首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report Os isotope compositions of metal grains in two CBa chondrites (Bencubbin and Gujba) determined using a micromilling sampling coupled with thermal ionization mass spectrometry, together with the abundances of major and trace siderophile elements obtained by electron probe microanalysis and femtosecond laser ablation inductively coupled plasma–mass spectrometry. The CBa metal grains presented 187Os/188Os ratios akin to carbonaceous chondrites with limited variations (0.1257–0.1270). Most of the CBa metal grains were scattered along a 187Re-187Os reference isochron of IIIAB iron meteorites, indicating that the CBa metals experienced limited Re-Os fractionation at the time of their formation. The Re/Os ratios of sampling spots for the CBa metals, recast from the observed 187Os/188Os ratios, had a positive correlation with their Os/Ir ratios. In addition, the metal grains showed a positive correlation in a Pd/Fe versus Ni/Fe diagram. These correlations suggest that the CBa metal grains have formed via equilibrium condensation or evaporation from a gaseous reservoir at ~10−4 bar with enhanced metal abundances. Compared to the Bencubbin metals, the Gujba metals are characterized by having systematically lower Pd/Fe and Ni/Fe ratios that span subchondritic values. Such a difference was most likely induced by the compositionally heterogeneous impact plume from which the metals were condensed.  相似文献   

2.
The CB (Bencubbin-like) metal-rich carbonaceous chondrites are subdivided into the CBa and CBb subgroups. The CBa chondrites are composed predominantly of ~cm-sized skeletal olivine chondrules and unzoned Fe,Ni-metal ± troilite nodules. The CBb chondrites are finer grained than the CBas and consist of chemically zoned and unzoned Fe,Ni-metal grains, Fe,Ni-metal ± troilite nodules, cryptocrystalline and skeletal olivine chondrules, and rare refractory inclusions. Both subgroups contain exceptionally rare porphyritic chondrules and no interchondrule fine-grained matrix, and are interpreted as the products of a gas–melt impact plume formed by a high-velocity collision between differentiated planetesimals about 4562 Ma. The anomalous metal-rich carbonaceous chondrites, Fountain Hills and Sierra Gorda 013 (SG 013), have bulk oxygen isotopic compositions similar to those of other CBs but contain coarse-grained igneous clasts/porphyritic chondrule-like objects composed of olivine, low-Ca-pyroxene, and minor plagioclase and high-Ca pyroxene as well as barred olivine and skeletal olivine chondrules. Cryptocrystalline chondrules, zoned Fe,Ni-metal grains, and interchondrule fine-grained matrix are absent. In SG 013, Fe,Ni-metal (~80 vol%) occurs as several mm-sized nodules; magnesiochromite (Mg-chromite) is accessory; daubréelite and schreibersite are minor; troilite is absent. In Fountain Hills, Fe,Ni-metal (~25 vol%) is dispersed between chondrules and silicate clasts; chromite and sulfides are absent. In addition to a dominant chondritic lithology, SG 013 contains a chondrule-free lithology composed of Fe,Ni-metal nodules (~25 vol%), coarse-grained olivine and low-Ca pyroxene, interstitial high-Ca pyroxene and anorthitic plagioclase, and Mg-chromite. Here, we report on oxygen isotopic compositions of olivine, low-Ca pyroxene, and ±Mg-chromite in Fountain Hills and both lithologies of SG 013 measured in situ using an ion microprobe. Oxygen isotope compositions of olivine, low-Ca pyroxene, and Mg-chromite in these meteorites are similar to those of magnesian non-porphyritic chondrules in CBa and CBb chondrites: on a three-isotope oxygen diagram (δ17O vs. δ18O), they plot close to a slope-1 (primitive chondrule mineral) line and have a very narrow range of Δ17O (=δ17O–0.52 × δ18O) values, −2.5 ± 0.9‰ (avr ± 2SD). No isotopically distinct relict grains have been identified in porphyritic chondrule-like objects. We suggest that magnesian non-porphyritic (barred olivine, skeletal olivine, cryptocrystalline) chondrules in the CBas, CBbs, and porphyritic chondrule-like objects in SG 013 and Fountain Hills formed in different zones of the CB impact plume characterized by variable pressure, temperature, cooling rates, and redox conditions. The achondritic lithology in SG 013 represents fragments of one of the colliding bodies and therefore one of the CB chondrule precursors. Fountain Hills was subsequently modified by impact melting; Fe,Ni-metal and sulfides were partially lost during this process.  相似文献   

