首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Rock, soil, and plant (terrestrial moss, European mountain ash leaves, mountain birch leaves, bark and wood, and spruce needles and wood) samples, collected at 3 km intervals along a 120 km long transect (40 sites) cutting the city of Oslo, Norway, were analysed for their Pb concentration and Pb-isotope ratios. A general decrease in 206Pb/207Pb, 208Pb/207Pb and 206Pb/208Pb ratios, with a characteristic low variability in all plant materials and the plant-derived O-horizon of soil profiles, compared to rocks and mineral soils, is observed along the transect. It is demonstrated that minerogenic and biogenic sample materials belong to two different spheres, the lithosphere and biosphere, and that geochemical processes determining their chemical and isotopic compositions differ widely. Background variation for both sample materials needs to be established and documented at the continental and global scale before the anthropogenic influence on the geochemistry of the earth’s surface can be reliably estimated.  相似文献   

2.
Analytical results for Pb-concentrations and isotopic ratios from ca. 150 samples of soil A horizon and ca. 145 samples of soil C horizon collected along a 4000-km east–west transect across the USA are presented. Lead concentrations along the transect show: (1) generally higher values in the soil A-horizon than the C-horizon (median 21 vs. 16.5 mg/kg), (2) an increase in the median value of the soil A-horizon for central to eastern USA (Missouri to Maryland) when compared to the western USA (California to Kansas) (median 26 vs. 20 mg/kg) and (3) a higher A/C ratio for the central to eastern USA (1.35 vs. 1.14). Lead isotopes show a distinct trend across the USA, with the highest 206Pb/207Pb ratios occurring in the centre (Missouri, median A-horizon: 1.245; C-horizon: 1.251) and the lowest at both coasts (e.g., California, median A-horizon: 1.195; C-horizon: 1.216). The soil C-horizon samples show generally higher 206Pb/207Pb ratios than the A-horizon (median C-horizon: 1.224; A-horizon: 1.219). The 206Pb/207Pb-isotope ratios in the soil A horizon show a correlation with the total feldspar content for the same 2500-km portion of the transect from east-central Colorado to the Atlantic coast that shows steadily increasing precipitation. No such correlation exists in the soil C horizon. The data demonstrate the importance of climate and weathering on both Pb-concentration and 206Pb/207Pb-isotope ratios in soil samples and natural shifts thereof in the soil profile during soil-forming processes.  相似文献   

3.
Lead concentrations and stable lead isotopes (204Pb, 206Pb, 207Pb, 208Pb) were measured in forest moss samples (Pleurozium schreberi or Scleropodium purum) collected at 273 sites across the Czech Republic during 2010. Continuously decreasing median Pb concentrations in moss were documented over the last two decades: 1995: 11 mg/kg, 2000: 5.66 mg/kg, 2005: 4.94 mg/kg and 2010: 2.85 mg/kg. Several local anomalies have decreased in scale, the overall regional distribution patterns remained, however, the same. The regional Pb isotope ratio distributions show that the ratios show little variation for a large central part of the country and provide the large-scale background isotope ratios for the Czech Republic of about 204Pb/206Pb = 0.0550, 206Pb/207Pb = 1.167, 206Pb/208Pb = 0.478 and 207Pb/208Pb = 0.409 for 2010. This background Pb isotope ratio signal in moss has been locally (900–7500 km2) modified by specific Pb isotopic ratio signals caused by deposition of Pb emissions from known local anthropogenic Pb emission sources, such as industrial combustion of local coal, and a variety of industrial enterprises (metallurgical, engineering and glass works). At some sites where mining of uranium and polymetallic ores took place the moss samples show also a locally specific Pb isotope signal. The in terms of area affected largest deviations in the Pb-isotope ratios, e.g., in the Bohemian Massif, may be due to the input of geogenic dust.  相似文献   

