首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 740 毫秒
1.
Iron isotopes, together with mineral elemental compositions of spinel peridotite xenoliths and clinopyroxenites from Hannuoba and Hebi Cenozoic alkaline basalts, were analyzed to investigate iron isotopic features of the lithospheric mantle beneath the North China Craton. The results show that the Hannuoba spinel peridotite xenoliths have small but distinguishable Fe isotopic variations. Overall variations in δ57Fe are in a range of −0.25 to 0.14‰ for olivine, −0.17 to 0.17‰ for orthopyroxene, −0.21 to 0.27‰ for clinopyroxene, and −0.16 to 0.26‰ for spinel, respectively. Clinopyroxene has the heaviest iron isotopic ratio and olivine the lightest within individual sample. No clear linear relationships between the mineral pairs on “δ-δ” plot suggest that iron isotopes of mineral separates analyzed have been affected largely by some open system processes. The broadly negative correlations between mineral iron isotopes and metasomatic indexes such as spinel Cr#, (La/Yb)N ratios of clinopyroxenes suggest that iron isotopic variations in different minerals and peridotites were probably produced by mantle metasomatism. The Hebi phlogopite-bearing lherzolite, which is significantly modified by metasomatic events, appears to be much heavier isotopically than clinopyroxene-poor lherzolite. This study further confirms previous conclusions that the lithospheric mantle has distinguishable and heterogeneous iron isotopic variations at the xenoliths scale. Mantle metasomatism is the most likely cause for the iron isotope variations in mantle peridotites.  相似文献   

2.
本文对华北克拉通三个不同地区(河北汉诺坝、内蒙古集宁三义堂、河南鹤壁)新发现的含金云母尖晶石二辉橄榄岩和尖晶石橄榄单斜辉石岩捕虏体进行了详细的矿物组成、单斜辉石的微量元素和 Sr-Nd 同位素研究。通过与相同地区不含金云母尖晶石二辉橄榄岩捕虏体的系统对比发现通常含金云母的地幔橄榄岩比不含金云母的地幔橄榄岩岩富 Al_2O_3、CaO、NaO、K_2O、TiO_2,但相对贫镁;其单斜辉石的 LREE 更为富集,但 Sr、Nd 同位素组成则相对亏损。这说明地幔交代作用不仅能够造成地幔橄榄岩的玄武质组分和稀土元素的富集,而且亦能够造成全岩和橄榄石 Mg~#的降低和同位素组成的相对亏损。捕虏体的 Rb-Sr 等时线年龄暗示地幔交代作用发生在中、新生代;其交代熔体来源于软流圈。同时说明华北新生代岩石圈地慢普遍存在的主、微量元素和同位素组成类似于"大洋型"岩石圈地幔的特征很可能是岩石圈地幔橄榄岩与软流圈来源的熔体的大规模反应的结果,而非真正意义上的新增生的岩石圈地幔。  相似文献   

3.
With the aim to better understand the cause of the iron isotope heterogeneity of mantle-derived bulk peridotites, we compared the petrological, geochemical and iron isotope composition of four xenolith suites from different geodynamic settings; sub-arc mantle (Patagonia); subcontinental lithospheric mantle (Cameroon), oceanic mantle (Kerguelen) and cratonic mantle (South Africa). Although correlations were not easy to obtain and remain scattered because these rocks record successive geological events, those found between δ57Fe, Mg#, some major and trace element contents of rocks and minerals highlight the processes responsible for the Fe isotope heterogeneity. While partial melting processes only account for moderate Fe isotope variations in the mantle (<0.2 ‰, with bulk rock values yielding a range of δ57Fe ± 0.1 ‰ relative to IRMM-14), the main cause of Fe isotope heterogeneity is metasomatism (>0.9 ‰). The kinetic nature of rapid metasomatic exchanges between low viscosity melts/fluids and their wall-rocks peridotite in the mantle is the likely explanation for this large range. There are a variety of responses of Fe isotope signatures depending on the nature of the metasomatic processes, allowing for a more detailed study of metasomatism in the mantle with Fe isotopes. The current database on the iron isotope composition of peridotite xenoliths and mafic eruptive rocks highlights that most basalts have their main source deeper than the lithospheric mantle. Finally, it is concluded that due to a complex geological history, Fe isotope compositions of mantle xenoliths are too scattered to define a mean isotopic composition with enough accuracy to assess whether the bulk silicate Earth has a mean δ57Fe that is chondritic, or if it is ~0.1 ‰ above chondrites as initially proposed.  相似文献   

