首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation pathway for the oxidation of EDTA in the UV/H2O2-process was investigated. In absence of iron ions, the mineralization of EDTA is dominated by the reaction of the HO-radicals generated by the photolysis of H2O2. The organic degradation products iminodiacetate (IMDA), glycinate, oxamate, glyoxylate, oxalate and formate, and the inorganic degradation products carbon dioxide, ammonia, nitrate, nitrite, and cyanate were found. In the presence of iron ions, photolytic decarboxylation processes inside the complex get an important role during degradation, and the organic degradation products ethylenediaminetriacetate (ED3A), ethylenediaminediacetate (EDDA), ethylenediaminemonoacetate (EDMA) were also found. By combining product studies with balances of carbon and nitrogen, the degradation pathway in the UV/H2O2-process could be elucidated. The degradation of EDTA was fast (kdeg = 0.012 s–1), and no toxic degradation products were identified. Therefore, the process is well suited for the elimination of EDTA in water treatment.  相似文献   

2.
Hydrophilic xenobiotics can be eliminated in the UV/H2O2-process. The oxidation in this process is enhanced by the photolytically generated HO radicals. Bicarbonate is able to scavenge HO radicals. So it was expected that the degradation rates of the investigated xenobiotics were affected by the influence of bicarbonate. In contrast to the widely described decrease of the degradation rate, a much more complex situation was found in this investigation. The degradation rates of 2-amino-1-naphthalenesulfonate and diphenyl-4-sulfonate were decreased and reached for high concentrations of bicarbonate the values of the photolytical degradation rate. The degradation of 4,4′-diaminostilbene-2,2′-disulfonate was accelerated significantly in the presence of bicarbonate. The degradation rate of EDTA was increased at small concentrations of bicarbonate and decreased at higher concentrations.  相似文献   

3.
Bezafibrate (BZF), a widely used lipid regulator, is a potential threat to ecosystems and human health in water, and the recent research showed that advanced oxidation processes (AOPs) are much more effective for BZF degradation. In this study, we investigated the photochemical decomposition of BZF in surface water and effluent from waste water treatment plants (WWTP) by UV/H2O2 process. The results showed that the UV/H2O2 process was a promising method to remove BZF at low concentration, generally at µg L?1 level. When initial concentrations reach 100 µg L?1 in the deionized water, >99.8% of BZF could be removed in 16 min under UV intensity of 61.4 µm cm?2, at the H2O2 concentration of 0.1 mg L?1, and neutral pH condition. Moreover, BZF degradation was inhibited in this process when humic acid (HA) and inorganic solution anions were added to the deionized water solutions, including chloride, nitrate, bicarbonate, and sulfate, significantly. In the surface water and effluent of WWTP, however, the removal efficiency of BZF was lower than that in the deionized water because of the interference of complex constituents in the surface water and effluent. Some main intermediates at the m/z range of 100–400 were observed by high performance LC‐MS (HPLC/MS) and a simple pathway of BZF degradation by UV/H2O2 was proposed.  相似文献   

4.
The oxidation of organophosphorus pesticides (OPPs), such as malathion and parathion, in aqueous solution was studied using conventional ozonation (O3), photolytic ozonation (O3/UV, O3/UV/H2O2), and heterogeneous catalytic ozonation (O3/TiO2/UV) processes. Experiments were performed in batch mode at laboratory scale and processes were compared in terms of disappearance kinetics. The best results of pesticide mineralization were obtained when TiO2 particles in combination with ozone (O3) and UV photolysis (λ = 254 nm) were applied. Decomposition of 99% of parent compounds were achieved in 10 min and oxon derivatives were completely removed in 30 min. The initial reaction rate increases linearly with increasing catalyst amount. Toxicity measurements of the treated solutions were carried out in order to evaluate the efficiency of the treatment methods. No detoxification was achieved for O3 and O3/UV applications. Heterogeneous photocatalytic ozonation was shown to be feasible for achieving complete decomposition of OPPs and their oxon intermediates.  相似文献   

5.
The degradation of two pesticides: atrazine and metazachlor was investigated in aqueous solution under UV-irradiation with and without H2O2. Rate constants of the photochemical degradation were determined applying a first order kinetics and quantum yields of the processes were calculated. This approach leads to an apparent decrease of the quantum yield with increasing initial pesticide concentration. At low H2O2 initial concentrations, the pesticide degradation was shown to be much more efficient than the degradation under UV-irradiation only. However, at high H2O2 concentrations (>2 mmol L?1), the efficiency of the UV/H2O2 system dropped down and the quantum yields of degradation were lower than for the direct photolysis. In the absence of H2O2, no influence of the pH value on the photodegradation of the pesticides could be noticed in a range between pH 3 and pH 11. At low H2O2 initial concentrations, the photochemical degradation of the pesticides was much faster at pH 3 and pH 7 compared with the degradation at pH 11. The results emphasize the potential of optimized reaction conditions in advanced oxidation.  相似文献   