4.
A regional isotopic study of Pb and S in hydrothermal galenas and U–Pb and S in potential source rocks was carried out for part of Moravia, Czech Republic. Two major generations of veins, (syn-) Variscan and post-Variscan, are defined based on the Pb-isotope system together with structural constraints (local structures and regional trends). The Pb-isotopic compositions of galena plot in two distinct populations with outliers in 206Pb/204Pb–207Pb/204Pb space. Galena from veins hosted in greywackes provides a cluster with the lowest Pb–Pb ratios: 206Pb/204Pb = 18.15–18.27, 207Pb/204Pb = 15.59–15.61, 208Pb/204Pb = 38.11–38.23. Those hosted in both limestones and greywackes provide the second cluster: 206Pb/204Pb = 18.37–18.44, 207Pb/204Pb = 15.60–15.63, 208Pb/204Pb = 38.14–38.32. These clusters suggest model Pb ages as Early Carboniferous and Triassic–Jurassic, the latter associated with MVT-like deposits. Two samples from veins hosted in Proterozoic rocks lie outside the two clusters: in metagranitoid (206Pb/204Pb = 18.55, 207Pb/204Pb = 15.64, 208Pb/204Pb = 38.29) and in orthogneiss (206Pb/204Pb = 18.79, 207Pb/204Pb = 15.73, 208Pb/204Pb = 38.54). The results from these two samples suggest an interaction of mineralizing fluids with the radiogenic Pb-rich source (basement?). The values of δ34S suggest the Paleozoic host rocks (mostly ?6.7 to +5.2‰ CDT) as the source of S for hydrothermal sulfides (mostly ?4.8 to +2.5‰ CDT). U–Pb data and Pb isotope evolutionary curves indicate that Late Devonian and Early Carboniferous sediments, especially siliciclastics, are the general dominant contributor of Pb for galena mineralization developed in sedimentary rocks. Plumbotectonic mixing occurred, it is deduced, only between the lower and the upper crust (the latter involving Proterozoic basement containing heterogeneous radiogenic Pb), without any significant input from the mantle. It is concluded that in the Moravo–Silesian and Rhenohercynian zones (including proximal districts in Poland) lead and sulfur have been mobilized from the adjacent rocks during multiple hydrothermal events in processes that are remarkably comparable in timing, geochemistry of fluids and nature of sources.  相似文献   

5.
The development of the MC-ICP-MS method, which was launched about one decade ago and was largely stimulated by the need to solve geological problems, has opened a new avenue in isotope mass spectrometry. One of the advantages of this method is the possibility of applying a newly developed approach to the correction of analytical results for the effect of mass discrimination by normalizing the measured isotope ratios of an element to a reference (standard) isotope ratio of another element. This makes it possible to overcome the main disadvantage of conventional thermal ionization mass spectrometry (TIMS), in which the effect of mass discrimination cannot be fully taken into account during isotope analysis, and thus to implement a highly accurate method for the analysis of Pb-isotope composition. In application to the capability of the NEPTUNE MC-ICP mass spectrometer, we optimized and calibrated a method for high-accuracy Pb isotope analysis in solutions spiked with Tl, with all currently measured Pb-isotope ratios normalized to the standard 205Tl/203Tl ratio (TLN-MC-ICP-MS). The factors affecting the random and systematic analytical errors were examined, and the optimal operating regime and analytical conditions were determined. Much attention was paid to the correlation of the measurement results and the mass discrimination effect determined from the 205Tl/203Tl ratio. The value of the 205Tl/203Tl normalizing ratio was analytically determined through isotope analyses of the NIST SRM 981, and SRM 982 standard samples of Pb-isotope composition. The data obtained for two mixtures Tl + Pb (SRM 982) and Tl + Pb (SRM 981) in ten replicate analyses were 2.38898 ± 12 and 2.38883 ± 20, respectively. These results are in good mutual agreement, and their general mean 205Tl/203Tl = 2.3889 ± 1 coincides (within the error) with the recently published values of 2.3887 ± 7 [Collerson et al., 2002] and 2.3889 ± 1 [Thirlwall, 2002]. The precision of the method (±2SD), which was assayed by the long-term reproducibility of the results of replicate analyses of SRM 981 and seven galena samples (90 analyses) was 0.016–0.018% for the 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios and 0.005 and 0.009% for the 207Pb/206Pb and 208Pb/206Pb ratios, respectively. The precision of the isotope analysis of common Pb was significantly improved (by factors of 6–10 for various isotope ratios) compared with the precision of TIMS techniques acceptable in isotope studies during three decades. The described method was applied to examine the Pb-isotope composition of approximately 250 samples of galena, scheelite, and pyrite from a number of well known (including large) gold, sulfied, and base-metal deposits. The precision of the method (0.01–0.02%) makes it possible to study small inter-and intra-phase differences in Pb-isotope ratios in hydrothermal and magmatic rocks, to assay the scale of regional and variations in the isotope composition of ore Pb, and to correlate the Pb-isotope composition of rocks and ores and reveal its evolutionary trends.  相似文献   