4.
位于安徽省境内的女山新生代碱性玄武岩中含有大量而且类型丰富的地幔橄榄岩包体,主要类型有尖晶石相、石榴石相、尖晶石-石榴子石过渡相二辉橄榄岩以及少量的方辉橄榄岩,其中部分尖晶石二辉橄榄岩样品中出现富含挥发分的角闪石、金云母和磷灰石。本文选择该区的尖晶石二辉橄榄岩和方辉橄榄岩包体进行了较为详细的岩石学、矿物学、地球化学研究工作。结果显示,除2个方辉橄榄岩表现难熔特征外,其它25件尖晶石相二辉橄榄岩均具有饱满的主量元素组成。二辉橄榄岩样品的Sr-Nd-Hf同位素均表现为亏损地幔的性质,不同于古老克拉通型难熔、富集的岩石圈地幔。富含挥发份交代矿物的出现以及轻稀土元素不同程度的富集,表明女山岩石圈地幔经历了较为强烈的交代作用,然而Re-Os同位素及PGE分析结果表明交代作用并没有显著改变Os同位素组成。二辉橄榄岩样品均具有较高的Os同位素组成,结合其饱满的主量元素组成,亏损的同位素特征,表明女山地区岩石圈地幔整体为新生岩石圈地幔。但1个方辉橄榄岩样品给出了较低的Os同位素比值0.1184,其Re亏损年龄为1.5Ga,它可能来自于软流圈中残留的古老难熔地幔。  相似文献   

5.
橄榄石是地幔橄榄岩和辉石岩的主要组成矿物,但也经常以斑晶和捕虏晶的形式出现在玄武质岩石中。结合近年来在地幔橄榄岩的主要元素(如Mg和Fe)组成特征以及Li、Mg和Fe稳定同位素地球化学方面的研究成果,重点对橄榄石的地球化学特征与华北克拉通岩石圈地幔演化过程之间的联系进行了讨论,旨在加深对华北克拉通岩石圈地幔演化过程的理解。现有研究表明:地幔橄榄岩中橄榄石的矿物学特征、元素和同位素地球化学组成能够很好地指示岩石圈地幔的特征及其演化过程,因而具有重要的意义。对于克拉通地区的地幔橄榄岩来说,橄榄石的Mg#通常可以指示岩石圈地幔的属性,古老、难熔的地幔橄榄岩中的橄榄石一般具有较高的Mg#(〉92),而新生的岩石圈地幔橄榄岩中的橄榄石则具有较低的Mg#(〈91)。因此,地幔橄榄岩中橄榄石的Mg#在一定程度上具有年龄意义。橄榄岩中橄榄石的Li、Mg和Fe同位素组成也可以明确指示岩石圈地幔的属性及其所经历的演化过程,正常地幔的δ7Li、δ26Mg和δ57Fe组成相对均一,如果上述同位素组成偏离正常地幔值,则说明岩石圈地幔经历了熔体/流体的交代作用。华北克拉通地区地幔橄榄岩捕虏体中橄榄石的Li、Mg和Fe同位素组成研究表明:该区的岩石圈地幔经历了多个阶段、不同来源的熔体/流体的改造过程。  相似文献   

6.
中国东部上地幔岩石相转变及其意义   总被引:2,自引:0,他引:2  
樊祺诚  隋建立 《地球科学》2009,34(3):387-391
中国东部新生代玄武岩和大别-苏鲁超高压变质带中的含石榴石相橄榄岩, 带来了发生在上地幔的尖晶石→石榴石相转变和铝辉石→贫铝辉石+石榴石的重要信息, 为中国东部上地幔岩石结构分层奠定了重要基础.通过岩石学与实验岩石学的研究, 推导出发生相转变的P-T条件, 为建立中国东部大陆上地幔岩石分层结构提供了重要约束.尖晶石二辉橄榄岩向石榴石二辉橄榄岩相转变发生在55~70km, 随着深度增加, 石榴石二辉橄榄岩从富铝石榴石二辉橄榄岩(70~120km) 转变为贫铝石榴石二辉橄榄岩(> 120~150km).   相似文献   

