首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Abstract— The 80 km wide Vredefort dome presents a unique opportunity to investigate the deep levels of the central uplift of a very large impact structure. Exposure of progressively older strata in the collar of the dome and of progressively higher‐grade metamorphic rocks toward its center is consistent with differential uplift; however, the deepest levels exposed correspond to pre‐impact midcrust, rather than lower crust, as has been suggested previously. Pre‐impact Archean gneissic fabrics in the core of the dome are differentially rotated, with the angle of rotation increasing sharply at a distance of ?16–19 km from the center. The present asymmetric dips of the collar strata, with layering dipping outward at moderate angles in the southeastern sector but being overturned and dipping inward in the northwestern sector, and the eccentric distribution of the pre‐impact metamorphic isograds around the core of the dome can be reconciled with symmetric rotation of an initially obliquely NW‐dipping target sequence during central uplift formation. The rocks in the core of the dome lack distinctive megablocks or large‐slip‐magnitude faults such as have been described in other central uplifts. We suggest that the large‐scale coherent response of these rocks to the central uplift formation could have been accommodated by small‐scale shear and/or rotation along pervasive pseudotachylitic breccia vein‐fractures.  相似文献   

2.
Abstract– The processes leading to formation of sometimes massive occurrences of pseudotachylitic breccia (PTB) in impact structures have been strongly debated for decades. Variably an origin of these pseudotachylite (friction melt)‐like breccias by (1) shearing (friction melting); (2) so‐called shock compression melting (with or without a shear component) immediately after shock propagation through the target; (3) decompression melting related to rapid uplift of crustal material due to central uplift formation; (4) combinations of these processes; or (5) intrusion of allochthonous impact melt from a coherent melt body has been advocated. Our investigations of these enigmatic breccias involve detailed multidisciplinary analysis of millimeter‐ to meter‐sized occurrences from the type location, the Vredefort Dome. This complex Archean to early Proterozoic terrane constitutes the central uplift of the originally >250 km diameter Vredefort impact structure in South Africa. Previously, results of microstructural and microchemical investigations have indicated that formation of very small veinlets involved local melting, likely during the early shock compression phase. However, for larger veins and networks it was so far not possible to isolate a specific melt‐forming mechanism. Macroscopic to microscopic evidence for friction melting is very limited, and so far chemical results have not directly supported PTB generation by intrusion of impact melt. On the other hand, evidence for filling of dilational sites with melt is abundant. Herein, we present a new approach to the mysterium of PTB formation based on volumetric melt breccia calculations. The foundation for this is the detailed analysis of a 1.5 × 3 × 0.04 m polished granite slab from a dimension‐stone quarry in the core of the Vredefort Dome. This slab contains a 37.5 dm3 breccia zone. The pure melt volume in 0.1 m3 PTB‐bearing granitic target rock outside of the several‐decimeter‐wide breccia zone in the granite slab was estimated at 5.2 dm3. This amount can be divided into 4.6 dm3 melt (88%), for which we have evidenced a limited material transport (at maximum, ≈20 cm) and 0.6 dm3 melt (12%) with, at most, grain‐scale material transport, which we consider in situ formed shock melt. The breccia zone itself contains about 10 dm3 of matrix (melt). Assuming melt exchange over 20 cm at the slab surface, between breccia zone and surrounding melt‐bearing host rock volume, the outer melt volume is calculated to contain the same amount of melt as contained by the massive breccia zone. Meso‐ and microscopic observations indicate melt transport is more prominent from larger into smaller melt occurrences. Thus, melt of the breccia zone could have provided the melt fill for all the small‐scale PTB veins in the surrounding target rock. Extrapolating this melt capacity calculation for 1 m3 PTB‐bearing host rock shows that a host rock volume of this dimension is able to take up some 52 dm3 melt. Scaling up 1000‐fold to the outcrop scale reveals that exchange between a host rock volume of 2 m radius around a 37 m3 breccia zone could involve some 10 m3 melt. These results demonstrate that large melt volumes (i.e., large breccia zones) can be derived, in principle, from local reservoirs. However, strong decompression would have to apply in order to exchange these considerable melt volumes, which would only be realistic during the decompression phase of impact cratering upon central uplift formation, or locally where compressive regimes acted during the subsequent down‐ and outward collapse of the central uplift.  相似文献   