6.
The Pb isotopic compositions of coexisting plagioclase and sulfide from the Bushveld Complex were determined by laser ablation multi-collector ICPMS (LA MC-ICPMS). The samples are of the upper Critical Zone in the northeast corner of the Complex and were collected from drill core and underground mine exposures. All the rocks are fresh and exhibit no evidence for alteration, weathering, or disruption of the Pb isotope systematics subsequent to the initial cooling of the intrusion. Furthermore, individual plagioclase and sulfide crystals do not contain enough U to warrant correction for radiogenic in-growth. For these reasons, the measured Pb isotope ratios approximate the initial ones. For plagioclase, 207Pb/206Pb ranges from 0.98 to 1.02 and 208Pb/206Pb from 2.26 to 2.35. Low 207Pb/206Pb and 208Pb/206Pb ratios characterize grain boundaries and partially annealed microcracks, some of which contain minute fragments of sulfide and other phases, and this accounts for most, if not all, the heterogeneity exhibited by individual samples. Real compositional differences exist, however, in plagioclase from different lithologic layers. For example, plagioclase 207Pb/206Pb values vary from 1.004 in norite beneath the Merensky pyroxenite to 1.009 in the mineralized pyroxenite, and 0.997 in overlying norite. In most samples in which sulfide and plagioclase coexist, the sulfide 207Pb/206Pb ratio is lower and 208Pb/206Pb ratio higher than the corresponding ones in plagioclase. For example, in a mineralized Merensky reef sample, average sulfide 207Pb/206Pb and 208Pb/206Pb ratios are 0.993 and 2.313, respectively, while those in plagioclase are 1.000 and 2.292. In one sample, the sulfide is extremely heterogeneous, with 207Pb/206Pb and 208Pb/206Pb ratios as low as 0.84 and 2.12. In this particular sample, the compositions must represent an isolated occurrence of addition of a young Pb component.The array of sulfide and plagioclase compositions requires multiple sources of Pb at the time of crystallization or soon thereafter. The disequilibrium between plagioclase and sulfide implies that some of the Pb originated from the isotopically distinct country rocks and was introduced at temperatures at which the composition of sulfide but not plagioclase could be modified. Thus, Bushveld sulfide, and to some extent plagioclase, do not reliably record the initial Pb isotopic composition(s) of the parent magma(s).  相似文献   