7.
The mineral chemistry, major and trace element, and Sr–Nd isotopic composition of Cr-diopside, spinel peridotite xenoliths from the Estancia Lote 17 locality in southern Patagonia document a strong carbonatitic metasomatism of the backarc continental lithosphere. The Lote 17 peridotite xenolith suite consists of hydrous spinel lherzolite, wehrlite, and olivine websterite, and anhydrous harzburgite and lherzolite. Two-pyroxene thermometry indicates equilibration temperatures ranging from 870 to 1015 °C and the lack of plagioclase or garnet suggests the xenoliths originated from between ˜40 and 60 km depth. All of the xenoliths are LILE- and LREE-enriched, but have relatively low 87Sr/86Sr (0.70294 to 0.70342) and high ɛNd (+3.0 to +6.6), indicating recent trace element enrichment (∼25 Ma, based on the low 87Sr/86Sr and high Rb concentrations of phlogopite separates) in the long-term, melt-depleted Patagonian lithosphere. Lote 17 peridotite xenoliths are divided into two basic groups. Group 1 xenoliths consist of fertile peridotites that contain hydrous phases (amphibole ± phlogopite ± apatite). Group 1 xenoliths are further subdivided into three groups (a, b, and c) based on distinctive textures and whole-rock chemistry. Group 1 xenolith mineralogy and chemistry are consistent with a complex metasomatic history involving variable extents of recent carbonatite metasomatism (high Ca/Al, Nb/La, Zr/Hf, low Ti/Eu) that has overprinted earlier metasomatic events. Group 2 xenoliths consist of infertile, anhydrous harzburgites and record cryptic metasomatism that is attributed to CO2-rich fluids liberated from Group 1 carbonatite metasomatic reactions. Extremely variable incompatible trace element ratios and depleted Sr–Nd isotopic compositions of Lote 17 peridotite xenoliths indicate that the continental lithosphere was neither the primary source nor an enriched lithospheric contaminant for Neogene Patagonian plateau lavas. Neogene plateau magmatism associated with formation of asthenospheric slab windows may have triggered this occurrence of “intraplate-type” carbonatite metasomatism in an active continental backarc setting. Received: 26 January 2000 / Accepted: 1 March 2000  相似文献   

8.
Li concentrations and isotopic compositions of coexisting minerals (ol, opx, and cpx) from peridotite xenoliths entrained in the Hannuoba Tertiary basalts, North China Craton, provide insight into Li isotopic fractionation between mantle minerals during melt-rock interaction in the considerably thinned lithospheric mantle. Bulk analyses of mineral separates show significant enrichment of Li in cpx (2.4-3.6 ppm) relative to olivine (1.2-1.8 ppm), indicating that these peridotites have been affected by mantle metasomatism with mafic silicate melts. Bulk olivine separates (δ7Li ∼ +3.3‰ to +6.4‰) are isotopically heavier than coexisting pyroxenes (δ7Li ∼ −3.3‰ to −8.2‰ in cpx, and −4.0‰ to −6.7‰ in opx). Such large variation suggests Li elemental and isotopic disequilibrium. This conclusion is supported by results from in situ SIMS analyses of mineral grains where significant Li elemental and isotopic zonations exist. The olivine and opx have lower Li concentrations and heavier Li isotopes in the rims than in the cores. This reverse correlation of δ7Li with Li concentrations indicates diffusive fractionation of Li isotopes. However, the zoning patterns in coexisting cpx show isotopically heavier rims with higher Li abundances. This positive correlation between δ7Li and Li concentrations suggests a melt mixing trend. We attribute Li concentration and isotope zonation in minerals to the effects of two-stage diffusive fractionation coupled with melt-rock interaction. The earliest melts may have been derived from the subducted oceanic slab with low δ7Li values produced by isotopic fractionation during the dehydration of the seawater-altered slab. Melts at later stages were derived from the asthenosphere and interacted with the peridotites, producing the Li elemental and isotopic zoning in mineral grains. These data thus provide evidence for multiple-stage peridotite-melt interaction in the lithospheric mantle beneath the northern North China Craton.  相似文献   