3.
The Ramgarh structure is a morphological landmark in southeastern Rajasthan, India. Its 200 m high and 3.5–4 km wide annular collar has provoked many hypotheses regarding its origin, including impact. Here, we document planar deformation features, planar fractures, and feather features in quartz grains of the central part of the Ramgarh structure, which confirm its impact origin. The annular collar does not mark the crater rim but represents the outer part of a central uplift of an approximately 10 km diameter complex impact structure. The apparent crater rim is exposed as a low‐angle normal fault and can be traced as lineaments in remote sensing imagery. The central uplift shows a stratigraphic uplift of ~1000 m and is rectangular in shape. It is dissected by numerous faults that are co‐genetic with the formation of the central uplift. The central uplift has a bilateral symmetry along an SW‐NE axis, where a large strike‐slip fault documents a strong horizontal shear component. This direction corresponds to the assumed impact trajectory from the SW toward the NE. The uprange sector is characterized by concentric reverse faults, whereas radial faults dominate downrange. Sandstones of the central uplift are infiltrated by Fe‐oxides and suggest an impact‐induced hydrothermal mineralization overprint. The impact may have occurred into a shallow water environment as indicated by soft‐sediment deformation features, observed near the apparent crater rim, and the deposition of a diamictite layer above them. Gastropods embedded in the diamictite have Middle Jurassic age and may indicate the time of the impact.  相似文献   

4.
Abstract— The results of a systematic field mapping campaign at the Haughton impact structure have revealed new information about the tectonic evolution of mid‐size complex impact structures. These studies reveal that several structures are generated during the initial compressive outward‐directed growth of the transient cavity during the excavation stage of crater formation: (1) sub‐vertical radial faults and fractures; (2) sub‐horizontal bedding parallel detachment faults; and (3) minor concentric faults and fractures. Uplift of the transient cavity floor toward the end of the excavation stage produces a central uplift. Compressional inward‐directed deformation results in the duplication of strata along thrust faults and folds. It is notable that Haughton lacks a central topographic peak or peak ring. The gravitational collapse of transient cavity walls involves the complex interaction of a series of interconnected radial and concentric faults. While the outermost concentric faults dip in toward the crater center, the majority of the innermost faults at Haughton dip away from the center. Complex interactions between an outward‐directed collapsing central uplift and inward collapsing crater walls during the final stages of crater modification resulted in a structural ring of uplifted, intensely faulted (sub‐) vertical and/or overturned strata at a radial distance from the crater center of ?5.0–6.5 km. Converging flow during the collapse of transient cavity walls was accommodated by the formation of several structures: (1) sub‐vertical radial faults and folds; (2) positive flower structures and chaotically brecciated ridges; (3) rollover anticlines in the hanging‐walls of major listric faults; and (4) antithetic faults and crestal collapse grabens. Oblique strike‐slip (i.e., centripetal) movement along concentric faults also accommodated strain during the final stages of readjustment during the crater modification stage. It is clear that deformation during collapse of the transient cavity walls at Haughton was brittle and localized along discrete fault planes separating kilometer‐size blocks.  相似文献   

5.
Abstract— The 40 km wide Araguainha structure in central Brazil is a shallowly eroded impact crater that presents unique insights into the final stages of complex crater formation. The dominant structural features preserved at Araguainha relate directly to the centripetal movement of the target rocks during the collapse of the transient cavity. Slumping of the transient cavity walls resulted in inward‐verging inclined folds and a km‐scale anticline in the outer ring of the structure. The folding stage was followed by radial and concentric faulting, with downward displacement of kilometer‐scale blocks around the crater rim. The central uplift records evidence for km‐scale upward movement of crystalline basement rocks from the transient cavity floor, and lateral moment of sedimentary target rocks detached from the cavity walls. Much of the structural grain in the central uplift relates to structural stacking of km‐scale thrust sheets of sedimentary strata onto the core of crystalline basement rocks. Outward‐plunging radial folds indicate tangential oblate shortening of the strata during the imbrication of the thrust sheets. Each individual sheet records an early stage of folding and thickening due to non‐coaxial strains, shortly before sheet imbrication. We attribute this folding and thickening phase to the kilometer‐scale inward movement of the target strata from the transient cavity walls to the central uplift. The outer parts of the central uplift record additional outward movement of the target rocks, possibly related to the collapse of the central uplift. An inner ring structure at 10–12 km from the crater center marks the extent of the deformation related to the outward movement of the target rocks.  相似文献   