7.
The Pb-isotope composition of soils and sediments has been measured from both highly contaminated and non-contaminated regions of Bayou Trepagnier, a bayou in southern Louisiana that has had oil refinery effluent discharged into it over the past 66 years. Spoil banks created by the dredging of the bayou bottom approximately 50 years ago are the main source of contamination within the ecosystem. The 206Pb/207Pb isotope composition of the contaminant is relatively constant averaging 1.275 ±0.008. A literature search reveals that such radiogenic values are typical of ores from southeastern Missouri. When surficial soil 206Pb/208Pb and 206Pb/207Pb isotope ratios are plotted against each other, a straight line is defined (r2=0.99). The linear correlation suggests mixing between Pb from the spoil banks and Pb from a natural source. The latter source may consist of Pb in soil that has been leached of its natural radiogenic component during weathering processes. Mixing calculations indicate that transport of contaminant Pb is widespread and occurs several hundred meters from the spoil banks. Despite the low Pb concentrations of some of the soils, the isotope data demonstrate that a significant amount of the Pb is derived from the pollutant source. Received: 12 July 1999 · Accepted: 14 September 1999  相似文献   

8.
Economic reform in China since 1978 has accelerated economic development nationwide hugely, but has also brought about some environmental pollution. In order to identify the primary Pb source to the atmosphere in the central Guizhou region, Pb isotopic ratios in the acid soluble fraction of sediment from Hongfeng Lake were investigated. Lead isotopes in the lake sediments record the history of regional atmospheric Pb pollution. Before the economic reform in 1978, the 208Pb/206Pb and 206Pb/207Pb ratios in the leachates of lake sediments were constant, with a range of 2.0060 to 2.0117 and of 1.2314 to 1.2355, respectively. In the early period of economic reform (1978 to 1988), with the rapid industrial growth in Guizhou province, the acid soluble Pb isotope ratios in the lake sediments changed sharply: the 208Pb/206Pb ratios increased from 2.0212 to about 2.05, while the 206Pb/207Pb ratios decreased from 1.2251 to 1.2060. Emissions from Pb-ore-related industries are suggested to be the major pollution source of Pb in this period. Due to output from a local power plant since 1988, the isotope ratios of the acid soluble Pb in sediments in 1990s are characterized by a little higher radiogenic Pb (208Pb/206Pb = 2.0340–2.0400; 206Pb/207Pb = 1.2122–1.2158) than for the 1980s.  相似文献   

9.
Soil O and C horizon samples (N = 752) were collected at a sample density of 1 site/36 km2 in Nord-Trøndelag and parts of Sør-Trøndelag (c. 25,000 km2), and analysed for Pb and three of the four naturally occurring Pb isotopes (206Pb, 207Pb and 208Pb) in a HNO3/HCl extraction. Soil O and C horizons are decoupled in terms of both Pb concentrations and Pb isotope ratios. In the soil C horizon the Grong-Olden Culmination, a continuous exposure of the Precambrian crystalline basement across the general grain of the Caledonian orogen, is marked by a distinct 206Pb/207Pb isotope ratio anomaly. No clear regional or even local patterns are detected when mapping the Pb isotope ratios in the soil O horizon samples. Variation in the isotope ratios declines significantly from the soil C to the O horizon. On average, Pb concentrations in the O horizon are four times higher and the 206Pb/207Pb isotope ratio is shifted towards a median of 1.15 in comparison to 1.27 in the C horizon. It is demonstrated that natural processes like weathering in combination with plant uptake need to be taken into account in order to distinguish anthropogenic input from natural influences on Pb concentration and the 206Pb/207Pb isotope ratio in the soil O horizon.  相似文献   

10.
The Reshian-Lamnian area within the Hazara-Kashmir syntaxis in Pakistan is composed mainly of the rocks of the Salkhala, Panjal and Murree formations. Base metal sulfide mineralization in the form of sphalerite and galena with lesser amounts of chalcopyrite and pyrite is present within the Salkhala Formation of the study area. Chemically all these ore phases are homogeneous in composition. The Pb isotopic composition of galena from the area suggests that there is very little or negligible variation in the ratios of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb. Modal ages ranging from 509 to 562 Ma and the μ values of 10.71 to 10.93 have been calculated for the studied Pb-Zn mineralization. On the basis of field features, mineralogy and Pb-isotope signatures, it is concluded that the Pb-Zn sulfide mineralization in the Reshian-Lamnia area is pre-Himalayan in age and can be correlated with the Cambro-Ordovician (Pan-African) orogenic event.  相似文献   