6.
The presence of acid pharmaceuticals in water environments poses a potential threat to ecosystems and human health. Recent research has shown that photo oxidation processes are much more effective for removing these pharmaceuticals. However, the existence of humic acid (HA) could inhibit the clearance efficiency of this process. In this study, we investigated the photochemical degradation of six selected acid pharmaceuticals in surface water and effluent from wastewater treatment plants using the UV/H2O2 process. The results showed that HA can act as a photo sensitizer or a . OH sink, and its concentration had a significant inhibitory effect on the degradation of acid pharmaceuticals. Most of these pharmaceuticals were inhibited during this process when HA was added to deionized water solutions. In addition, the effects of chloride, bicarbonate, and nitrate on the degradation of these pharmaceuticals were different. The removal efficiency of these acid pharmaceuticals is lower in natural samples than in deionized samples because of the complex constituents in the latter.  相似文献   

7.
The effect of extraordinary degradation of phenol organics on the SnO2‐Sb2O3/Ti electrode is investigated through experimental research and theoretical analysis. The phenol organics contained 4‐chloro‐phenol, 4‐bromo‐phenol, and 2‐iodo‐phenol. At a current density of 4 mA cm–2 and an electrolysis time of 12 h, the degradation efficiency of the phenols was over 98% with a relatively short degradation time, whereas the degradation time of the PbO2/Ti electrode surpassed 40 h while delivering 100% disposal efficiency. Therefore, the effectiveness of electrochemical (EC) oxidation by the SnO2‐Sb2O3/Ti was superior to that of the PbO2/Ti electrode. At the same time, the SnO2‐Sb2O3/Ti had higher oxygen generation potential and lower electron consumption than the other electrodes. This was mainly due to the effect of the middle Sb2O3 layer, which due to its high porosity and good catalytic effect, contributed to a better catalysis than the SnO2 part.  相似文献   

8.
In this work, the treatment of actual agro‐industrial wastewaters (IWW) by a UV/H2O2 process has been investigated. The aqueous wastes were received from industrial olive oil mills and then treated by laboratory scale physicochemical methods, i. e., coagulation using ferrous and aluminum sulfate, decantation, filtration and adsorption on activated carbon. These wastes are brown colored effluents and have a residual chemical oxygen demand (COD) in the range of 1800 to 3500 mgO2 L–1, which cannot be further eliminated with physicochemical processes. The UV/H2O2 treatments were carried out under monochromatic irradiation at 254 nm using a thermostated reactor equipped with a mercury vapor lamp located in an axial position. The effects of initial H2O2 concentration, initial COD, pH and temperature have been studied in order to determine the optimum conditions for maximum color and COD removals. The experimental results reveal the suitability of the UV/H2O2 process for both removal of high levels of COD and effectively decolorizing the solution. In particular, 95% of color removal and 90% of COD removal were obtained under conditions of pH = 5 and 32°C using 2.75 g H2O2 g–1 COD L–1 during 6 h of UV‐irradiation. The treatment is unaffected by pH over the range 2 to 9. In addition, the COD removal is improved by increasing the temperature, whereas the color removal has not been affected by this parameter. The results show that the hydroxyl radicals generated from the catalytic decomposition of H2O2 by UV‐irradiation of the solution could be successfully used to mineralize the organics contained in IWW. The mineralization of the organics seems to occur in three main sequential steps: the first is the rapid decomposition of tannins leading to aromatic compounds, which are confirmed by the decolorization of the IWW; the second step corresponds to the oxidation of aromatics leading to aliphatic intermediates, which occurs by the cleavage of an aromatic ring, and is established by the removal of aromatics, and the final step is the slow oxidation of the aliphatic intermediates, which is measured by the COD removal.  相似文献   