6.
Abstract— Surface and subsurface structural studies undertaken under the Haughton impact structure study (HISS) project indicate that the 23 Ma-old Haughton impact structure, (Devon Island, Canadian Arctic) consists of a central basin of uplifted strata, an inner zone of uplifted megablocks at 3.5–5.5 km radius, a complex, faulted annulus of megablocks at 5.5–7.0 km radius and an outer zone of downfaulted blocks. No evidence of a previously suggested structural multi-ring form was found. The geophysical studies suggest an original diameter of 24 km, slightly larger than previous estimates and the seismic data indicate considerably more faulting in the western portion than has been mapped from surface exposures. Detailed studies of the allochthonous breccia deposits found no major radial variations in lithology and shock levels. The only anomaly is the concentration of highly shocked, cobble-sized clasts in the central area coincident with the maximum gravity and magnetic anomalies. It is suggested that this local component is related to the highly shocked rocks of the central uplift and may have been shed from the uplift during late stage adjustments. There is no visible central topographic peak of uplifted bedrock at Haughton but studies of the post-impact Haughton Formation suggest that the center of the structure subsided 300–350 m soon after formation. Breccia studies also indicate the occurrence of shock-melted sediments, including shales, but no evidence of shock melted carbonates, the most common target lithology. This may be ascribed to the ease with which carbonates are volatilized by relatively moderate shock levels. The large amount of volatiles released on impact helped disperse the highly shocked products leading to the formation of a relatively cool clastic and polymict breccia deposit in the interior, as opposed to a coherent melt sheet. In this regard, the breccia deposit is somewhat analogous to the suevite deposits within the Ries crater. Sedimentological studies indicate that the Cretaceous-age Eureka Sound Formation was present at the time of impact and that the Haughton area has undergone as much as 200 m of erosion since the time of impact.  相似文献   

7.
Field investigations in the eroded central uplift of the ≤30 km Keurusselkä impact structure, Finland, revealed a thin, dark melt vein that intersects the autochthonous shatter cone‐bearing target rocks near the homestead of Kirkkoranta, close to the center of the impact structure. The petrographic analysis of quartz in this melt breccia and the wall rock granite indicate weak shock metamorphic overprint not exceeding ~8–10 GPa. The mode of occurrence and composition of the melt breccia suggest its formation as some kind of pseudotachylitic breccia. 40Ar/39Ar dating of dark and clast‐poor whole‐rock chips yielded five concordant Late Mesoproterozoic miniplateau ages and one plateau age of 1151 ± 10 Ma [± 11 Ma] (2σ; MSWD = 0.11; = 0.98), considered here as the statistically most robust age for the rock. The new 40Ar/39Ar age is incompatible with ~1.88 Ga Svecofennian tectonism and magmatism in south‐central Finland and probably reflects the Keurusselkä impact, followed by impact‐induced hydrothermal chloritization of the crater basement. In keeping with the crosscutting relationships in the outcrop and the possible influence of postimpact alteration, the Late Mesoproterozoic 40Ar/39Ar age of ~1150 Ma should be treated as a minimum age for the impact. The new 40Ar/39Ar results are consistent with paleomagnetic results that suggested a similar age for Keurusselkä, which is shown to be one of the oldest impact structures currently known in Europe and worldwide.  相似文献   

