首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nonlinear fastest growing perturbation, which is related to the nonlinear singular vector and nonlinear singular value proposed by the first author recently, is obtained by numerical approach for the two-dimensional quasigeostrophic model in this paper. The difference between the linear and nonlinear fastest growing perturbations is demonstrated. Moreover, local nonlinear fastest growing perturbations are also found numerically. This is one of the essential differences between linear and nonlinear theories, since in former case there is no local fastest growing perturbation. The results show that the nonlinear local fastest growing perturbations play a more important role in the study of the first kind of predictability than the nonlinear global fastest growing perturbation.  相似文献   

2.
张礼平 《湖泊科学》2003,15(Z1):77-82
经SVD分析,截取足够多的预报场和因子场时间系数,使其相互关系代表两场的大尺度联系,预报场时间系数与其奇异向量线性组合估计场能反映原场主要特征.借助最优化技术,选择合理的系数,建立预测公式,由因子场时间系数预测预报场时间系数,同时订正预报场时间系数心a1 a2 aN本身的误差和反演过程中分析误差造成的场格点趋势预测的误差.最后将预测的预报场时间系数和对应奇异向量反演为整个场的预报.预报过程重点考虑可预报的大尺度变化,滤去不可预报的小扰动,依据两场主要耦合关系,预测预报场未来的主要变化.  相似文献   

3.
在地壳的每一点,由于受力定义了整个地壳上的向量场,然后利用同胚,将其转化为球面上的自映射,并根据球面的欧拉示性数等于2,说明该自映射至少有一个不动点,即向量场至少有一个奇点.这样,从理论上解释了地震、海啸、火山等自然现象发生的必然性.  相似文献   

4.
Singular Value Decomposition method of solving a linear system of equations can be successfully used for focus location when both linear and nonlinear methods are applied. This method can also be used to calculate the variance of the separate source coordinates, when the variance of the input data is known. It is also possible to optimize the geometry of a seismic network by using the condition number of the covariance matrix, and to check the set of data which is used for the focus location when some of the data are expected to be incorrect.Examples of applications of the Singular Value Decomposition method are demonstrated for linear and nonlinear methods with reference to the seismic network in Quirke Mine, Ontario, Canada.Presented at the Fred Leighton Memorial Workshop on Mining Induced Seismicity, Montreal, Canada, August 30, 1987.  相似文献   

5.
Reinforced concrete structure may exhibit significant inelastic hysteretic behavior when subject to strong earthquake excitation. To investigate such an inelastic behavior, in this study, a new system identification technique is applied by using the deteriorating distributed element (DDE) model to simulate the hysteretic behavior of a degrading structure. Through the advanced signal processing technique, the multiple singular spectrum analysis (SSA) and the nonlinear SSA, the recorded inelastic restoring force of a deteriorating structure can be decomposed into several independent additive components in its sequentially degrading order and with decreasing weight. With each decomposed hysteresis loop, the model parameters of the DDE model are identified. The evolutionary properties of the progressive stiffness degradation behavior of reinforced concrete structure can be observed from the identified model parameters. Finally, comparison on the physical properties of the identified DDE model with respect to the seismic response data of the deteriorating structure is also discussed. The result shows that the proposed identification technique can have a good estimation on the seismic behavior of the degrading structure. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The physical background of singular memory models and in particular the Cole–Cole model is discussed. Three models of anisotropic linear viscoelasticity with frequency-dependent stiffness coefficients are considered. The models are constructed in such a way that anisotropic properties are separated from anelastic effects. Two of these models represent finite-speed wave propagation with singularities at the wavefronts (the exponential relaxation model) and without singularities at the wavefronts (the Cole–Cole model), while a third model called the fractional model is related to the constant Q with unbounded propagation speed. The Cole–Cole and fractional models belong to the class of singular memory models studied earlier because of their applications in polymer rheology, poroelasticity, poroacoustics, seismic wave propagation and other applications. Well-posedness of initial boundary value problems with mixed Dirichlet–Neumann boundary conditions is established for the three models. Regularity properties of the three models are examined.  相似文献   