11.
Knowledge of the cause and source of Pb pollution is important to abate environmental Pb pollution by taking source-related actions. Lead isotope analysis is a potentially powerful tool to identify anthropogenic Pb and its sources in the environment. Spatial information on the variation of anthropogenic Pb content and anthropogenic Pb sources in rural topsoils is remarkably limited. This study presents results of a survey of approximately 350 topsoil samples from rural locations covering the entire Netherlands, for which the bulk geochemical and Pb isotope compositions were determined. The specific aim of this study is to determine the anthropogenic Pb sources in the topsoils from rural areas in The Netherlands. The spatial distribution of anthropogenic Pb in soils in The Netherlands will be explained in terms of land use and pollution sources.Nearly all studied topsoils display Pb contents that exceed the amount expected based on the soil lithology. The range in Pb isotope ratios of the additional Pb fraction in rural Dutch topsoils is established at 1.056–1.199, 2.336–2.486 and 0.452–0.490 for 206Pb/207Pb, 207Pb/208Pb and 206Pb/208Pb, respectively. Five land use types are distinguished (forest, open nature, moor, arable land and grassland) with distinct isotopic compositions for added Pb. Additional Pb in soils of natural areas (forest, open nature and moor) has on average lower 206Pb/207Pb, 208Pb/207Pb and 206Pb/208Pb ratios than the agricultural soils (arable land and grassland). Additional Pb in both natural area soils and agricultural soils is interpreted to be of anthropogenic origin: most likely a mixture of coal/galena, incinerator ashes and gasoline Pb. The dominant sources of additional Pb in the topsoil of open nature areas are most likely incinerator ash and gasoline Pb. In contrast, the on average higher 206Pb/207Pb, 208Pb/207Pb and 206Pb/208Pb ratios of additional Pb in agricultural soils are most likely caused by the presence of animal manure and N–P fertilizers.Several areas are observed with notably high additional Pb contents (26–211 mg/kg on an organic matter-free basis) in the topsoil. The largest area is the Randstad area, which has the highest population and traffic density, and hosts a considerable fraction of the Dutch chemical industry. Two other areas with high additional Pb contents in the topsoil are located near the Dutch borders and are most likely influenced by German and Belgian chemical industries. The topsoils in the coastal dunes and southern, central and northern forests are characterized by relatively low additional Pb contents (<10 mg/kg on an organic matter-free basis). The population, traffic and chemical industry density is low in these areas and no fertilizers are applied.  相似文献   

12.
On 25 April 1998 the tailings dam of the Aznalcóllar mine burst, a great quantity of pyrite waste sludge and acid water was spilled reaching the vicinity of the Doñana National Park. In surface and ground water samples taken a week after dam breaking, metals, trace elements and Pb isotopic ratios (206Pb/207Pb and 208Pb/206Pb) were analysed. In September 1998 a second sampling survey was carried out. The surface waters have a similar isotopic composition as the lead contained in the pyrite from the Aznalcóllar mine. The polluted groundwater of the Guadiamar aquifer also shows the influence of the mining origin of the lead. Lead isotope ratios (206Pb/207Pb and 208Pb/206Pb) in the groundwater of the Almonte-Marismas are very low and they differ clearly from the rest of groundwater samples. A further group of wells has a lead isotope composition intermediate between the Aznalcóllar mine and the atmospheric aerosols of the Iberian Peninsula.  相似文献   