9.
Response surface methodology (RSM) and artificial neural networks (ANNs) based on a multivariate central composite design (CCD) were applied to model and optimize the photocatalytic degradation of N,N‐diethyl‐m‐toluamide (DEET). The individual and interaction effects of three main operating factors (mass of TiO2, initial DEET concentration, and irradiation intensity) on process efficiency were estimated, proving their important effect on % DEET removal. Among the independent variables, TiO2 concentration displayed the highest effect on DEET degradation followed by initial DEET concentration and UV intensity. The optimization and prediction capabilities of ANNs and RSM were compared on the basis of root mean squared error, mean absolute error, absolute average deviation, and correlation coefficient values. Results proved the usefulness and capability of the experimental design strategy for successful investigation and modeling of the photocatalytic process. Moreover, the selected ANN gave better estimation capabilities throughout the range of variables than RSM. Based on the models and the related experimental conditions, the optimal values of each parameter were determined. Under optimum conditions, DEET and total organic carbon (TOC) followed pseudo‐first order kinetics. Nearly complete degradation of DEET took place within 15 min whereas high TOC removal percentages (>85%) was achieved after 90 min irradiation time.  相似文献   

10.
In this study, bench‐scale experiments were conducted to examine the UV/H2O2 oxidation of 17α‐ethynyestradiol (EE2) in water in a batch operation mode. The EE2 degradation exhibited pseudo‐first‐order kinetics, and the removal was ascribed to the production of hydroxyl radicals (?OH) by the UV/H2O2 system. Typically, the EE2 oxidation rate increased with increasing UV intensity and H2O2 dose, and with deceasing initial EE2 levels and solution pH. At EE20 = 650 µg/L, UV intensity = 154 µW/cm2, H2O2 = 5 mg/L, and neutral pH, the UV/H2O2 treatment was able to remove 90% of the EE2 content within 30 min. Four anions commonly present in water were found to inhibit EE2 degradation to varying degrees: > > Cl? > . Our results demonstrate that the described UV/H2O2 process is an effective method to control EE2 pollution in water.  相似文献   

11.
The degradation reactions of two monoazo pigments, namely, Red 53:1 and Red 48:2, by Fenton, photo‐Fenton and UV/H2O2 systems have been studied. The efficiencies of the Fenton reactions increased with temperature, but the formation of solid agglomerates was observed when the reactions were carried out above 50°C indicating a coagulant action of Fe+2 or Fe+3. Photo‐Fenton reactions irradiated by sunlight presented the best rate constants for cleavage of the azo bond and the naphthalene rings. The UV/H2O2 system exhibited the highest efficiency with respect to the consumption of H2O2. The presence of a carbonyl group in the ortho position of the naphthol ring hampered the oxidation of pigment Red 48:2 by hydroxyl radicals. This finding may be explained in terms of the acceptor character of the COOH group, and suggests the formation of a complex containing two six‐membered rings between Fe+3 and the pigment molecule.  相似文献   

12.
Degradations of reactive brilliant red X‐3B solution by both conventional UV irradiation and microwave electrodeless UV irradiation were investigated. Degradation processes were studied by UV–VIS spectrophotometry, total organic carbon (TOC), high performance capillary electrophoresis (HPCE), conductivity, pH value, and ion chromatography. The results of color removal (%) and TOC removal (%) showed that the degradation by microwave electrodeless UV irradiation was more effective than by conventional UV irradiation. The results of UV–VIS absorption spectra and HPCE analyses indicated that the degradation of reactive brilliant red X‐3B was occurred at the conjugation system first, the benzene ring and the naphthalene ring later. The reactive brilliant red X‐3B was cleaved into some new small compounds and eventually most of the organic substances were mineralized to CO2 and H2O. The results of the conductivity analysis suggested that the degradation has mainly occurred in the first 40 min of reaction. The pH value of reactive brilliant red X‐3B solution was decreased first and then was increased. The results of inorganic anions analysis hinted that many of the N, Cl, and S elements from reactive brilliant red X‐3B were still attached in organic molecules.  相似文献   

13.
The influence of humic substances (HS) on the biodegradation of naphthalene, phenanthrene, and pyrene was studied. As a source of HS, water samples of a bog lake (Hohlohsee) were used. PAH degradation experiments, both in the presence and absence of HS were carried out. All investigated PAHs were degradable by the used bacterial mixed culture. A correlation between the number of aromatic rings of the PAHs and the influence of HS on biodegradation has been shown. Adding of HS led to a decrease in degradation rate in the case of naphthalene. By way of contrast, the presence of HS gave rise to an increase of degradation rate in the case of phenanthrene. The degradation processes of pyrene revealed a marked alteration in the presence of HS which could be deduced from the biochemical oxygen demand (t(1/2BODmax) values). With regard to the total turnover of the PAHs, there was no noticeable difference between degradation experiments with and without HS. Analyses of the HS after degradation experiments using liquid chromatography coupled with DOC detection (LC/OCD) verify that there was no formation of stable associations between HS and PAHs or their metabolites. The determination of the toxicity of the degradation media as luminescence inhibition against Vibrio fischeri (Photobacterium phosphoreum) showed no detoxification as a result of the presence of HS.  相似文献   