7.
地球物理电磁场数据与虚拟地震波场数据之间存在数学上的等效转换关系,通过这种等效转换,可有效提高地球物理电磁法对地下目标体分界面的辨识度.但是这种转换在数学上属于不适定问题,可采用奇异值分解法处理.由于大奇异值控制计算矩阵的主要信息,小的奇异值控制计算矩阵的次要信息,传统的截断奇异值分解法只保留大奇异值,而忽略小的奇异值,导致数值解不够精确.本文提出一种新的修正方案——改进截断奇异值法,采用岭估计方法计算由小的奇异值引起的虚拟波场.模型计算结果表明:改进截断奇异值法比传统的奇异值分解法得到的波场转换结果更好,对某煤矿采空区探测数据进行了处理,成功分辨出采空区分界面.  相似文献   

8.
本文发展了基于辛格式离散奇异褶积微分算子(SDSCD)的保结构方法模拟弹性波场,求解弹性波动方程时,引入辛差分格式进行时间离散,采用离散奇异褶积微分算子进行空间离散.相比于传统的伪谱方法,该方法提高了计算精度和稳定性.数值结果表明SDSCD方法可以有效地抑制数值频散,为解决大尺度、长时程地震波场模拟问题提供了合适的数值方法.  相似文献   

9.
将布格异常作为二维实矩阵对其进行了奇异值分解。用其左特征向量矩阵与右特征向量矩阵的立积构造了一个二维完备(特征空间)正交基。布格异常投影到该正交基上的系数是布格异常矩阵的特征值(奇异值的平方)。奇异值代表了布格异常在其特征空间的一种功率密度。对比了密度分布面数、密度分布面数的变化率、密度分布面数的积分能量后,定义了奇异值谱半径量度下的能量测度。能量测度与能量谱半径符合(简单分形)指数或(多维分形)分段指数变化。利用教优分段方法得到这些分段点,利用这些分段点在特征空间中对地球物理场进行了重建、滤波。编制了与GIS结合的程序。用该方法分析和处理加拿大Nova Scotin的地球物理资料,并将结果与巳知的地质、金矿点进行了对比。结果表明,可以很好地提取地球物理场中的背景、异常场,该结果与岩性、构造、巳知矿点关联,可进行矿产资源评价和靶区预测。该方法还可用于各种地球物理信号的分离、图像处理、图像压缩等。作者开发的结合GIS的应用程序,使得这些分析能快速完成。  相似文献   

10.
Conditional nonlinear optimal perturbation(CNOP) is an extension of the linear singular vector technique in the nonlinear regime.It represents the initial perturbation that is subjected to a given physical constraint,and results in the largest nonlinear evolution at the prediction time.CNOP-type errors play an important role in the predictability of weather and climate.Generally,when calculating CNOP in a complicated numerical model,we need the gradient of the objective function with respect to the initial perturbations to provide the descent direction for searching the phase space.The adjoint technique is widely used to calculate the gradient of the objective function.However,it is difficult and cumbersome to construct the adjoint model of a complicated numerical model,which imposes a limitation on the application of CNOP.Based on previous research,this study proposes a new ensemble projection algorithm based on singular vector decomposition(SVD).The new algorithm avoids the localization procedure of previous ensemble projection algorithms,and overcomes the uncertainty caused by choosing the localization radius empirically.The new algorithm is applied to calculate the CNOP in an intermediate forecasting model.The results show that the CNOP obtained by the new ensemble-based algorithm can effectively approximate that calculated by the adjoint algorithm,and retains the general spatial characteristics of the latter.Hence,the new SVD-based ensemble projection algorithm proposed in this study is an effective method of approximating the CNOP.  相似文献   

11.
地球物理信号中普遍含有噪声,消除噪声是地球物理信号处理中的关键技术之一.奇异功率谱分析(SSA)是在状态空间(又称相空间)中研究(系统)动力学、非线性科学与混沌现象的方法.本文在状态空间中通过SSA分解,研究、应用地球物理序列的尺度不变性进行多维分形滤波:通过在状态空间的SSA分解,构造了经验正交函数系(EOF);在EOF子空间中定义了两种尺度与测度后,发现了两种测度与尺度皆在多个尺度范围内存在尺度不变性;利用这种尺度~测度的尺度不变性,设计、实现了多维分形奇异功率谱(MSSA)滤波模型;处理解释了大洋钻探(ODP)1143A孔岩芯自然反射性(NGR)资料;Fourier功率谱分析结果证明,MSSA能有效地压制噪声,提取有用信号.研究得出,嵌入维数对MSSA基本无影响(小于1/1000),多维分形滤波器(MSSA)能有效压制噪声或提取有用信号.  相似文献   