9.
首次报道了来自东北地区岩石圈地幔水含量的数据。通过对吉林龙岗和汪清新生代玄武岩中的橄榄岩包体矿物进行电子探针(EMP)和激光熔蚀等离子体质谱(LA-ICPMS)的分析,得到了矿物的主量元素和微量元素的数据,结果显示这些橄榄岩是原始地幔经历了不同程度部分熔融的残余,大部分样品的熔融程度可能<10%。橄榄岩样品在后期还经历了地幔交代作用,大部分样品受到硅酸岩熔体的交代,少部分样品受到碳酸岩熔体的交代。显微傅里叶变换红外光谱(FTIR)的分析结果显示,橄榄岩样品中的单斜辉石、斜方辉石均含有以结构羟基形式存在的水,而橄榄石中没有明显的羟基吸收峰。龙岗样品中单斜辉石的水含量为(48~464)×10-6(H2O, 质量分数),斜方辉石水含量为(28~104)×10-6;汪清样品中单斜辉石的水含量为(34~403)×10-6,斜方辉石的水含量为(13~89)×10-6;所有样品全岩水含量为(8~92)×10-6。样品的水含量可以代表龙岗和汪清地区岩石圈地幔的水含量信息,并且水含量变化范围较大,造成这种变化的原因可能是由于地幔源区初始水含量的不均一,以及部分熔融和地幔交代作用叠加的结果。  相似文献   

10.
阿尔山—柴河第四纪碱性玄武岩中地幔捕掳体为尖晶石相的二辉橄榄岩和方辉橄榄岩,方辉橄榄岩数量略多于二辉橄榄岩。采用激光剥蚀等离子体质谱(LA--ICP--MS)对研究区地幔橄榄岩中的单斜辉石和橄榄石等矿物进行了成分分析,结合橄榄岩包体的岩相学、岩石化学的特征,重点探讨了研究区所经历的部分熔融作用和地幔交代作用。结果显示,少数样品的熔融程度5%,大多数样品熔融程度范围为10%~20%,研究区陆下岩石圈地幔性质以难熔、亏损为主要特征。同时也经历了复杂的交代作用改造,交代介质为富挥发组分的硅酸盐熔/流体。与华北克拉通东北缘陆下岩石圈地幔比较,推测研究区遭受破坏和改造的程度较小,并保留有相当量的古老地幔残余。  相似文献   

11.
The abundances and isotopic compositions of Helium and Argon have been analyzed in a suite of fresh spinel peridotite xenoliths in Cenozoic basalts from the eastern North China Craton (NCC) by step-wise heating experiments, to investigate the nature of noble gas reservoirs in the subcontinental lithospheric mantle beneath this region. The xenoliths include one harzburgite collected from Hebi in the interior of the NCC, two lherzolites from Hannuoba at the northern margin of the craton, and three lherzolites from Shanwang and Nushan on the eastern margin. 3He/4He ratios in most of the xenoliths are similar to those of mid-ocean ridge basalts (MORB) or slightly lower (2–10.5 Ra, where Ra is the 3He/4He ratio of the atmosphere), suggesting mixing of MORB-like and radiogenic components. One olivine separate from Nushan has a helium value of 25.3 Ra, probably suggesting cosmogenic 3He addition. The 40Ar/36Ar ratios vary from atmospheric value (296) to 1625, significantly lower than the MORB value. Available data of the peridotite xenoliths indicate the He and Ar isotopic systematics of the mantle reservoirs beneath the NCC can be interpreted as mixtures of at least three end-members including MORB-like, radiogenic and atmospheric components. We suggest that the MORB-like noble gases were derived from the underlying asthenosphere during mantle upwelling, whereas the radiogenic and recycled components probably were incorporated into the lithospheric mantle during circum-craton subduction of oceanic crust. Available data suggest that the MORB-like fluids are better preserved in the interior of the NCC, whereas the radiogenic ones are more prevalent at the margins. The Paleo-Asian ocean subduction system probably was responsible for the enriched and recycled noble gas signatures on the northern margin of the craton, while the Pacific subduction system could account for the observed He–Ar isotopic signatures beneath the eastern part. Therefore, integration of helium and argon isotopes reflects heterogeneous metasomatism in the lithospheric mantle and demonstrates the critical importance of lithospheric mantle modification related to both circum-craton subduction of oceanic crust and asthenospheric upwelling beneath the eastern NCC.  相似文献   