13.
A survey was performed to trace the main source of anthropogenic Pb pollution in Mexico City through Pb isotopic signatures (208Pb/204Pb, 206Pb/204Pb, 206Pb/207Pb, and 208Pb/207Pb) from 103 urban topsoil (0–5 cm) samples. Those were collected in the metropolitan area of Mexico City and compared with isotopic compositions of leaded gasoline (LG), domestic Pb ores (DLO) and parent rock (PR). The isotope ratios (IRs) of Pb were determined by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) and total Pb concentration analyzed by wavelength dispersive X-ray fluorescence (WDXRF). The range of Pb concentrations levels in urban topsoil samples was 15–473 mg/kg. The IR values obtained for these samples were 37.965–39.718 (208Pb/204Pb), 18.375–19.204 (206Pb/204Pb), 1.177–1.218 (206Pb/207Pb) and 2.443–2.496 (208Pb/207Pb). Analyzed topsoil samples with low Pb content (<50 mg/kg) displayed high dispersion in 208Pb/204Pb values, which are determined by different natural sources. Samples with 51–200 mg/kg Pb content, shown low dispersion that revealed the mixing between the natural Pb and anthropogenic Pb. The assessment of the IR values shown that, as Pb concentration increases, a trend toward gasoline IR data has been observed. The results obtained by this research suggest that although the use of leaded petrol had been banned in Mexico since 1997, the Pb pollution in the urban topsoils due to the historical use of Pb in petrol is still significant.  相似文献   

14.
U–Pb isotopic analyses indicate that ores from the South Zhuguang uranium ore field, south China, have high common (non‐radiogenic) Pb contents, with variable and relatively radiogenic initial Pb contents. The U–Pb isochron method was used to date these ores, with plots of 208Pb/204Pb and 207Pb/204Pb versus 206Pb/204Pb being used to identify sample suites with similar initial Pb isotopic ratios and to normalize variable initial Pb isotopic ratios. The resulting U–Pb isochrons indicate two substages of uranium mineralization at ~57 and 52 Ma, with a later hydrothermal reformation at ~49 Ma, which homogenized Pb isotopic compositions. Initial Pb isotopic systematics indicate that the ore‐forming fluid was characterized by high 206Pb/204Pb and 207Pb/204Pb ratios and low 208Pb/204Pb ratios, suggesting that the ore‐forming fluid was sourced from Cretaceous–Paleogene red‐bed basins, rather than from magma or the mantle, with consideration of mineralization ages.  相似文献   

15.
Lead isotope signatures (207Pb/206Pb, 208Pb/206Pb, 208Pb/204Pb, 206Pb/204Pb), determined by magnetic sector ICP-MS in river channel sediment, metal ores and mine waste, have been used as geochemical tracers to quantify the delivery and dispersal of sediment-associated metals in the lower Danube River catchment. Due to a diverse geology and range of ore-body ages, Pb isotope signatures in ore-bodies within the lower Danube River catchment show considerable variation, even within individual metallogenic zones. It is also possible to discriminate between the Pb isotopic signatures in mine waste and river sediment within river systems draining individual ore bodies. Lead isotopic data, along with multi-element data; were used to establish the provenance of river sediments and quantify sedimentary contributions to mining-affected tributaries and to the Danube River. Data indicate that mining-affected tributaries in Serbia and Bulgaria contribute up to 30% of the river channel sediment load of the lower Danube River. Quantifying relative sediment contributions from mining-affected tributaries enables spatial patterns in sediment-associated metal and As concentrations to be interpreted in terms of key contaminant sources. Combining geochemical survey data with that regarding the provenance of contaminated sediments can therefore be used to identify foci for remediation and environmental management strategies.  相似文献   

