值图中也得到某些应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号