12.
Despite the occurrence of highly variable lithium (Li) elemental distribution and isotopic fractionation in mantle mineral, the mechanism of Li heterogeneity and fractionation remains a controversial issue. We measured Li contents and isotopic compositions of olivine and clinopyroxene xenocrysts and phenocrysts from kamafugite host lavas, as well as minerals in melt pockets occurring as metasomatic products in peridotite xenoliths from the Western Qinling, central China. The olivine xenocrysts in the kamafugites show compositional zonation. The cores have high Mg# (100 × Mg/(Mg+Fe); 91.0–92.2) and Li abundances (5.63–21.7 ppm), low CaO contents (≤0.12 wt%) and low δ7Li values (−39.6 to −6.76‰), which overlap with the compositional ranges of the olivines in the melt pockets as well as those in peridotite xenoliths. The rims of the olivine xenocrysts display relatively low Mg# (85.9–88.2), high CaO contents (0.19–0.38 wt%) and high δ7Li values (18.3–26.9‰), which are comparable to the olivine phenocrysts (Mg#: 86.4–87.1; CaO: 0.20–0.28 wt%; Li: 12.4–36.8 ppm; δ7Li: 18.1–26.0‰) and the silicate-melt metasomatized olivines. The clinopyroxene phenocrysts and clinopyroxenes in the melt pockets have no distinct characteristics with respect to the Li abundances and δ7Li values, but show higher and lower CaO contents, respectively, than the clinopyroxenes from silicate and carbonatite metasomatized samples. These features indicate that Li concentration and isotopic signatures of the cores of the xenocrysts recorded carbonatite melt-peridotite reaction (carbonatite metasomatism) at mantle depth, and the variations in the rims probably resulted from xenocryst–host magma interaction during ascent. Our results reveal that the interaction with carbonatite and silicate melts gave rise to an increase in Li abundance in minerals of peridotite xenoliths at mantle depth or during transportation. In terms of δ7Li, the carbonatite and silicate melts produced remarkably contrasting δ7Li variations in olivine. Based on the systematic variations of Li abundances and Li isotopes in olivines, we suggest that the δ7Li value of olivine is a more important indicator than that of clinopyroxene in discriminating carbonatite and silicate melt interaction agents with peridotites.  相似文献   

13.
The pre‐pilot hole (PP1) of the Chinese Continental Scientific Drilling Project (CCSD) recovered drill core samples from a 118 m‐thick section of peridotites located at Zhimafang in the southern Sulu UHP terrane, China. The peridotites consist of phlogopite‐bearing garnet lherzolite, harzburgite, wehrlite and dunite. Some peridotite layers contain magnesite and Ti‐clinohumite, and are characterized by LREE and LILE enrichment and HFSE depletion. Phlogopite (Phl) occurs in the peridotite matrix and is LILE‐enriched with low Zr/Hf ratios (0.19–0.60). Phlogopite shows a mantle signature in H and O isotopes (δ18O: +5.4‰ to +5.9‰, and δD: ?76‰ to ?91‰). Ti‐clinohumite (Ti‐Chu) is Nb and Ta‐enriched and has higher Ti and HREE concentrations than phlogopite. Magnesite (Mgs) occurs as megacrysts, as a matrix phase, and as veins (±Phl ± Ti‐Chu), and contains low REEtotal contents (<0.3 ppm) with a flat REE pattern. The δ18O values (+5.5‰ to +8.0‰) of magnesite are in the range of primary carbonatite, but the δ13C values (?2.4‰ to ?3.4‰) are slightly more positive than those of the mantle and of primary carbonatite. Petrochemical data indicate that the Zhimafang peridotite was subjected to three episodes of metasomatism, listed in succession from oldest to youngest: (1) crystallization of phlogopite in the mantle caused by infiltration of K‐rich hydrous fluid/melt; (2) formation of Mgs and Mgs ± Phl ± Ti‐Chu veins possibly caused by infiltration of mantle‐derived carbonatitic melt with a hydrous silicate component; and (3) replacement of magnesite, garnet and diopside by dolomite and secondary hydrous phases caused by a crust‐related, CO2‐bearing, aqueous fluid. Stable isotopic compositions of phlogopite and magnesite indicate metasomatic agents for events (1) and (2) are from an enriched mantle. Multiple metasomatism imposed on mantle peridotite of variable composition led to significant compositional heterogeneity at all scales within the Zhimafang peridotite.  相似文献   