3.
Abstract— We report the results of an extensive study of the Fountain Hills chondritic meteorite. This meteorite is closely related to the CBa class. Mineral compositions and O‐isotopic ratios are indistinguishable from other members of this group. However, many features of Fountain Hills are distinct from the other CB chondrites. Fountain Hills contains 23 volume percent metal, significantly lower than other members of this class. In addition, Fountain Hills contains porphyritic chondrules, which are extremely rare in other CBa chondrites. Fountain Hills does not appear to have experienced the extensive shock seen in other CB chondrites. The chondrule textures and lack of fine‐grained matrix suggests that Fountain Hills formed in a dust‐poor region of the early solar system by melting of solid precursors. Refractory siderophiles and lithophile elements are present in near‐CI abundances (within a factor of two, related to the enhancement of metal). Moderately volatile and highly volatile elements are significantly depleted in Fountain Hills. The abundances of refractory siderophile trace elements in metal grains are consistent with condensation from a gas that is reduced relative to solar composition and at relatively high pressures (10?3bars). Fountain Hills experienced significant thermal metamorphism on its parent asteroid. Combining results from the chemical gradients in an isolated spinel grain with olivine‐spinel geothermometry suggests a peak temperature of metamorphism between 535 °C and 878 °C, similar to type‐4 ordinary chondrites.  相似文献   

4.
Abstract— Siderophile elements have been used to constrain projectile compositions in terrestrial and lunar impact melt rocks. To obtain a better knowledge of compositional differences between potential chondritic projectile types, meteorite analyses of the elements Ru, Rh, Pd, Os, Ir, Pt, Cr, Co, Ni, and Au were gathered into a database. The presented compilation comprises 806 analyses of 278 chondrites including new ICP‐MS analyses of Allende and two ordinary chondrites. Each data set was evaluated by comparing element ratios of meteorites from the same chondrite group. Characteristic element abundances and ratios were determined for each group. Features observed in the element abundance patterns can be linked directly to the presence of certain components, such as the abundance of refractory elements Os, Ir, and Ru correlating with the occurrence of refractory inclusions in CV, CO, CK, and CM chondrites. The refined characteristic element ratios appear to be representative not only for meteorites, but also for related asteroidal bodies. Chondrite element ratios were compared to previously published values from impact melt rocks of the Popigai and Morokweng impact structures confirming that an identification of the specific type of projectile (L and LL chondrite, respectively) is possible. The assessment for Morokweng is supported by the recent discovery of an LL chondrite fragment in the impact melt rocks. Ultimately, the database provides valuable information for understanding processes in the solar nebula as they are recorded in chondrites. A new type of complementarity between element patterns of CK and EH chondrites is suggested to be the result of condensation, redox, and transportation processes in the solar nebula.  相似文献   