14.
The decomposition of dichloroacetic acid (DCAA) in water using a UV/H2O2/micro‐aeration process was investigated in this paper. DCAA cannot be removed by UV radiation, H2O2 oxidation or micro‐aeration alone, while UV/H2O2/micro‐aeration combination processes have proved effective and can degrade this compound completely. With initial concentrations of about 110 μg/L, more than 95.1% of DCAA can be removed in 180 min under UV intensity of 1048.7 μW/cm2, H2O2 dosage of 30 mg/L and micro‐aeration flow rate of 2 L/min. However, more than 30 μg/L of DCAA was left after 180 min by UV/H2O2 combination process without micro‐aeration with the same UV intensity and H2O2 dosage. The effects of applied UV radiation intensity, H2O2 dose, initial DCAA concentration and pH on the degradation of DCAA have been examined in this study. Degradation mechanisms of DCAA with hydroxyl radical oxidation have been discussed. The removal rate of DCAA was sensitive to operational parameters. There was a linear relationship between rate constant k and UV intensity and initial H2O2 concentration, which indicated that a higher removal capacity can be achieved by improvement of both factors. A newly found nitrogenous disinfection by‐product (N‐DBP)‐DCAcAm, which has the potential to form DCAA, was easier to remove than DCAA by UV/H2O2 and UV/H2O2/micro‐aeration processes. Finally, a preliminary cost comparison revealed that the UV/H2O2/micro‐aeration process was more cost‐effective than the UV/H2O2 process in the removal of DCAA from drinking water.  相似文献   

15.
Two main routes of methods for the preparation of photocatalytic active titanium dioxide films on glass substrates were investigated: (1) the use of titanium dioxide powder and (2) the in situ generation of the catalyst via hydrolysis of titanium tetraisopropoxide (TTIP) or TiCl4. The activities of the catalyst films were evaluated by measuring the degradation of dichloroacetic acid (DCA), clofibric acid, and terbuthylazine used as model organic compounds. The concentration decrease of DCA and the concentration increase of chloride ions as the decomposition product allowed to distinguish between photocatalytic degradation of DCA and adsorption onto the TiO2 films. Furthermore, TiO2 films of the commercially available materials P25 (Degussa) and Hombikat UV100 (Sachtleben Chemie) were used to investigate whether there was a difference in the degradation pathways of terbuthylazine as a model compound. For the experiments mini flow‐through reactors were constructed. The investigated immobilization techniques were easy to handle without need of any expensive equipment. All TiO2 coatings showed good photocatalytic activities and mechanical stabilities with efficient long‐term stabilities. The best immobilization reproducibility was achieved by the spray coating technique and by the in situ method with the dipping sol‐gel process starting by TTIP. During the continuous use of the TiO2 films no TiO2 particles were found in the irradiated solutions.  相似文献   

16.
The inactivation of enzymes is of great interest for many industrial applications. The effectiveness of photoinactivation of alpha‐amylase, catalase, and urease with 222 nm radiation was investigated in comparison to that at 254 nm. The enzymes were irradiated with different fluence rates of 222 nm radiation emitted by a KrCl‐excimer lamp and with 254 nm radiation produced by a low‐pressure mercury lamp. The relative activities were calculated before and after irradiation. Degradation caused by UV‐radiation was assessed by SDS‐PAGE analysis. The results clearly demonstrated that inactivation of the proteins is much more effective with the 222 nm excimer lamp compared to the 254 nm mercury lamp. Irradiation with the excimer lamp and a UV‐fluence rate of 1000 J/m2 was sufficient to reduce the relative activities of amylase and urease to 15% and that of catalase to 60%. After irradiation with 4000 J/m2, the enzyme activity was almost completely inhibited. In contrast, after irradiation with the mercury lamp with an UV‐fluence rate of 4000 J/m2, the relative activity was still above 85%. The gel patterns showed no visible degradation after irradiation at 254 nm, but a strong and unspecific degradation was obvious after treatment at 222 nm, presumably caused by cleavage of the peptide bonds.  相似文献   