14.
Olivine in spinel peridotite xenoliths from the Bismarck Archipelago northeast of Papua New Guinea, which were transported to the surface by Quaternary basalts, shows spinel inclusions up to 25 μm long and 200 nm wide. These inclusions mainly occur as inhomogeneously distributed needles and subordinately as octahedral grains in olivine of veined metasomatic peridotites as well as peridotites without obvious metasomatism. The needles very often occur in swarms with irregular spacing in between them. Similar spinel inclusions in olivine have only previously been reported from ultramafites of meteoritic origin. Composition and orientation of the spinel inclusions were determined by transmission electron microscopy (TEM) and analytical electron microscopy (AEM). Both the needles and the grains display a uniform crystallographic orientation in the host olivine with [001]O1//[1ˉ10]Spl and (100)Ol// (111)Spl. The needles eare elongated parallel [010] in olivine, which is the same in all olivine grains. As these needles have no relation to the metasomatic sections in the peridotite, it is concluded that they are primary features of the rock. Although the composition of the spinel needles is often very similar to the large chromian spinel octahedra in the matrix, the small octahedral spinel inclusions in olivine are in part Mg-rich aluminous spinel and sometimes almost pure magnetite. The spinel needles are suggested to have formed by exsolution processes during cooling of Al- and Cr-rich, high-temperature olivine during the initial formation of the lithospheric mantle at the mid-ocean ridge. The Al-rich spinel octahedra probably formed by the breakdown of an Al-rich phase such as phlogopite or by metasomatism, whereas the magnetite was generated by oxidizing fluids. These oxidizing fluids may either have been set free by dehydration of the underlying, subducted plate or by the Quaternary magmatism responsible for the transport of the xenoliths to the seafloor. Received: 25 May 2000 / Accepted: 12 July 2000  相似文献   

15.
Interaction between basaltic melts and peridotites has played an important role in modifying the lithospheric and asthenospheric mantle during magma genesis in a number of tectonic settings. Compositions of basaltic melts vary considerably and may play an important role in controlling the kinetics of melt–peridotite interaction. To better understand the effect of melt composition on melt–peridotite interaction, we conducted spinel lherzolite dissolution experiments at 2 GPa and 1,425 °C using the dissolution couple method. The reacting melts include a basaltic andesite, a ferro-basalt, and an alkali basalt. Dissolution of lherzolite in the basaltic andesite and the ferro-basalt produced harzburgite–lherzolite sequences with a thin orthopyroxenite layer at the melt–harzburgite interface, whereas dissolution of lherzolite in the alkali basalt produced a dunite–harzburgite–lherzolite sequence. Systematic variations in mineral compositions across the lithological units are observed. These mineral compositional variations are attributed to grain-scale processes that involve dissolution, precipitation, and reprecipitation and depend strongly on reacting melt composition. Comparison of mineral compositional variations across the dissolution couples with those observed in mantle xenoliths from the North China Craton (NCC) helps to assess the spatial and temporal variations in the extent of siliceous melt and peridotite interaction in modifying the lithospheric mantle beneath the NCC. We found that such melt–rock interaction mainly took place in Early Cretaceous, and is responsible for the enrichment of pyroxene in the lithospheric mantle. Spatially, siliceous melt–peridotite interaction took place in the ancient orogens with thickened lower crust.  相似文献   

16.
We report mineralogical and chemical compositions of spinel peridotite xenoliths from two Tertiary alkali basalt localities on the Archean North China craton (Hannuoba, located in the central orogenic block, and Qixia, in the eastern block). The two peridotite suites have major element compositions that are indistinguishable from each other and reflect variable degrees (0–25%) of melt extraction from a primitive mantle source. Their compositions are markedly different from typical cratonic lithosphere, consistent with previous suggestions for removal of the Archean mantle lithosphere beneath this craton. Our previously published Os isotopic results for these samples [Earth Planet. Sci. Lett. 198 (2002) 307] show that lithosphere replacement occurred in the Paleoproterozoic beneath Hannuoba, but in the Phanerozoic beneath Qixia. Thus, we see no evidence for a compositional distinction between Proterozoic and Phanerozoic continental lithospheric mantle. The Hannuoba xenoliths equilibrated over a more extensive temperature (hence depth) interval than the Qixia xenoliths. Neither suite shows a correlation between equilibration temperature and major element composition, indicating that the lithosphere is not chemically stratified in either area. Trace element and Sr and Nd isotopic compositions of the Hannuoba xenoliths reflect recent metasomatic overprinting that is not related to the Tertiary magmatism in this area.  相似文献   