5.
Abstract— Isheyevo is a metal‐rich carbonaceous chondrite that contains several lithologies with different abundances of Fe,Ni metal (7–90 vol%). The metal‐rich lithologies with 50–60 vol% of Fe,Ni metal are dominant. The metal‐rich and metal‐poor lithologies are most similar to the CBb and CH carbonaceous chondrites, respectively, providing a potential link between these chondrite groups. All lithologies experienced shock metamorphism of shock stage S4. All consist of similar components—Fe,Ni metal, chondrules, refractory inclusions (Ca, Al‐rich inclusions [CAIs] and amoeboid olivine aggregates [AOAs]), and heavily hydrated lithic clasts—but show differences in their modal abundances, chondrule sizes, and proportions of porphyritic versus non‐porphyritic chondrules. Bulk chemical and oxygen isotopic compositions are in the range of CH and CB chondrites. Bulk nitrogen isotopic composition is highly enriched in 15N (δ15N = 1122‰). The magnetic fraction is very similar to the bulk sample in terms of both nitrogen release pattern and isotopic profile; the non‐magnetic fraction contains significantly less heavy N. Carbon released at high temperatures shows a relatively heavy isotope signature. Similarly to CBb chondrites, ~20% of Fe,Ni‐metal grains in Isheyevo are chemically zoned. Similarly to CH chondrites, some metal grains are Ni‐rich (>20 wt% Ni). In contrast to CBb and CH chondrites, most metal grains are thermally decomposed into Ni‐rich and Ni‐poor phases. Similar to CH chondrites, chondrules have porphyritic and non‐porphyritic textures and ferromagnesian (type I and II), silica‐rich, and aluminum‐rich bulk compositions. Some of the layered ferromagnesian chondrules are surrounded by ferrous olivine or phyllosilicate rims. Phyllosilicates in chondrule rims are compositionally distinct from those in the hydrated lithic clasts. Similarly to CH chondrites, CAIs are dominated by the hibonite‐, grossite‐, and melilite‐rich types; AOAs are very rare. We infer that Isheyevo is a complex mixture of materials formed by different processes and under different physico‐chemical conditions. Chondrules and refractory inclusions of two populations, metal grains, and heavily hydrated clasts accreted together into the Isheyevo parent asteroid in a region of the protoplanetary disk depleted in fine‐grained dust. Such a scenario is consistent with the presence of solar wind—implanted noble gases in Isheyevo and with its comparatively old K‐Ar age. We cannot exclude that the K‐Ar system was affected by a later collisional event. The cosmic‐ray exposure (CRE) age of Isheyevo determined by cosmogenic 38Ar is ~34 Ma, similar to that of the Bencubbin (CBa) meteorite.  相似文献   

6.
The abundances of highly siderophile elements (HSE; including Re, Os, Ir, Ru, Pt, and Pd) and 187Re‐187Os isotopic systematics were determined for two fragments from ungrouped achondrite NWA 7325. Rhenium‐Os systematics are consistent with closed‐system behavior since formation or soon after. The abundances of the HSE were therefore largely unaffected by late‐stage secondary processes such as shock or terrestrial weathering. As an olivine gabbro cumulate, this meteorite has a bulk composition consistent with derivation from a body that produced a core, mantle, and crust. Also consistent with derivation from a body that produced a core, both fragments of NWA 7325 have HSE abundances that are highly depleted compared to bulk chondrites. One fragment has ~0.002× CI chondrite Ir and relative HSE abundances similar to bulk chondrites. The other fragment has ~0.0002× CI chondrite Ir and relative HSE abundances that are fractionated compared to bulk chondrites. The chondritic relative HSE abundances of the fragment characterized by higher HSE abundances most likely reflect the addition of exogenous chondritic material during or after crystallization by surface impacts. The HSE in the other fragment is likely more representative of the parent body crust. One formation model that can broadly account for the HSE abundances in this fragment is multiple episodes of low‐pressure metal‐silicate equilibration, followed by limited late accretion and mantle homogenization. Given the different HSE compositions of the two adjoining fragments, this meteorite provides an example of the overprint of global processes (differentiation and late accretion) by localized impact contamination.  相似文献   

7.
Abstract— Submicron platey Sn-rich grains are present in chondritic porous interplanetary dust particle (IDP) W7029*A and it is the second occurrence of a tin mineral in a stratospheric micrometeorite. Selected Area Electron Diffraction data for the Snrich grains match with Sn2O3 and Sn3O4. The oxide(s) may have formed in the solar nebula when tin metal catalytically supported reduction of CO or during flash heating on atmospheric entry of the IDP. The presence of tin is consistent with enrichments for other volatile trace elements in chondritic IDPs and may signal an emerging trend towards non-chondritic volatile element abundances in chondritic IDPs. The observation confirms small-scale mineralogical heterogeneity in fine-grained chondritic porous interplanetary dust.  相似文献   