8.
Abstract— Environmental conditions on Mars are conducive to the modification and erosion of impact craters, potentially revealing the nature of their substructure. On Earth, postimpact erosion of complex craters in a wide range of target rocks has revealed the nature and distribution of craterrelated fault structures and a complex array of breccia and pseudotachylyte dikes, which range up to tens of meters in width and tens of kilometers in length. We review the characteristics of fault structures, breccia dikes, and pseudotachylyte dikes on Earth, showing that they occur in complex network‐like patterns and are often offset along late‐stage crater‐related faults. Individual faults and dikes can undulate in width and can branch and bifurcate along strike. Detailed geological analyses of terrestrial craters show that faults and breccia dikes form during each of the major stages of the impact‐cratering process (compression, excavation, and modification). We report here on the discovery of prominent, lattice‐like ridge networks occurring on the floor of a highly modified impact crater 75 km in diameter near the dichotomy boundary of the northern lowland and southern upland. Interior fill and crater‐floor units have been exhumed by fluvial and eolian processes to reveal a unit below the crater floor containing a distinctive set of linear ridges of broadly similar width and forming a lattice‐like pattern. Ridge exposures range from ?1–4 km in length and ?65–120 m in width, are broadly parallel, straight to slightly curving, and are cross‐cut by near‐orthogonal ridges, forming a box or lattice‐like pattern. Ridges are exposed on the exhumed crater floor, extending from the base of the wall toward the center. On the basis of the strong similarities of these features to terrestrial crater‐related fault structures and breccia dikes, we interpret these ridges to be faults and breccia dikes formed below the floor of the crater during the excavation and modification stages of the impact event, and subsequently exhumed by erosion. The recognition of such features on Mars will help in documenting the nature of impact‐cratering processes and aid in assessment of crustal structure. Faults and breccia dikes can also be used as data for the assessment of post‐cratering depths and degrees of landform exhumation.  相似文献   

9.
Abstract— Shatter cones have been described from many meteorite impact structures and are widely regarded as a diagnostic macroscopic recognition feature for impact. However, the origin of this meso‐ to macroscopic striated fracture phenomenon has not yet been satisfactorily resolved, and the timing of shatter cone formation in the cratering process still remains enigmatic. Here, previous results from studies of shatter cones from the Vredefort impact structure and other impact structures are discussed in the light of new field observations made in the Vredefort Dome. Contrary to earlier claims, Vredefort cone fractures do not show uniform apex orientations at any given outcrop, nor do small cones show a pattern consistent with the previously postulated “master cone” concept. Simple back‐rotation of impact‐rotated strata to a horizontal pre‐impact position also does not lead to a uniform centripetal‐upward orientation of the cone apices. Striation patterns on the cone surfaces are variable, ranging from the typically diverging pattern branching off the cone apex to subparallel‐to‐parallel patterns on almost flat surfaces. Striation angles on shatter cones do not increase with distance from the center of the dome, as alleged in the literature. Instead, a range of striation angles is measured on individual shatter cones from a specific outcrop. New observations on small‐scale structures in the collar around the Vredefort Dome confirm the relationship of shatter cones with subparallel sets of curviplanar fractures (so‐called multipli‐striated joint sets, MSJS). Pervasive, meter‐scale tensile fractures cross‐cut shatter cones and appear to have formed after the closely spaced MSJ‐type fractures. The results of this study indicate that none of the existing hypotheses for the formation of shatter cones are currently able to adequately explain all characteristics of this fracturing phenomenon. Therefore, we favor a combination of aspects of different hypotheses that includes the interaction of elastic waves, as supported by numerical modeling results and which reasonably explains the variety of shatter cone shapes, the range of striation geometries and angles, and the relationship of closely spaced fracture systems with the striated surfaces. In the light of the currently available theoretical basis for the formation of shatter cones, the results of this investigation lead to the conclusion that shatter cones are tensile fractures and might have formed during shock unloading, after the passage of the shock wave through the target rocks.  相似文献   

10.
The Paleoproterozoic Dhala structure with an estimated diameter of ~11 km is a confirmed complex impact structure located in the central Indian state of Madhya Pradesh in predominantly granitic basement (2.65 Ga), in the northwestern part of the Archean Bundelkhand craton. The target lithology is granitic in composition but includes a variety of meta‐supracrustal rock types. The impactites and target rocks are overlain by ~1.7 Ga sediments of the Dhala Group and the Vindhyan Supergroup. The area was cored in more than 70 locations and the subsurface lithology shows pseudotachylitic breccia, impact melt breccia, suevite, lithic breccias, and postimpact sediments. Despite extensive erosion, the Dhala structure is well preserved and displays nearly all the diagnostic microscopic shock metamorphic features. This study is aimed at identifying the presence of an impactor component in impact melt rock by analyzing the siderophile element concentrations and rhenium‐osmium isotopic compositions of four samples of impactites (three melt breccias and one lithic breccia) and two samples of target rock (a biotite granite and a mafic intrusive rock). The impact melt breccias are of granitic composition. In some samples, the siderophile elements and HREE enrichment observed are comparable to the target rock abundances. The Cr versus Ir concentrations indicate the probable admixture of approximately 0.3 wt.% of an extraterrestrial component to the impact melt breccia. The Re and Os abundances and the 187Os/188Os ratio of 0.133 of one melt breccia specimen confirm the presence of an extraterrestrial component, although the impactor type characterization still remains inconclusive.  相似文献   