16.
Isotope ratios of U and Pb were measured in two types of Mn nodules from the Cambrian Timna Formation, Israel. Type A nodules are mainly composed of pyrolusite and hollandite, with Mn, Ba, Pb and U concentrations of 30–60%, 0.2–2.5%, 0.2–1.0% and 500–3500 ppm, respectively, whereas type B nodules were formed by alteration of the former, and contain mainly coronadite, with Mn, Ba, Pb and U concentrations of 7–48%, 0.2–7%, 0.6–5% and 10–160 ppm, respectively. The isotopic composition of U and Pb was measured by MC-ICP-MS on Mn-rich solutions (up to 100 mg/L) without and with chromatographic separation. The values for the 207/206 and 208/206 ratios have been determined with precisions of up to 50 ppm and those of 206/204, 207/204 and 208/204 – up to 200 ppm. The values for the 234/238 ratios have been determined with precisions of 0.4–1%. The results of the separated and unseparated solutions were shown to be equal within the error. Thus there is no significant matrix effect while measuring U and Pb in Mn rich solution using the MC-ICP-MS.The isotopic composition of Pb and U support the distinction between the two types of Mn nodules. Type A nodules have a wide range of 206Pb/204Pb ratios (18.278–19.776), and an almost constant ratio of 208Pb/204Pb. In contrast, type B nodules have almost constant 206Pb/204Pb ratios and a wide range of 208Pb/204Pb ratios (37.986–38.079). Type A nodules form a linear array on a 207Pb/204Pb vs 206Pb/204Pb diagram, while type B nodules form a tight group characterized by lower Pb isotope ratios that slightly deviate from the type A array. The 234U/238U ratio differs between the two types of nodules; type A nodules exhibit a uniform and close to equilibrium 234U/238U ratio while type B nodules show a wide range of 234U/238U ratios above and below the equilibrium value. The isotopic composition of Pb in type A nodules might reflect Pb contributions from plutonic rock weathering, exposed at the time of deposition or later, to the Cambrian sea. These nodules have remained unaffected by processes that occurred since the Cambrian. The higher 208Pb/204Pb values of type B indicate that these nodules were formed from a Th-enriched solution probably during epigenetic processes which occurred also during the last 1 Ma.Thus the two isotopic systems of U and Pb can record formation, leaching and redeposition of Mn ores.  相似文献   

17.
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is used to compare the suitability of four cassiterite (SnO2) materials (SPG, Yankee, AY-4 and Jian-1), and three matrix-mismatched reference materials (NIST SRM 612, NIST SRM 614 and 91500 zircon) for normalisation of U-Pb and Pb-Pb isotope ratios in cassiterite. The excess variance of ages determined by LA-ICP-MS is estimated to be ±0.33% for 207Pb/206Pb vs. 208Pb/206Pb isochron ages and ± 1.8% and for U-Pb ages. Incorporation of this excess variance in cassiterite ages is necessary for realistic uncertainties. 207Pb-206Pb ages are advantageous for dating Precambrian cassiterite such as SPG compared with U-Pb ages as matrix effect on instrumental mass fractionation of Pb isotopes are generally considered to be minor. We note minor bias in 207Pb/206Pb vs. 208Pb/206Pb isochron ages (~ 0.6%) when using either the NIST SRM 614 or 91500 zircon reference materials and emphasise the requirement for uncertainty propagation of all sources of error and reference materials with comparable U and Pb mass fraction to the cassiterite. The 238U/206Pb isotopic ratios from normalisation to matrix-mismatched reference materials show varied results, which emphasises the need to use matrix-matched reference materials for calculating U-Pb ages. When cross-calibrated against each other, LA-ICP-MS U-Pb ages of the ca. 1535 Ma SPG, ca. 245 Ma Yankee and ca. 155 Ma Jian-1 cassiterites are all consistent with their ID-TIMS values.  相似文献   