8.
Phosphate-sulfide assemblages are common constituents in type-3 carbonaceous and ordinary chondrites. CV3 chondrites contain assemblages of pentlandite-merrillite and troilite-merrillite as well as isolated grains of Ca-pyroxene; CO3 chondrites contain troilite-merrillite (± schreibersite) as well as isolated grains of plagioclase; and, H-L-LL3 chondrites contain troilite-merrillite (± metal), troilite-chlorapatite, and metal-chlorapatite. The phosphate-bearing assemblages probably formed in the following manner: (1) metal grains with significant P formed in the nebula at high temperatures; (2) Schreibersite exsolved and crystallized at metal grain boundaries during cooling; (3) some metal grains were sulfurized at lower temperatures by H2S; (4) the metal-schreibersite and sulfide-schreibersite assemblages accreted rims of finegrained silicates; and, (5) the Schreibersite reacted with Ca, O and Cl from these silicates to form merrillite and chlorapatite. The reported bulk compositions of chondritic constituents have ***CI-normalized Al/Ca ratios >1, whereas whole-rock ratios are unfractionated. Even though the phosphate-bearing assemblages and isolated grains of Ca-bearing silicates are ubiquitous in type-3 chondrites, they are insufficiently abundant to lower the Al/Ca ratios of the major chondritic components to those of the whole-rocks. It seems probable that some of the analytical data are incorrect; bulk compositions determined by microprobe may yield erroneously high Al/Ca ratios if samples are analyzed with a broader electron beam than used for analyzing the standards. We recommend analyzing standards and samples with the same size beam.  相似文献   

9.
Models of planetary core formation beginning with melting of Fe,Ni metal and troilite are not readily applicable to oxidized and sulfur-rich chondrites containing only trace quantities of metal. Cores formed in these bodies must be dominated by sulfides. Siderophile trace elements used to model metallic core formation could be used to model oxidized, sulfide-dominated core formation and identify related meteorites if their trace element systematics can be quantified. Insufficient information exists regarding the behavior of these core-forming elements among sulfides during metamorphism prior to anatexis. Major, minor, and trace element concentrations of sulfides are reported in this study for petrologic type 3–6 R chondrite materials. Sulfide-dominated core-forming components in such oxidized chondrites (ƒO2 ≥ iron-wüstite) follow metamorphic evolutionary pathways that are distinct from reduced, metal-bearing counterparts. Most siderophile trace elements partition into pentlandite at approximately 10× chondritic abundances, but Pt, W, Mo, Ga, and Ge are depleted by 1–2 orders of magnitude relative to siderophile elements with similar volatilities. The distribution of siderophile elements is further altered during hydrothermal alteration as pyrrhotite oxidizes to form magnetite. Oxidized, sulfide-dominated core formation differs from metallic core formation models both physically and geochemically. Incongruent melting of pentlandite at 865°C generates melts capable of migrating along solid silicate grains, which can segregate to form a Ni,S-rich core at lower temperatures compared to reduced differentiated parent bodies and with distinct siderophile interelement proportions.  相似文献   

10.
Abstract We have studied metal microstructures in four CH chondrites, Patuxent Range (PAT) 91546, Allan Hills (ALH) 85085, Acfer 214, and Northwest Africa (NWA) 739, to examine details of the thermal histories of individual particles. Four types of metal particles are common in all of these chondrites. Zoned and unzoned particles probably formed as condensates from a gas of chondritic composition in a monotonic cooling regime, as has been shown previously. We have demonstrated that these particles were cooled rapidly to temperatures below 500 K after they formed, and that condensation effectively closed around 700 K. Zoned and unzoned particles with exsolution precipitates, predominantly high‐Ni taenite, have considerably more complex thermal histories. Precipitates grew in reheating episodes, but the details of the heating events vary among individual grains. Reheating temperatures are typically in the range 800–1000 K. Reheating could have been the result of impact events on the CH parent body. Some particles with precipitates may have been incorporated into chondrules, with further brief heating episodes taking place during chondrule formation. In addition to the four dominant types of metal particles, rare Ni‐rich metal particles and Si‐rich metal particles indicate that the metal assemblage in CH chondrites was a mixture of material that formed at different redox conditions. Metal in CH chondrites consists of a mechanical mixture of particles that underwent a variety of thermal histories prior to being assembled into the existing brecciated meteorites.  相似文献   