17.
Ag‐modified TiO2 nanotube arrays (Ag/TiO2 NAs) were prepared and employed as a photocatalyst for degradation of 17α‐ethinylestradiol (EE2) and inactivation of Escherichia coli. The as‐synthesized Ag/TiO2 NAs were characterized by field‐emission scanning electron microscope (FESEM), X‐ray diffraction (XRD), and X‐ray photoelectron spectroscopy (XPS). It was found that metallic Ag nanoparticles were firmly deposited on the TiO2 NAs with the pore diameter of 100 nm and the length of 550 nm. Photocatalytic degradation of EE2 and inactivation of E. coli were enhanced effectively in an analogical trend using Ag/TiO2 NAs. In particular, Ag/TiO2 NAs exhibited the antimicrobial activity even in the absence of light. The Ag acted as a disinfection agent as well as the dopant of the modified TiO2 NAs photocatalysis by forming a Schottky barrier on the surface of TiO2 NAs. Inorganic ions suppressed the rates of photocatalytic degradation of EE2, with HCO having a more pronounced effect than NO or SO. Humic acid (HA) was found to increase the rate of EE2 degradation.  相似文献   

18.
Photooxidation degradation of Reactive Brilliant Red K‐2BP (K‐2BP) aqueous solution by ultraviolet irradiation/sodium hypochlorite (UV/NaClO) was investigated. The effects of NaClO dosage, pH, temperature and initial dye concentrations were studied. A possible degradation pathway of K‐2BP was investigated. Acidic or neutral conditions were beneficial to the decolorization of K‐2BP aqueous solution. However, alkaline conditions facilitated chemical oxygen demand (COD) removal. Increasing the solution temperature from 20 to 50°C increased the removal of color and COD. However, at 60°C, the final percentage color and COD removal decreased by approximately 17 and 10%, respectively. Based on the products indentified and theoretical analysis, N=N cleavage and C‐N cleavage were possible initial steps in the degradation of K‐2BP. From the results of this work, we conclude that treatment of UV/NaClO is an efficient method to degrade K‐2BP in aqueous solution.  相似文献   

19.
This study illustrates the degradation of an azo dye, Reactive Yellow 81 (RY81), by the combined irradiation of UV‐C and ultrasound in the presence of homogeneous (Fe2+) and heterogeneous (TiO2, ZnO) catalysts. The efficiency of homogeneous and heterogeneous oxidation systems was evaluated in regard of the decolorization and mineralization of RY81. Decolorization followed pseudo‐first‐order kinetics with homogeneous and heterogeneous catalysts. Complete color removal was accomplished by homogeneous sonocatalytic and sonophotocatalytic oxidation processes with apparent rate constants of 0.96 × 10?3 and 46.77 × 10?3 s?1, respectively, in the presence of Fe2+. However, partial color removal was obtained by heterogeneous sonocatalytic, photocatalytic, and sonophotocatalytic oxidation processes with apparent rate constants of 2.32 × 10?3, 3.60 × 10?3, and 3.67 × 10?3 s?1, respectively, in the presence of ZnO. TiO2 had the worst catalytic effect of all of the oxidation processes. The addition of hydrogen peroxide increased the rate constants of the heterogeneous oxidation processes and decreased the rate constants of the homogeneous oxidation processes. RY81 mineralization was 62.8% for the US/UV/Fe2+ homogeneous oxidation process, which was the best oxidation process, whereas it was 43.5% for the US/UV/ZnO/H2O2 heterogeneous oxidation process within 2 h reaction time.  相似文献   

20.
The degradation of dissolved organic matter (DOM) was studied in alkaline solution. The products were characterised using UV/vis spectroscopy, size‐exclusion chromatography (SEC), and by the analysis of low‐molecular‐weight organic acids (LMWOA). The degradation experiments were performed with water from a brown water lake or its isolated fulvic acid fraction and sodium hydroxide at different reaction times and temperatures. Depending on the wavelength and the reaction time, the UV/vis absorbance between 230 nm and 600 nm increased or decreased. The behaviour of model compounds during reactions in alkaline media was compared to the UV/vis spectroscopic behaviour of DOM. The release of LMWOA was described by kinetic data and compared to the data of model reactions. Evidence was given for the carboxylic esters playing a significant role in the release of LMWOA only during the beginning of the alkaline degradation. The results gained by SEC with on‐line UV and DOC detection showed that the average size of DOM was decreasing, and that a major part of the degradation products consisted of low‐molecular‐weight mono‐ and dicarboxylic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号