18.
Annual growth rings of a common hardwood species, Picea abies L., were investigated as a potential archive of past atmospheric Pb pollution. Wide distribution of trees in terrestrial settings and straightforward chronology are two advantages of this potential geochemical archive, but several processes described in the literature may obscure the trends in past Pb deposition. These confounding factors include, e.g., radial post-depositional mobility of Pb in xylem, and ecosystem acidification leading to higher bioavailability of Pb. One- to five-year annual wood increments were analyzed for Pb concentrations and 206Pb/207Pb ratios at Jezeri (JEZ), Uhlirska (UHL) and Na Lizu (LIZ), three sites in the Czech Republic, differing in atmospheric Pb loads. Three to four trees per site were included in the study. Distinct Pb concentration maxima between 1960 and 1990 at the two heavily polluted sites (JEZ and UHL) coincided with historical Pb emissions known from inventories of industrial production. No Pb concentration maxima were found at one site, LIZ, situated in a national park 150 km from major pollution sources. Spruce tree rings from JEZ, located just 5 km from coal-burning power stations, contained a large proportion of coal-derived Pb (a high-206Pb/207Pb ratio of 1.19). A coal-related maximum in 206Pb/207Pb in JEZ tree rings was found using two different analytical techniques, laser-ablation multi-collector ICP MS, and single-collector sector-field ICP MS. In a three-isotope graph (206Pb/207Pb vs. 208Pb/207Pb), tree-ring data plotted into the field of ombrotrophic (i.e., rain-fed) peat bogs, suggesting negligible contribution of bedrock-derived Pb in the xylem. We concluded that none of the potential confounding factors played a major role at our sites. Annual growth rings of P. abies in Central Europe faithfully recorded historical changes in atmospheric Pb depositions.  相似文献   

19.
The Habo alkaline intrusion, which is located in the south of the Sanjiang area, Yunnan Province, China, is a typical Cenozoic alkaline intrusion. There are a series of small to medium-sized Au and Pb–(Zn) deposits around this intrusion. Those deposits are spatially associated with the Habo alkaline intrusion. (1) The δ34S values of sulfides from Au deposits range from ?1.91 ‰ to 2.69 ‰, which are similar to those of Pb–(Zn) deposits (?3.82 ‰ to ?0.05 ‰) and both indicate a much greater contribution from magma. (2) The Habo alkaline intrusion has relatively homogeneous Pb isotopic compositions with 206Pb/204Pb ranging from 18.608 to 18.761, 207Pb/204Pb from 15.572 to 15.722 and 208Pb/204Pb from 38.599 to 39.110. These Pb isotope ratios are similar to those of Au deposits, whose 206Pb/204Pb range from 18.564 to 18.734, 207Pb/204Pb from 15.582 to 15.738 and 208Pb/204Pb from 38.592 to 39.319. Pb ratios in both the intrusion and Au deposits suggest that Pb mainly derived from the depth, probably represents a mixture of mantle and crust. Pb–(Zn) deposits, however, show a decentralized trait, and most of them are similar to that of the alkaline intrusion with 206Pb/204Pb ranging from 18.523 to 18.648, 207Pb/204Pb from 15.599 to 15.802, and 208Pb/204Pb from 38.659 to 39.206. (3) In the plumbotectonic diagram 207Pb/204Pb versus 206Pb/204Pb, almost all of Au and Pb–(Zn) deposits have the same projection area with the Habo alkaline intrusion, which indicates that those deposits almost share the same source with the alkaline intrusion. (4) Isotopic age of the Habo alkaline intrusion is 36–33 Ma, which is similar to that of Beiya, whose ore-related alkaline porphyries age is 38–31 Ma and molybdenite Re–Os age is 36.9 Ma. Therefore, along with S–Pb isotope traits, we suggest that the Habo Au and Pb–(Zn) deposits should be typically Ailaoshan-Red RiverCenozoicalkaline-related deposits and ore-forming ages of these deposits should be later than that of the Habo alkaline intrusion.  相似文献   

20.
An approach is recommended for the correction of common Pb contribution to ^207Pb/^206Pb ages obtained by the zircon evaporation technique.A comparison with that by Cocherie et al.(1992)shows that two approaches yield similar results in the ^207Pb*/^206Pb* ratios.But when using the new approach,only two errors of the measured ^204Pb/^206Pb and ^207Pb/^207Pb ratios are introduced to the calculated ^207Pb^*/^206Pb^* ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号