11.
Abstract— The platinum group elements (PGE; Ru, Rh, Pd, Os, Ir, Pt), Re and Au comprise the highly siderophile elements (HSE). We reexamine selected isotopic and abundance data sets for HSE in upper mantle peridotites to resolve a longstanding dichotomy. Re‐Os and Pt‐Os isotope systematics, and approximately chondritic proportions of PGE in these rocks, suggest the presence in undepleted mantle of a chondrite‐like component, which is parsimoniously explained by late influx of large planetisimals after formation of the Earth's core and the Moon. But some suites of xenolithic and orogenic spinel lherzolites, and abyssal peridotites, have a CI‐normalized PGE pattern with enhanced Pd that is sometimes termed “non‐chondritic”. We find that this observation is consistent with other evidence of a late influx of material more closely resembling enstatite, rather than ordinary or carbonaceous, chondrites. Regional variations in HSE patterns may be a consequence of a late influx of very large objects of variable composition. Studies of many ancient (>3.8 Ga) lunar breccias show regional variations in Au/Ir and suggest that “graininess” existed during the early bombardment of the Earth and Moon. Reliable Pd values are available only for Apollo 17 breccias 73215 and 73255, however. Differences in HSE patterns between the aphanitic and anorthositic lithologies in these breccias show fractionation between a refractory group (Re, Os and Ir) and a normal (Pd, Ni, and Au) group and may reflect the compositions of the impacting bodies. Similar fractionation is apparent between the EH and EL chondrites, whose PGE patterns resemble those of the aphanitic and anorthositic lithologies, respectively. The striking resemblance of HSE and chalcogen (S, Se) patterns in the Apollo aphanites and high‐Pd terrestrial peridotites suggest that the “non‐chondritic” abundance ratios in the latter may be reflected in the composition of planetisimals striking the Moon in the first 700 Ma of Earth–Moon history. Most notably, high Pd may be part of a general enhancement of HSE more volatile than Fe suggesting that the Au abundance in at least parts of the upper mantle may be 1.5 to 2x higher than previously estimated. The early lunar influx may be estimated from observed basin‐sized craters. Comparison of relative influx to Earth and Moon suggests that the enrichment of HSE is limited to the upper mantle above 670 km. To infer enrichment of the whole mantle would require several large lunar impacts not yet identified.  相似文献   

12.
Abstract— The relative abundances of the highly siderophile elements (HSE) Os, Ir, Ru, Pt, Rh, and Pd in relatively pristine lherzolites differ from solar abundance ratios and are several orders of magnitude higher than predicted for equilibrium distribution between metal/silicate (core‐mantle). The samples are characterized by a mean Ca/Al ratio of 1.18 ± 0.09 σM and a mean Ca/Si ratio of 0.10 ± 0.01 σM, overlapping with a mean Ca/Al of 1.069 ± 0.044 σM and a mean Ca/Si of 0.081 ± 0.023 σM found in chondrites (Wasson and Kallemeyn 1988). Interestingly, the CI‐normalized abundance pattern shows decreasing solar system normalized abundances with increasing condensation temperatures. The abundance of the moderately volatile element Pd is about 2x higher than those in the most refractory siderophiles Ir and Os. Thus, the HSE systematics of upper mantle samples suggest that the late bombardment, which added these elements to the accreting Earth, more closely resembles materials of highly reduced EH or EL chondrites than carbonaceous chondrites. In fact, the HSE in the Earth mantle are even more fractionated than the enstatite chondrites—an indication that some inner solar system materials were more highly fractionated than the latter.  相似文献   

