首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
VARIATIONS IN KAMILA AMPHIBOLITES FROM SOUTHEASTERN PART OF THE KOHISTAN ISLAND-ARC TERRANE,PAKISTAN  相似文献   

2.
A PETROLOGICAL OVERVIEW OF THE KOHISTAN MAGMATIC ARC, NW HIMALAYA, N. PAKISTAN1 TahirkheliRAK ,MattauerM .ProustF ,etal.1979.In :GeodynamicsofPakistan[C].FarahA ,DeJongKA ,eds.GeolSurvPakistan ,Quetta ,1979.12 5~ 130 . 2 CowardMP ,WindleyBF ,BroughtonRD ,etal.In :CollisionTectonics[C]..CowardMP ,RiesAC ,eds.GeolSoc,London ,SpecPub ,1986 ,19:2 0 3~ 2 19. 3 BardJP ,MaluskiH ,MattePh ,etal.GeolBull ,PeshawarUniversity ,1980 ,13:87~ 93. …  相似文献   

3.
Abstract

The east central part of the Kohistan magmatic arc is made up principally of the Jaglot Group. From bottom to top it consists of I) paragneisses and schists intercalated with amphibolites and calc-silicates (Gilgit Formation), II) Gashu-Confluence Volcanics (GCV) and III) the Thelichi Formation comprising a volcanic base (Majne volcanics) and turbidites, marble, volcanoclastic sediments and lava flows. Metamorphic grade varies up to the sillimanite zone. The GCV are correlated with the Chalt volcanics and the Thelichi Formation with the Yasin Group. Other lithologies include the Chilas Complex, the Kohistan Batholith and part of the Kamila Amphibolite. Metavolcanics show a broad range in chemical composition. Geochemical parameters used to specify the tecto-nomagmatic regime suggest affinities of both island arc and MORB-like back-arc basin basalts. Kohistan can be divided into three tectonic zones, I) the southern (Kamila) zone comprises amphibolitized basalts, and mafic and ultramafic rocks, II) the central Chilas Complex, and III) the northern (Gilgit) zone i.e., the Jaglot Group. Previous tectonic models considered the southern two zones as the crust of a Cretaceous island arc. This investigation concludes that only the southern zone represents a true island arc. The Jaglot Group derives from back-arc basin assemblages and the Chilas Complex is a magmatic diapir emplaced in the back-arc basin.  相似文献   

4.
The Chilas Complex in the Kohistan Terrane, Pakistan, is a huge basic intrusion, about 300 km long and up to 40 km wide, which is regarded as tilted island-arc type crust. It has been interpreted as the magma chamber root zone of the Kohistan Island Arc. The Chilas Complex is composed mainly of gabbronorite (main facies) and several masses of ultramafic–mafic–anorthosite (UMA) association. The UMA association consists mainly of olivine-dominant cumulate (dunite, wehrlite, lherzolite) and plagioclase-dominant cumulate (troctolite, olivine gabbro, gabbronorite, anorthosite), with minor amount of pyroxene-dominant cumulate (clinopyroxenite, websterite).The major element geochemistry of the gabbronorite (main facies) and rocks of the UMA association, plotted on Harker diagrams, are explained by a cumulate and a non-cumulate model, respectively. Namely, the UMA association is explained as variable crystal cumulates from a primary magma and the gabbronorite of the main facies is explained as due to the fractionation of the residual melt. Chemical variations of major, trace and rare earth elements for the gabbronorite of the main facies in the Chilas Complex are explained by fractional crystallization and accumulation of plagioclase, orthopyroxene and clinopyroxene from the residual melt of the primary magma.  相似文献   

5.
The ultramafic rocks of the Kan block, East Sayan, are confined mainly to the Idar greenstone belt. In terms of formational affiliation, they are subdivided into two groups: magmatic (Kingash Complex) and residual (Idar Complex) ones. The magmatic ultramafic rocks compose hypabyssal and subvolcanic bodies, which are represented by rocks of dunite-wehrlite-picrite association with cumulate textures. Uninterrupted chemical variations of the magmatic ultramafic rocks indicate subsequent magmatic differentiation of parental picritic melt in the intermediate deep-seated chambers and emplacement of its derivatives in the crystallization site. Differentiation leads to proportional increase of all rare-earth and other incompatible elements. The residual ultramafics occur as boudined dunite-harzburgite bodies showing metamorphic granoblastic textures. They have more homogenous chemical composition close to those of ophiolite complexes, which represent strongly depleted mantle rocks brought to the upper lithospheric levels via deep-seated thrusts. Residual ultramafics differ from magmatic rocks in notably lower contents of some trace and rare earth elements.  相似文献   