11.
Abstract— The newly discovered Dhala structure, Madhya Pradesh State, India, is the eroded remnant of an impact structure with an estimated present‐day apparent diameter of about 11 km. It is located in the northwestern part of the Archean Bundelkhand craton. The pre‐impact country rocks are predominantly granitoids of ?2.5 Ga age, with minor 2.0–2.15 Ga mafic intrusive rocks, and they are overlain by post‐impact sediments of the presumably >1.7 Ga Vindhyan Supergroup. Thus, the age for this impact event is currently bracketed by these two sequences. The Dhala structure is asymmetrically disposed with respect to a central elevated area (CEA) of Vindhyan sediments. The CEA is surrounded by two prominent morphological rings comprising pre‐Vindhyan arenaceous‐argillaceous and partially rudaceous metasediments and monomict granitoid breccia, respectively. There are also scattered outcrops of impact melt breccia exposed towards the inner edge of the monomict breccia zone, occurring over a nearly 6 km long trend and with a maximum outcrop width of ?170 m. Many lithic and mineral clasts within the melt breccia exhibit diagnostic shock metamorphic features, including multiple sets of planar deformation features (PDFs) in quartz and feldspar, ballen‐textured quartz, occurrences of coesite, and feldspar with checkerboard texture. In addition, various thermal alteration textures have been found in clasts of initially superheated impact melt. The impact melt breccia also contains numerous fragments composed of partially devitrified impact melt that is mixed with unshocked as well as shock deformed quartz and feldspar clasts. The chemical compositions of the impact melt rock and the regionally occurring granitoids are similar. The Ir contents of various impact melt breccia samples are close to the detection limit (1–1.5 ppb) and do not provide evidence for the presence of a meteoritic component in the melt breccia. The presence of diagnostic shock features in mineral and lithic clasts in impact melt breccia confirm Dhala as an impact structure. At 11 km, Dhala is the largest impact structure currently known in the region between the Mediterranean and southeast Asia.  相似文献   

12.
Abstract– The 3.8 km Steinheim Basin in SW Germany is a complex impact crater with central uplift hosted by a sequence of Triassic to Jurassic sedimentary rocks. It exhibits a well‐preserved crater morphology, intensely brecciated limestone blocks that form the crater rim, as well as distinct shatter cones in limestones. In addition, an impact breccia mainly composed of Middle to Upper Jurassic limestones, marls, mudstones, and sandstones is known from drilling into the impact crater. No impact melt lithologies, however, have so far been reported from the Steinheim Basin. In samples of the breccia that were taken from the B‐26 drill core, we discovered small particles (up to millimeters in size) that are rich in SiO2 (~50 wt%) and Al2O3 (~28 wt%), and contain particles of Fe‐Ni‐Co sulfides, as well as target rock clasts (shocked and unshocked quartz, feldspar, limestone) and droplet‐shaped particles of calcite. The particles exhibit distinct flow structures and relicts of schlieren and vesicles. From the geochemical composition and the textural properties, we interpret these particles as mixed silicate melt fragments widely recrystallized, altered, and/or transformed into hydrous phyllosilicates. Furthermore, we detected schlieren of lechatelierite and recrystallized carbonate melt. On the basis of impactite nomenclature, the melt‐bearing impact breccia in the Steinheim Basin can be denominated as Steinheim suevite. The geochemical character of the mixed melt particles points to Middle Jurassic sandstones (“Eisensandstein” Formation) that crop out at the center of the central uplift as the source for the melt fragments.  相似文献   