17.
Graphite-bearing peridotites, pyroxenites and eclogite xenoliths from the Kaapvaal craton of southern Africa and the Siberian craton, Russia, have been studied with the aim of: 1) better characterising the abundance and distribution of elemental carbon in the shallow continental lithospheric mantle; (2) determining the isotopic composition of the graphite; (3) testing for significant metastability of graphite in mantle rocks using mineral thermobarometry. Graphite crystals in peridotie, pyroxenite and eclogite xenoliths have X-ray diffraction patterns and Raman spectra characteristic of highly crystalline graphite of high-temperature origin and are interpreted to have crystallised within the mantle. Thermobarometry on the graphite-peridotite assemblages using a variety of element partitions and formulations yield estimated equilibration conditions that plot at lower temperatures and pressures than diamondiferous assemblages. Moreover, estimated pressures and temperatures for the graphite-peridotites fall almost exclusively within the experimentally determined graphite stability field and thus we find no evidence for substantial graphite metastability. The carbon isotopic composition of graphite in peridotites from this and other studies varies from δ13 CPDB = ? 12.3 to ? ?3.8%o with a mean of-6.7‰, σ=2.1 (n=22) and a mode between-7 and-6‰. This mean is within one standard deviation of the-4‰ mean displayed by diamonds from peridotite xenoliths, and is identical to that of diamonds containing peridotite-suite inclusions. The carbon isotope range of graphite and diamonds in peridotites is more restricted than that observed for either phase in eclogites or pyroxenites. The isotopic range displayed by peridotite-suite graphite and diamond encompasses the carbon isotope range observed in mid-ocean-ridge-basalt (MORB) glasses and ocean-island basalts (OIB). Similarity between the isotopic compositions of carbon associated with cratonic peridotites and the carbon (as CO2) in oceanic magmas (MORB/OIB) indicates that the source of the fluids that deposited carbon, as graphite or diamond, in catonic peridotites lies within the convecting mantle, below the lithosphere. Textural observations provide evidence that some of graphite in cratonic peridotites is of sub-solidus metasomatic origin, probably deposited from a cooling C-H-O fluid phase permeating the lithosphere along fractures. Macrocrystalline graphite of primary appearance has not been found in mantle xenoliths from kimberlitic or basaltic rocks erupted away from cratonic areas. Hence, graphite in mantle-derived xenoliths appears to be restricted to Archaean cratons and occurs exclusively in low-temperature, coarse peridotites thought to be characteristic of the lithospheric mantle. The tectonic association of graphite within the mantle is very similar to that of diamond. It is unlikely that this restricted occurrence is due solely to unique conditions of oxygen fugacity in the cratonic lithospheric mantle because some peridotite xenoliths from off-craton localities are as reduced as those from within cratons. Radiogenic isotope systematics of peridotite-suite diamond inclusions suggest that diamond crystallisation was not directly related to the melting events that formed lithospheric peridotites. However, some diamond (and graphite?) crystallisation in southern Africa occurred within the time span associated with the stabilisation of the lithospheric mantle (Pearson et al. 1993). The nature of the process causing localisation of carbon in cratonic mantle roots is not yet clearly understood.  相似文献   

18.
Anhydrous spinel lherzolite and harzburgite xenoliths from Tres Lagos, situated inboard of the Volcanic Arc Gap (VAG) in southernmost Patagonia, are samples of a depleted lithospheric mantle and can be divided into two major groups: metasomatized and non-metasomatized. Metasomatized samples, which are the minority, are partly mylonitized and their metasomatism is related to this tectonic process. A group of non-metasomatized samples have enriched whole rock LREE-abundances that are not consistent with the depleted LREE-abundances in their clinopyroxenes. Intergranular host basalt infiltration could be responsible for the whole rock LREE enrichments. Their Sr- and Nd-isotopic ratios have also been affected by host basalt infiltration, whereas their high Sr-isotopic ratios point to subsequent contamination by ground-water and/or Ca-rich surface solutions. Similar contamination is thought to cause the decoupling of Sr- and Nd-isotopes (high Sr- and Nd-isotopic ratios) observed in the non-metasomatized samples with depleted whole rock LREE. A two-stage partial melting process could be responsible for the origin of the Tres Lagos xenoliths. Model calculations have shown that in the first stage, 2% of batch melting took place in the garnet peridotite field and subsequently the residue experienced 2–8% batch melting in the spinel peridotite field. The Tres Lagos peridotites have not been affected by subduction-related metasomatic processes and they could represent an old lithospheric mantle.  相似文献   