6.
The Mordor Complex in central Australia consists of a suite of highly fractionated potassic rocks. Syenite and monzonite are intruded by phlogopite shonkinite and melamonzonite, which are in turn intruded by numerous plug-like bodies of phlogopiterich periodotite and pyroxenite, and by pegmatite dykes, and carbonate-rich breccia.The consanguinity of the suite, cumulate texture of the ultramafic rocks, enrichment of the Complex in large-ion-lithophile (LIL) elements, mineral equilibrium data, and mineral and whole-rock Rb-Sr isochron data, indicate that the rocks were produced by fractional crystallization from an ultrapotassic mafic magma in an intermediate-level magma chamber. Magma genesis possibly involved modification during uprise of potassic partial melt derived from phlogopite-bearing atypical upper mantle source rock. Evidence for regional compositional heterogeneity in the upper mantle is discussed.  相似文献   

7.
A deep-level crustal section of the Cretaceous Kohistan arc is exposed in the northern part of the Jijal complex. The occurrence of mafic to ultramafic granulite-facies rocks exhibits the nature and metamorphic evolution of the lower crust. Mafic granulites are divided into two rock types: two-pyroxene granulite (orthopyroxene+clinopyroxene+plagioclase±quartz [1]); and garnet–clinopyroxene granulite (garnet+clinopyroxene+plagioclase+quartz [2]). Two-pyroxene granulite occurs in the northeastern part of the Jijal complex as a relict host rock of garnet–clinopyroxene granulite, where the orthopyroxene-rich host is transected by elongated patches and bands of garnet–clinopyroxene granulite. Garnet–clinopyroxene granulite, together with two-pyroxene granulite, has been partly replaced by amphibolite (hornblende±garnet+plagioclase+quartz [3]). The garnet-bearing assemblage [2] is expressed by a compression–dehydration reaction: hornblende+orthopyroxene+plagioclase=garnet+clinopyroxene+quartz+H2O↑. Subsequent amphibolitization to form the assemblage [3] is expressed by two hydration reactions: garnet+clinopyroxene+plagioclase+H2O=hornblende+quartz and plagioclase+hornblende+H2O=zoisite+chlorite+quartz. The mafic granulites include pod- and lens-shaped bodies of ultramafic granulites which consist of garnet hornblendite (garnet+hornblende+clinopyroxene [4]) associated with garnet clinopyroxenite, garnetite, and hornblendite. Field relation and comparisons in modal–chemical compositions between the mafic and ultramafic granulites indicate that the ultramafic granulites were originally intrusive rocks which dissected the protoliths of the mafic granulites and then have been metamorphosed simultaneously with the formation of garnet–clinopyroxene granulite. The results combined with isotopic ages reported elsewhere give the following tectonic constraints: (1) crustal thickening through the development of the Kohistan arc and the subsequent Kohistan–Asia collision caused the high-pressure granulite-facies metamorphism in the Jijal complex; (2) local amphibolitization of the mafic granulites occurred after the collision.  相似文献   

8.
Within the northern part of the early Archaean Itsaq Gneiss Complex (southern West Greenland) on the southern side of the Isua supracrustal belt, enclaves up to ~500 m long of variably altered ultramafic rocks contain some relics of unaltered dunite-harzburgite. These are associated with mafic supracrustal and plutonic rocks and siliceous metasediments. SHRIMP U/Pb zircon geochronology on non-igneous zircons in altered ultramafic rocks and on igneous zircons from components of the surrounding orthogneisses intruding them, indicate an absolute minimum age for the ultramafic rocks of ca. 3,650 Ma, but with an age of ca. 3,800 Ma most likely. The diverse ultramafic and mafic rocks with rarer metasediment were all first tectonically intercalated and then became enclosed in much more voluminous tonalitic rocks dated at ca. 3,800 Ma. This is interpreted to have occurred during the development of a 3,810-3,790-Ma composite magmatic arc early in the evolution of the Itsaq Gneiss Complex. This northern part of the Itsaq Gneiss Complex is the most favourable for the geochemical study of early Archaean protoliths because it experienced peak metamorphism only within the amphibolite facies with little or no in-situ melt segregation, and contains some areas that have undergone little deformation since ca. 3,800 Ma. Most of the ultramafic enclaves are thoroughly altered, and largely comprise secondary, hydrous phases. However, the centres of some enclaves have escaped alteration and comprise dunite and harzburgite with >95% olivine (Fo89-91) + orthopyroxene (En89) + Al-spinel (Cr8-20) assemblages. The dunites and harzburgites are massive or irregularly layered and are olivine-veined on 5-10-m to 10-cm scales. Their whole rock major and rare earth element, and olivine and spinel compositions differ significantly from xenoliths representing the Archaean cratonic lithospheric mantle, but are typical of some modern abyssal peridotites. The harzburgites and dunites show both LREE depleted and enriched patterns; however, none show the massive REE depletion associated with the modelled removal of a komatiite. They are interpreted as being the products of small degrees of melt extraction, with some showing evidence of refertilisation. These Greenland dunites and harzburgites described here are currently the best characterised 'sample' of the early Archaean upper mantle.  相似文献   