13.
Abstract— The central allochthonous polymict breccia of the Haughton impact structure is up to about 90 m thick and as much as 7.3 km in radial extent. It has been analyzed with respect to modal composition, grain-size characteristics, and degree of shock metamorphism for the grain-size ranges 10–~ 50, 1–10, 0.03–1, and <0.03 mm. The mineralogy of the breccia matrix is dominated by dolomite and calcite, with minor amounts of quartz, other silicate minerals, and rare melt particles. The following lithic clasts have been identified in the 1–10 mm size fraction (averages of vol.% given in parentheses): dolomitic rocks (51), limestones (29), crystalline rocks (10), sandstones and siltstones (3.7), chert (0.7), melt particles (1.9). The mineral clasts (1–0.03 mm) comprise (with decreasing frequency) dolomite, quartz, calcite, feldspar, biotite, amphibole, garnet, opaques, rounded quartz derived from sandstones and accessory minerals. Lithic and mineral clasts display various degrees of shock. Fragments of crystalline rocks are shocked in the 0–60 GPa range; whole rock melts from the crystalline basement are lacking and unshocked rocks are very rare. In contrast, shock-melted sandstones, shales, and chert were found in most samples. Large clasts of these melt rocks are highly concentrated near the center of the crater. Otherwise, no distinct change of the modal composition with radial range has been observed except that the frequency of limestone clasts increases slightly with radial range. The breccia near the center is more fine-grained than that beyond about 1 km radius and the sorting parameter increases somewhat with radial range. Except for the high concentration of shock-melted sedimentary rocks and highly shocked crystalline rocks near the center of the crater, the distribution of shock stages within the lithic clast population is quite uniform throughout the breccia formation. We conclude that the breccia constituents are derived from the lower part of the target stratigraphy (deeper than about 800 m) and that the total depth of excavation at Haughton is in the order of 2000 m. The mixing of sedimentary rocks of the Eleanor River Formation, Lower Ordovician, and Cambrian (~850 m thickness) with crystalline basement rocks is quite thorough and homogeneous throughout the breccia lens, at least for the analyzed part. This may require an air-borne mode of emplacement for the upper section of the breccia in analogy to the fall-back suevite in the Ries crater. A calculation of the excavation (Z-model) and of the shock pressure attenuation based on reasonable estimates of the energy and crater geometry of the Haughton impact confirms the observed maximum depth of excavation of about 2 km. Shock-melted crystalline basement rocks, if present at all, must be confined to the very center of the structure below the excavation cavity.  相似文献   

14.
Abstract— The South Range Breccia Belt (SRBB) is an arcuate, 45 km long zone of Sudbury Breccia in the South Range of the 1.85 Ga Sudbury Impact Structure. The belt varies in thickness between tens of meters to hundreds of meters and is composed of a polymict assemblage of Huronian Supergroup (2.49–2.20 Ga), Nipissing Diabase (2.2 Ga), and Proterozoic granitoid breccia fragments ranging in size from a few millimeters to tens of meters. The SRBB matrix is composed of a fine‐grained (~100 μm) assemblage of biotite, quartz, and ilmenite, with trace amounts of plagioclase, zircon, titanite, epidote, pyrite, chalcopyrite, pyrrhotite, and occasionally chlorite. The SRBB hosts the Frood‐Stobie, Vermilion, and Kirkwood quartz diorite offset dykes, the former being associated with one of the largest Ni‐Cu‐PGE sulphide deposits in the world. Optical petrography and whole‐rock geochemistry concur with previous studies that have suggested that the matrix of the SRBB is derived from comminution and at least partial frictional melting of the wall rock Huronian Supergroup lithologies. Rare earth element (REE) data from all sampled lithologies associated with the SRBB exhibit crustal signatures when normalized to C1 chondrite values. Additionally, REE data from the quartz diorites, disseminated sulphides in Sudbury Breccia, and a sample of an aphanitic biotite‐hornblende tonalite dyke exhibit flat slopes when compared to the mafic and felsic norites, quartz gabbro, and granophyre units of the Sudbury Igneous Complex (SIC), which suggests that these lithologies are representative of bulk SIC melt. We suggest that the SRBB was formed by high strain‐rate (>1 m/s), gravity‐driven seismogenic slip of the inner ring of the Sudbury Impact Structure during postimpact crustal readjustment (crater modification stage). Failure of the hanging wall may have facilitated the injection of bulk SIC melt into the SRBB, along with the Ni‐Cu‐PGE sulphides of the Frood‐Stobie deposit. Postimpact Penokean (1.9–1.7 Ga) tectonism, particularly northwest‐directed shearing along the South Range Shear Zone and associated thrust faulting, could account for the present subvertical orientation of the SRBB, and the apparent lack of a connection at depth with the SIC.  相似文献   