12.
本文在前人工作的基础上,建立了一种基于Shannon奇异核的交错网格褶积微分算子方法.文中不仅详细讨论了影响算子精度的各种因素,同时也着重分析了其在弹性波模拟中的频散关系和稳定性条件.通过和交错网格有限差分算子比较,发现该算子即使在高波数域也具有较高的精度.均匀介质中的数值试验也表明,该方法9点格式就基本上达到了解析解精度.而分层均匀介质和复杂介质中的地震波数值模拟也同时证实了该方法精度高,稳定性好,是一种研究复杂介质中地震波传播的有效数值方法.  相似文献   

13.
ABSTRACT

An appropriate streamflow forecasting method is a prerequisite for implementation of efficient water resources management in the water-limited, arid regions that occupy much of Iran. In the current research, monthly streamflow forecasting was combined with three data-driven methods based on large input datasets involving 11 precipitation stations, a natural streamflow, and four climate indices through a long period. The major challenges of rainfall–runoff modelling are generally attributed to complex interacting processes, the large number of variables, and strong nonlinearity. The sensitivity of data-driven methods to the dimension of input/output datasets would be another challenge, so large datasets should be compressed into independently standardized principal components. In this study, three pre-processing techniques were applied: singular value decomposition (SVD) provided more efficient forecasts in comparison to principal component analysis (PCA) and average values of inputs in all networks. Among the data-driven methods, the multi-layer perceptron (MLP) with 1-month lag-time outperformed radial basis and fuzzy-based networks. In general, an increase in monthly lag-time of streamflow forecasting resulted in a decline in forecasting accuracy. The results reveal that SVD was highly effective in pre-processing of data-driven evaluations.  相似文献   

14.
利用地震面波频散反演岩石圈结构的奇异值分解算法   总被引:11,自引:2,他引:9       下载免费PDF全文
在利用面波频散数据反演介质S波速度结构的过程中,引入奇异值分解方法计算随机逆,利用Wiggins方法对较大奇异值修改和随机逆方法对较小奇异值修改的优点,协调了分辨率和解的关系,改进了随机逆解的精确性和稳定性.模型试算表明,该方法反演所得结果较Harkrider的程序反演结果精确,分辨率更高.  相似文献   

15.
The existence of strong random noise in surface microseismic data may decrease the utility of these data. Non‐subsampled shearlet transform can effectively suppress noise by properly setting a threshold to the non‐subsampled shearlet transform coefficients. However, when the signal‐to‐noise ratio of data is low, the coefficients related to the noise are very close to the coefficients associated with signals in the non‐subsampled shearlet transform domain that the coefficients related to the noise will be retained and be treated as signals. Therefore, we need to minimise the overlapping coefficients before thresholding. In this paper, a singular value decomposition algorithm is introduced to the non‐subsampled shearlet transform coefficients, and low‐rank approximation reconstructs each non‐subsampled shearlet transform coefficient matrix in the singular value decomposition domain. The non‐subsampled shearlet transform coefficients of signals have bigger singular values than those of the random noise, which implies that the non‐subsampled shearlet transform coefficients can be well estimated by taking only a few largest singular values. Therefore, those properties of singular value decomposition may significantly help minimise overlapping of noise and signals coefficients in the non‐subsampled shearlet transform domain. Finally, the denoised microseismic data are obtained easily by giving a simple threshold to the reconstructed coefficient matrix. The performance of the proposed method is evaluated on both synthetic and field microseismic data. The experimental results illustrate that the proposed method can eliminate random noise and preserve signals of interest more effectively.  相似文献   

16.
Two methods for initialization of ensemble forecasts are compared, namely, singular vector (SV) and conditional nonlinear optimal perturbation (CNOP). The comparison is done for forecast lengths of up to 10 days with a three-level quasi-geostrophic (QG) atmospheric model in a perfect model scenario. Ten cases are randomly selected from 1982/1983 winter to 1993/1994 winter (from December to the following February). Anomaly correlation coefficient (ACC) is adopted as a tool to measure the quality of the predicted ensembles on the Northern Hemisphere 500 hPa geopotential height. The results show that the forecast quality of ensemble samples in which the first SV is replaced by CNOP is higher than that of samples composed of only SVs in the medium range, based on the occurrence of weather regime transitions in Northern Hemisphere after about four days. Besides, the reliability of ensemble forecasts is evaluated by the Rank Histograms. The above conclusions confirm and extend those reached earlier by the authors, which stated that the introduction of CNOP improves the forecast skill under the condition that the analysis error belongs to a kind of fast-growing error by using a barotropic QG model. Supported by Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KZCX3-SW-230), National Natural Science Foundation of China (Grant Nos. 40675030, 40633016)  相似文献   