13.
Alan E. Rubin 《Icarus》2011,213(2):547-558
Chondrite groups can be distinguished on the basis of their abundances of refractory lithophile elements (RLE). These abundances are, in part, functions of the mass fraction of Ca-Al-rich inclusions (CAIs) within the chondrites. Carbonaceous chondrites contain the most CAIs and the highest RLE abundances; they also contain modally abundant fine-grained matrix material that consists largely of modified nebular dust. The amount of dust varied throughout the solar nebula: enstatite and ordinary chondrites formed in low-dust regions in the inner part of the nebula, R chondrites formed in higher-dust zones at somewhat greater heliocentric distances, and carbonaceous chondrites formed in even dustier regions farther from the Sun. The amount of ambient dust peaked in the region where CV and CK chondrites accreted; these chondrites have abundant matrix, the highest modal abundances of CAIs, and the highest bulk RLE contents. Substantial amounts of nebular dust occurred in highly porous multi-millimeter-to-centimeter-size dustballs that were on the order of 100 times more massive than CAIs. Radial drift processes in the nebula affected these dustballs to approximately the same extent as the CAIs; both types of objects were aerodynamically concentrated in the same nebular regions. These regions maintained approximately the same relative amounts of dust through the periods of chondrule formation and chondrite accretion.  相似文献   

14.
Abstract— A large impact event 500 Ma ago shocked and melted portions of the L‐chondrite parent body. Chico is an impact melt breccia produced by this event. Sawn surfaces of this 105 kg meteorite reveal a dike of fine‐grained, clast‐poor impact melt cutting shocked host chondrite. Coarse (1–2 cm diameter) globules of FeNi metal + sulfide are concentrated along the axis of the dike from metal‐poor regions toward the margins. Refractory lithophile element abundance patterns in the melt rock are parallel to average L chondrites, demonstrating near‐total fusion of the L‐chondrite target by the impact and negligible crystal‐liquid fractionation during emplacement and cooling of the dike. Significant geochemical effects of the impact melting event include fractionation of siderophile and chalcophile elements with increasing metal‐silicate heterogeneity, and mobilization of moderately to highly volatile elements. Siderophile and chalcophile elements ratios such as Ni/Co, Cu/Ga, and Ir/Au vary systematically with decreasing metal content of the melt. Surprisingly small (?102) effective metal/silicate‐melt distribution coefficients for highly siderophile elements probably reflect inefficient segregation of metal despite the large degrees of melting. Moderately volatile lithophile elements such K and Rb were mobilized and heterogeneously distributed in the L‐chondrite impact breccias whereas highly volatile elements such as Cs and Pb were profoundly depleted in the region of the parent body sampled by Chico. Volatile element variations in Chico and other L chondrites are more consistent with a mechanism related to impact heating rather than condensation from a solar nebula. Impact processing can significantly alter the primary distributions of siderophile and volatile elements in chondritic planetesimals.  相似文献   

15.
Abstract– Perryite [(Fe,Ni)x(Si,P)y], schreibersite [(Fe,Ni)3P], and kamacite (αFeNi) are constituent minerals of the metal‐sulfide nodules in the Sahara 97072 (EH3) enstatite chondrite meteorite. We have measured concentrations of Ni, Cu, Ga, Au, Ir, Ru, and Pd in these minerals with laser ablation, inductively coupled plasma mass spectrometry (ICP‐MS). We also measured their Fe, Ni, P, Si, and Co concentrations with electron microprobe. In kamacite, ratios of Ru/Ir, Pd/Ir, and Pd/Ru cluster around their respective CI values and all elements analyzed plot near the intersection of the equilibrium condensation trajectory versus Ni and the respective CI ratios. In schreibersite, the Pd/Ru ratio is near the CI value and perryite contains significant Cu, Ga, and Pd. We propose that schreibersite and perryite formed separately near the condensation temperatures of P and Si in a reduced gas and were incorporated into Fe‐Ni alloy. Upon further cooling, sulfidation of Fe in kamacite resulted in the formation of additional perryite at the sulfide interface. Still later, transient heating re‐melted this perryite near the Fe‐FeS eutectic temperature during partial melting of the metal‐sulfide nodules. The metal‐sulfide nodules are pre‐accretionary objects that retain CI ratios of most siderophile elements, although they have experienced transient heating events.  相似文献   