15.
Abstract— The Vredefort Granophyre represents impact melt that was injected downward into fractures in the floor of the Vredefort impact structure, South Africa. This unit contains inclusions of country rock that were derived from different locations within the impact structure and are predominantly composed of quartzite, feldspathic quartzite, arkose, and granitic material with minor proportions of shale and epidiorite. Two of the least recrystallized inclusions contain quartz with single or multiple sets of planar deformation features. Quartz grains in other inclusions display a vermicular texture, which is reminiscent of checkerboard feldspar. Feldspars range from large, twinned crystals in some inclusions to fine‐grained aggregates that apparently are the product of decomposition of larger primary crystals. In rare inclusions, a mafic mineral, probably biotite or amphibole, has been transformed to very fine‐grained aggregates of secondary phases that include small euhedral crystals of Fe‐rich spinel. These data indicate that inclusions within the Vredefort Granophyre were exposed to shock pressures ranging from <5 to 8–30 GPa. Many of these inclusions contain small, rounded melt pockets composed of a groundmass of devitrified or metamorphosed glass containing microlites of a variety of minerals, including K‐feldspar, quartz, augite, low‐Ca pyroxene, and magnetite. The composition of this devitrified glass varies from inclusion to inclusion, but is generally consistent with a mixture of quartz and feldspar with minor proportions of mafic minerals. In the case of granitoid inclusions, melt pockets commonly occur at the boundaries between feldspar and quartz grains. In metasedimentary inclusions, some of these melt pockets contain remnants of partially melted feldspar grains. These melt pockets may have formed by eutectic melting caused by inclusion of these fragments in the hot (650 to 1610 °C) impact melt that crystallized to form the Vredefort Granophyre.  相似文献   

16.
Abstract— Large meteorite impacts, such as the one that created the Vredefort structure in South Africa?2 Ga ago, result in significant heating of the target. The temperatures achieved in these events have important implications for post‐impact metamorphism as well as for the development of hydrothermal systems. To investigate the post‐impact thermal evolution and the size of the Vredefort structure, we have analyzed impact‐induced shock heating in numerical simulations of terrestrial impacts by projectiles of a range of sizes thought to be appropriate for creating the Vredefort structure. When compared with the extent of estimated thermal shock metamorphism observed at different locations around Vredefort, our model results support our earlier estimates that the original crater was 120–160 km in diameter, based on comparison of predicted to observed locations of shock features. The simulations demonstrate that only limited shock heating of the target occurs outside the final crater and that the cooling time was at least 0.3 Myr but no more than 30 Myr.  相似文献   

17.
Abstract— Historically, there have been a range of diameter estimates for the large, deeply eroded Vredefort impact structure within the Witwatersrand Basin, South Africa. Here, we estimate the diameter of the transient cavity at the present level of erosion as ~124–140 km, based on the spatial distribution of shock metamorphic features in the floor of the structure and downfaulted Transvaal outliers. Taking erosion into account (<6 km) and scaling to original final rim diameter, an estimate of close to 300 km for the rim diameter is obtained. Independent estimates of the final rim diameter, based on an empirical relation of central uplift diameter to rim diameter, spatial distribution of pseudotachylites, and concentric large scale structural patterns, give a similar estimate of close to 300 km for the original final rim diameter. An impact structure of this size is expected to have had an original multi-ring form. At this size, the Vredefort impact structure encompasses the bulk of the Witwatersrand Basin, which appears to owe its preservation to the Vredefort impact. In addition, the Vredefort impact event may have been the thermal driver for some of the widespread hydrothermal activity in the area, which, in recent interpretations, is believed to be a component in the creation of the world-class gold deposits of the Witwatersrand Basin.  相似文献   