19.
Mantle peridotites from the Western Pacific   总被引:1,自引:0,他引:1  
We review petrographical and petrological characteristics of mantle peridotite xenoliths from the Western Pacific to construct a petrologic model of the lithospheric mantle beneath the convergent plate boundary. The peridotite varies from highly depleted spinel harzburgite of low-pressure origin at the volcanic front of active arcs (Avacha of Kamchatka arc and Iraya of Luzon–Taiwan arc) to fertile spinel lherzolite of high-pressure origin at the Eurasian continental margin (from Sikhote-Alin through Korea to eastern China) through intermediate lherzolite–harzburgite at backarc side of Japan island arcs. Oxygen fugacity recorded by the peridotite xenoliths decreases from the frontal side of arc to the continental margin. The sub-arc type peridotite is expected to exist beneath the continental margin if accretion of island arc is one of the important processes for continental growth. Its absence suggests replacement by the continental lherzolite at the region of backarc to continental margin. Asthenospheric upwelling beneath the continental region, which has frequently occurred at the Western Pacific, has replaced depleted sub-cratonic peridotite with the fertile spinel lherzolite. Some of these mantle diapirs had opened backarc basins and strongly modified the lithospheric upper mantle by metasomatism and formation of Group II pyroxenites.  相似文献   

20.
The diamondiferous Letlhakane kimberlites are intruded into the Proterozoic Magondi Belt of Botswana. Given the general correlation of diamondiferous kimberlites with Archaean cratons, the apparent tectonic setting of these kimberlites is somewhat anomalous. Xenoliths in kimberlite diatremes provide a window into the underlying crust and upper mantle and, with the aid of detailed petrological and geochemical study, can help unravel problems of tectonic setting. To provide relevant data on the deep mantle under eastern Botswana we have studied peridotite xenoliths from the Letlhakane kimberlites. The mantle-derived xenolith suite at Letlhakane includes peridotites, pyroxenites, eclogites, megacrysts, MARID and glimmerite xenoliths. Peridotite xenoliths are represented by garnet-bearing harzburgites and lherzolites as well as spinel-bearing lherzolite xenoliths. Most peridotites are coarse, but some are intensely deformed. Both garnet harzburgites and garnet lherzolites are in many cases variably metasomatised and show the introduction of metasomatic phlogopite, clinopyroxene and ilmenite. The petrography and mineral chemistry of these xenoliths are comparable to that of peridotite xenoliths from the Kaapvaal craton. Calculated temperature-depth relations show a well-developed correlation between the textures of xenoliths and P-T conditions, with the highest temperatures and pressures calculated for the deformed xenoliths. This is comparable to xenoliths from the Kaapvaal craton. However, the P-T gap evident between low-T coarse peridotites and high-T deformed peridotites from the Kaapvaal craton is not seen in the Letlhakane xenoliths. The P-T data indicate the presence of lithospheric mantle beneath Letlhakane, which is at least 150 km thick and which had a 40mW/m2 continental geotherm at the time of pipe emplacement. The peridotite xenoliths were in internal Nd isotopic equilibrium at the time of pipe emplacement but a lherzolite xenolith with a relatively low calculated temperature of equilibration shows evidence for remnant isotopic disequilibrium. Both harzburgite and lherzolite xenoliths bear trace element and isotopic signatures of variously enriched mantle (low Sm/Nd, high Rb/Sr), stabilised in subcontinental lithosphere since the Archaean. It is therefore apparent that the Letlhakane kimberlites are underlain by old, cold and very thick lithosphere, probably related to the Zimbabwe craton. The eastern extremity of the Proterozoic Magondi Belt into which the kimberlites intrude is interpreted as a superficial feature not rooted in the mantle. Received: 19 March 1996 / Accepted: 16 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号