16.
Abstract— Bencubbin is an unclassified meteorite breccia which consists mainly of host silicate (~40 vol.%) and host metal (~60%) components. Rare (< 1%) ordinary chondrite clasts and a dark xenolith (formerly called a carbonaceous chondrite clast) are also found. A petrologic study of the host silicates shows that they have textures, modes, mineralogy and bulk compositions that are essentially the same as that of barred olivine (BO) chondrules, and they are considered to be BO chondritic material. Bulk compositions of individual host silicate clasts are identical and differ only in their textures which are a continuum from coarsely barred, to finely barred, to feathery microcrystalline; these result from differing cooling rates. The host silicates differ from average BO chondrules only in being angular clasts rather than fluid droplet-shaped objects, and in being larger in size (up to 1 cm) than most chondrules; but large angular to droplet-shaped chondrules occur in many chondrites. Bencubbin host metallic FeNi clasts have a positive Ni-Co trend, which coincides with that of a calculated equilibrium nebular condensation path. This appears to indicate a chondritic, rather than impact, origin for this component as well. The rare ordinary chondrite clast and dark xenolith also contain FeNi metal with compositions similar to that of the host metal. Two scenarios are offered for the origin of the Bencubbin breccia. One is that the Bencubbin components are chondritic and were produced in the solar nebula. Later brecciation, reaggregation and minor melting of the chondritic material resulted in it becoming a monomict chondritic breccia. The alternative scenario is that the Bencubbin components formed as a result of major impact melting on a chondritic parent body; the silicate fragments were formed from an impact-induced lava flow and are analogous to the spinifex-textured rocks characteristic of terrestrial komatiites. Both scenarios have difficulties, but the petrologic, chemical and isotopic data are more consistent with Bencubbin being a brecciated chondrite. Bencubbin has a number of important chemical and isotopic characteristics in common with the major components in the CR (Renazzo-type) chondrites and the unique ALH85085 chondrite, which suggests that their major components may be related. These include: (1) Mafic silicates that are similarly Mg-rich and formed in similar reducing environments. (2) Similarly low volatiles; TiO2, Al2O3 and Cr2O3 contents are also similar. (3) Similar metallic FeNi compositions that sharply differ from those in other chondrites. (4) Remarkable enrichments in 15N. (5) Similar oxygen isotopic compositions that lie on the same mixing line. Thus, the major components of the Bencubbin breccia are highly similar to those of the ALH85085 and CR chondrites and they may have all formed in the same isotopic reservoir, under similar conditions, in the CR region of the solar nebula.  相似文献   

17.
Abstract— Seven large (10 g) impact melt rock samples from boreholes from the Boltysh impact crater (Ukraine) and six samples from the East Clearwater crater (Canada) were analyzed for Os, Ir, Ru, Rh, Pd, Re and Au by the nickel sulfide technique in combination with neutron activation. Earlier analyses of Clearwater East impact melt rocks have shown that they are strongly enriched in Ir, Os, Pd and Re. In this work, I confirm earlier findings and demonstrate similarly high enrichments of Rh and Ru. The average Os/Ir, Ru/Ir, Pd/Ir, Rh/Ir and Ru/Rh ratios of the melt rock samples from Clearwater East are CI-chondritic and yield an average Ir content of 25.2 ± 6.5 ng/g relative to an average upper crust concentration of 0.03 ± 0.02 ng/g Ir. The amount of meteoritic component corresponds to 4 to 7% of a nominal CI component for Clearwater East. The impact melt rock samples from a bore hole from Boltysh are low in Ir with an average of 0.2 ± 0.1 ng/g. The CI-normalized abundances increase from the refractory to the more volatile siderophile elements (Os < Ir < Ru < Rh ~ Pd ~ Au ~ Ni ~ Co). Because of the low Ir anomaly and uncertainties in making corrections (correlations are weak) for indigenous siderophile elements, no clear projectile assignment can be made.  相似文献   