18.
Abstract— The 15 km diameter Ames structure in northwestern Oklahoma is located 2.75 km below surface in Cambro‐Ordovician Arbuckle dolomite, which is overlain by Middle Ordovician Oil Creek Formation shale. The feature is marked by two concentric ring structures, with the inner ring of about 5 km diameter probably representing the collapsed remnant of a structural uplift composed of brecciated Precambrian granite and Arbuckle dolomite. Wells from both the crater rim and the central uplift are oil‐ and gas‐producing, making Ames one of the economically important impact structures. Petrographic, geochemical, and age data were obtained on samples from the Nicor Chestnut 18‐4 drill core, off the northwest flank of the central uplift. These samples represent the largest and best examples of impact‐melt breccia obtained so far from the Ames structure. They contain carbonate rocks, which are derived from the target sequence. The chemical composition of the impact‐melt breccias is similar to that of target granite, with variable carbonate admixture. Some impact‐melt rocks are enriched in siderophile elements indicating the possible presence of a meteoritic component. Based on stratigraphic arguments, the age of the crater was estimated at 470 Ma. Previous 40Ar‐39Ar dating attempts of impact‐melt breccias from the Dorothy 1–19 core yielded plateau ages of about 285 Ma, which is in conflict with the stratigraphic age. The new 40Ar‐39Ar age data obtained on the melt breccias from the Nicor Chestnut core by ultraviolet (UV) laser spot analysis resulted in a range of ages with maxima around 300 Ma. These data could reflect processes related either the regional Nemaha Uplift or resetting due to hot brines active on a midcontinent‐wide scale, perhaps related to the Alleghenian and Ouachita orogenies. The age data indicate an extended burial phase associated with thermal overprint during Late Pennsylvanian‐Permian.  相似文献   

19.
Genesis and emplacement of Vredefort Granophyre, the impact melt rock exposed on the Vredefort Dome, the erosional remnant of the central uplift of the Vredefort impact structure, South Africa, have long been debated. This debate was recently reinvigorated by the discovery that besides the previously known felsic variety of >66 wt% SiO2, a second, somewhat more mafic phase of <66 wt% SiO2 occurs along a Granophyre dike on farms Kopjeskraal and Eldorado in the northwest sector of the dome. Two hypotheses have been put forward to explain the genesis and emplacement of this second phase: (1) successive injections of impact melt into extensional fractures opened in the course of central uplift formation/crater modification, with melts of distinct compositions derived from a differentiating impact melt body in the crater, and (2) generation of the more mafic phase as a product of admixture/assimilation of a mafic country rock component, either the so-called epidiorite of possible Ventersdorp Supergroup affiliation or the Dominion Group meta-lava (DGL), to Felsic Granophyre. In the latter model, contamination with mafic country rock would have occurred during downward intrusion and stoping into and below the crater floor. The so-called Mafic Granophyre has previously only ever been sampled on a single site (Farm Kopjeskraal). In this study, samples of Granophyre occurring along the southerly extension of this dike on farm Rensburgdrif, and from a second dike on the Rietkuil property further southwest were investigated by field work, and petrographic, geochemical, and isotopic analysis. The mafic phase indeed occurs in the interior of the dike at Rensburgdrif, and also on Rietkuil. New geochemical and Sr-Nd isotope data support the hypothesis that the Mafic Granophyre composition represents a mixture between Felsic Granophyre and a mafic country rock. A 20% admixture of epidiorite or DGL to Felsic Granophyre provides an excellent match for the chemical composition of the Mafic Granophyre. The Sr-Nd isotope data indicate that this admixture likely involved the epidiorite component rather than DGL. Together with earlier Sr-Nd-Os-Se isotopic data, and other geochemical data, these results further support formation of the Mafic Granophyre by local assimilation/admixture of epidiorite to Felsic Granophyre.  相似文献   

20.
Abstract— The structural, topographic and other characteristics of the Vredefort, Sudbury, and Chicxulub impact structures are described. Assuming that the structures originally had the same morphology, the observations/interpretations for each structure are compared and extended to the other structures. This does not result in any major inconsistencies but requires that the observations be scaled spatially. In the case of Vredefort and Sudbury, this is accomplished by scaling the outer limit of particular shock metamorphic features. In the case of Chicxulub, scaling requires a reasoned assumption as to the formation mechanism of an interior peak ring. The observations/interpretations are then used to construct an integrated, empirical kinematic model for a terrestrial peak‐ring basin. The major attributes of the model include: a set of outward‐directed thrusts in the parautochthonous rocks of the outermost environs of the crater floor, some of which are pre‐existing structures that have been reactivated during transient cavity formation; inward‐directed motions along the same outermost structures and along a set of structures, at intermediate radial distances, during transient cavity collapse; structural uplift in the center followed by a final set of radially outward‐directed thrusts at the outer edges of the structural uplift, during uplift collapse. The rock displacements on the intermediate, inward and innermost, outward sets of structures are consistent with the assumption that a peak ring will result from the convergence of the collapse of the transient cavity rim area and the collapse of the structural uplift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号