17.
I investigated the two‐dimensional magnetotelluric data inversion algorithms in studying two significant aspects within a linearized inversion approach. The first one is the method of minimization and second one is the type of stabilizing functional used in parametric functionals. The results of two well‐known inversion algorithms, namely conjugate gradient and the least‐squares solution with singular value decomposition, were compared in terms of accuracy and CPU time. In addition, magnetotelluric data inversion with various stabilizers, such as L2‐norm, smoothing, minimum support, minimum gradient support and first‐order minimum entropy, were examined. A new inversion algorithm named least‐squares solution with singular value decomposition and conjugate gradient is suggested in seeing the outcomes of the comparisons carried out on least‐squares solutions with singular value decomposition and conjugate gradient algorithms subject to a variety of stabilizers. Inversion results of synthetic data showed that the newly suggested algorithm yields better results than those of the individual implementations of conjugate gradient and least‐squares solution with singular value decomposition algorithms. The suggested algorithm and the above‐mentioned algorithms inversion results for the field data collected along a line crossing the North Anatolian Fault zone were also compared each other and results are discussed.  相似文献   

18.
Least squares migration can eliminate the artifacts introduced by the direct imaging of irregular seismic data but is computationally costly and of slow convergence. In order to suppress the migration noise, we propose the preconditioned prestack plane-wave least squares reverse time migration (PLSRTM) method with singular spectrum constraint. Singular spectrum analysis (SSA) is used in the preconditioning of the take-offangle-domain common-image gathers (TADCIGs). In addition, we adopt randomized singular value decomposition (RSVD) to calculate the singular values. RSVD reduces the computational cost of SSA by replacing the singular value decomposition (SVD) of one large matrix with the SVD of two small matrices. We incorporate a regularization term into the preconditioned PLSRTM method that penalizes misfits between the migration images from the plane waves with adjacent angles to reduce the migration noise because the stacking of the migration results cannot effectively suppress the migration noise when the migration velocity contains errors. The regularization imposes smoothness constraints on the TADCIGs that favor differential semblance optimization constraints. Numerical analysis of synthetic data using the Marmousi model suggests that the proposed method can efficiently suppress the artifacts introduced by plane-wave gathers or irregular seismic data and improve the imaging quality of PLSRTM. Furthermore, it produces better images with less noise and more continuous structures even for inaccurate migration velocities.  相似文献   

19.
对损伤部位向量(DLV)法作了简单介绍,并用该方法对钢框架进行了损伤识别和损伤定位。该方法假定结构损伤前后为线性,对结构损伤前后柔度矩阵差进行奇异值分解,将奇异值为零所对应的向量,作为静荷载施加在无损结构的测点位置,则应力为零的单元为可能损伤的单元。对3种不同工况的钢框架进行了振动模态试验,用前3阶模态参数构造框架的柔度矩阵,按照DLV法对其进行了损伤识别,识别结果与已知损伤情况相一致。从测试自由度不完备、噪声和振型质量归一化系数这3个方面对识别效果进行了分析,结果表明:当损伤使结构动力特性有微小改变时,使用该方法不易定位损伤,应结合局部损伤识别方法进行判定;当损伤使结构动力特性有较大改变时,该方法能有效识别损伤的单元。DLV方法概念简单,理论明确,不受结构类型的限制,不需要结构的数学模型和模型缩聚或扩展技术,只需获得结构损伤前后的前几个低阶模态参数,即可识别结构一处或多处损伤,实际应用时可操作性强。  相似文献   

20.
We studied the structure of the Indian Ocean(IO)Meridional Overturning Circulation(MOC)by applying a nonlinear inertia theory and analyzed the coupled relationship between zonal wind stress and MOC anomalies.Our results show that the inertia theory can represent the main characteristics of the IO MOC:the subtropical cell(STC)and cross-equator cell(CEC).The stream function in equatorial and northern IO changes a sign from winter to summer.The anomalies of the zonal wind stress and stream function can be decomposed into summer monsoon mode,winter monsoon mode,and abnormal mode by using the singular vector decomposition(SVD)analysis.The first two modes correlate with the transport through 20°S and equator simultaneously whereas the relationship obscures between the third mode and transports across 20°S and equator,showing the complex air-sea interaction process.The transport experiences multi-time scale variability according to the continuous power spectrum analysis,with major periods in inter-annual and decadal scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号