18.
Abstract— The CH carbonaceous chondrites contain a population of ferrous (Fe/(Fe + Mg) ? 0.1‐0.4) silicate spherules (chondrules), about 15–30 μm in apparent diameter, composed of cryptocrystalline olivinepyroxene normative material, ±SiO2‐rich glass, and rounded‐to‐euhedral Fe, Ni metal grains. The silicate portions of the spherules are highly depleted in refractory lithophile elements (CaO, Al2O3, and TiO2 <0.04 wt%) and enriched in FeO, MnO, Cr2O3, and Na2O relative to the dominant, volatile‐poor, magnesian chondrules from CH chondrites. The Fe/(Fe + Mg) ratio in the silicate portions of the spherules is positively correlated with Fe concentration in metal grains, which suggests that this correlation is not due to oxidation, reduction, or both of iron (FeOsil ? Femet) during melting of metal‐silicate solid precursors. Rather, we suggest that this is a condensation signature of the precursors formed under oxidizing conditions. Each metal grain is compositionally uniform, but there are significant intergrain compositional variations: about 8–18 wt% Ni, <0.09 wt% Cr, and a sub‐solar Co/Ni ratio. The precursor materials of these spherules were thus characterized by extreme elemental fractionations, which have not been observed in chondritic materials before. Particularly striking is the fractionation of Ni and Co in the rounded‐to‐euhedral metal grains, which has resulted in a Co/Ni ratio significantly below solar. The liquidus temperatures of the euhedral Fe, Ni metal grains are lower than those of the coexisting ferrous silicates, and we infer that the former crystallized in supercooled silicate melts. The metal grains are compositionally metastable; they are not decomposed into taenite and kamacite, which suggests fast postcrystallization cooling at temperatures below 970 K and lack of subsequent prolonged thermal metamorphism at temperatures above 400–500 K.  相似文献   

19.
Abstract— We have studied the CB carbonaceous chondrites Queen Alexandra Range (QUE) 94411, Hammadah al Hamra (HH) 237, and Bencubbin with an emphasis on the petrographical and mineralogical effects of the shock processing that these meteorite assemblages have undergone. Iron‐nickel metal and chondrule silicates are the main components in these meteorites. These high‐temperature components are held together by shock melts consisting of droplets of dendritically intergrown Fe,Ni‐metal/sulfide embedded in silicate glass, which is substantially more FeO‐rich (30–40 wt%) than the chondrule silicates (FeO <5 wt%). Fine‐grained matrix material, which is a major component in most other chondrite classes, is extremely scarce in QUE 94411 and HH 237, and has not been observed in Bencubbin. This material occurs as rare, hydrated matrix lumps with major and minor element abundances roughly similar to the ferrous silicate shock melts (and CI). We infer that hydrated, fine‐grained material, compositionally similar to these matrix lumps, was originally present between the Fe,Ni‐metal grains and chondrules, but was preferentially shock melted. Other shock‐related features in QUE 94411, HH 237, and Bencubbin include an alignment and occasionally strong plastic deformation of metal and chondrule fragments. The existence of chemically zoned and metastable Fe,Ni‐metal condensates in direct contact with shock melts indicates that the shock did not substantially increase the average temperature of the rock. Because porphyritic olivine‐pyroxene chondrules are absent in QUE 94411, HH 237, and Bencubbin, it is difficult to determine the precise shock stage of these meteorites, but the shock was probably relatively light (S2–S3), consistent with a bulk temperature increase of the assemblages of less than ?300 °C. The apparently similar shock processing of Bencubbin, Weatherford, Gujba (CBa) and QUE 94411/HH 237 (CBb) supports the idea of a common asteroidal parent body for these meteorites.  相似文献   

20.
D.W. Sears 《Icarus》1979,40(3):471-483
The major iron meteorite groups are defined essentially by their Ga, Ge, and Ni contents. It now seems clear that the differences between their abundances of Ga and Ge were produced by the process of condensation and accretion in the primordial solar nebula. The simplest interpretation of the Ni abundance, and its variations between the groups, is also that it was fixed during condensation and accretion; more particularly, it reflects the oxidation state of the nebula during condensation and accretion. The abundance patterns of 17 other trace elements have been examined and are consistent with this model. It is believed to be the simplest model published and most consistent with analogous calculations for the chondrites. If it is correct, then the iron meteorite groups formed over a very wide range of pressures, 10?4 to 10?8 atm. Such a range could only be found in a restricted region of the nebula, such as the asteroid belt, if a complex accretion sequence inside a protoplanet occurred. More likely, the iron meteorites were formed in widely dispersed regions of the nebula and only one group formed in the asteroid belt, probably group IIIAB. Groups IAB and IIAB formed nearer the Sun, and group IVA formed much further out, say, beyond the orbit of Jupiter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号