9.
Mafic–ultramafic rocks in structurally dismembered layered intrusions comprise approximately 40% by volume of greenstones in the Murchison Domain of the Youanmi Terrane, Yilgarn Craton. Mafic–ultramafic rocks in the Murchison Domain may be divided into five components: (i) the ~2810 Ma Meeline Suite, which includes the large Windimurra Igneous Complex; (ii) the 2800 ± 6 Ma Boodanoo Suite, which includes the Narndee Igneous Complex; (iii) the 2792 ± 5 Ma Little Gap Suite; (iv) the ~2750 Ma Gnanagooragoo Igneous Complex; and (v) the 2735–2710 Ma Yalgowra Suite of layered gabbroic sills. The intrusions are typically layered, tabular bodies of gabbroic rock with ultramafic basal units which, in places, are more than 6 km thick and up to 2500 km2 in areal extent. However, these are minimum dimensions as the intrusions have been dismembered by younger deformation. In the Windimurra and Narndee Igneous Complexes, discordant features and geochemical fractionation trends indicate multiple pulses of magma. These pulses produced several megacyclic units, each ~200 m thick. The suites are anhydrous except for the Boodanoo Suite, which contains a large volume of hornblende gabbro. They also host significant vanadium mineralisation, and at least minor Ni–Cu–PGE mineralisation. Collectively, the areal distribution, thickness and volume of mafic–ultramafic magma in these complexes is similar to that in the 2.06 Ga Bushveld Igneous Complex, and represents a major addition of mantle-derived magma to Murchison Domain crust over a 100 Ma period. All suites are demonstrably contemporaneous with packages of high-Mg tholeiitic lavas and/or felsic volcanic rocks in greenstone belts. The distribution, ages and compositions of the earlier mafic–ultramafic rocks are most consistent with genesis in a mantle plume setting.  相似文献   

10.
Mineral major and trace element data are presented for the mainrock units of the Chilas Complex, a series of lower crustalintrusions emplaced during initial rifting within the MesozoicKohistan (paleo)-island arc (NW Pakistan). Detailed field observationsand petrological analysis, together with geochemical data, indicatethat the two principal units, ultramafic rocks and gabbronoritesequences, originate from a common parental magma, but evolvedalong different mineral fractionation trends. Phase petrologyand mineral trace element data indicate that the fractionationsequence of the ultramafic rocks is dominated by the crystallizationof olivine and clinopyroxene prior to plagioclase, whereas plagioclaseprecedes clinopyroxene in the gabbronorites. Clinopyroxene inthe ultramafic rocks (with Mg-number [Mg/(Fetot + Mg] up to0·95) displays increasing Al2O3 with decreasing Mg-number.The light rare earth element depleted trace element pattern(CeN/GdN 0·5–0·3) of primitive clinopyroxenesdisplays no Eu anomaly. In contrast, clinopyroxenes from thegabbronorites contain plagioclase inclusions, and the traceelement pattern shows pronounced negative anomalies for Sr,Pb and Eu. Trace element modeling indicates that in situ crystallizationmay account for major and trace element variations in the gabbronoritesequence, whereas the olivine-dominated ultramafic rocks showcovariations between olivine Mg-number and Ni and Mn contents,pointing to the importance of crystal fractionation during theirformation. A modeled parental liquid for the Chilas Complexis explained in terms of mantle- and slab-derived components,where the latter component accounts for 99% of the highly incompatibleelements and between 30 and 80% of the middle rare earth elements.The geochemical characteristics of this component are similarto those of a low percentage melt or supercritical liquid derivedfrom subducted mafic crust. However, elevated Pb/Ce ratios arebest explained by additional involvement of hydrous fluids.In accordance with the crystallization sequence, the subsolidusmetamorphic reactions indicate pressures of 0·5–0·7GPa. Our data support a model of combined flux and decompressionmelting in the back-arc. KEY WORDS: Kohistan; Island arc; gabbro; trace element modelling; lower crustal intrusion  相似文献   

11.
本文探讨了该区超镁铁岩化学成分的分带性;本区方辉橄榄岩与其它地区的化学成分的对比;以及与其密切共生的岩浆岩化学成分的互补关系;及本区上地幔可能的化学分带模式。得出结论:(1)从地质和岩石化学证据表明本区的方辉橄榄岩是地幔物质呈固态侵位的。(2)方辉橄榄岩与共生的岩浆岩有成因联系。(3)本区可能存在上地幔双层化学模式。  相似文献   

12.
大别山北大别杂岩的大地构造属性   总被引:12,自引:1,他引:11  
北大别杂岩主要由花岗质片麻岩及斜长角闪岩组成 ,含有不同类型、大小不等的麻粒岩岩块和变质超镁铁质岩块 ,侵入有大量白垩纪花岗岩和辉石 -辉长岩类。其中的花岗质片麻岩、斜长角闪岩具有岛弧环境的岩石地球化学特征 ,代表拼贴于扬子陆块北缘的新元古代古岛弧。北大别杂岩北可与庐镇关群相连 ,南俯于超高压变质岩之下 ,在三叠纪扬子陆块与华北陆块的碰撞过程中 ,曾与超高压变质岩一起俯冲到地幔深度并经受榴辉岩相变质作用 ,然后在折返过程中叠加了麻粒岩相及角闪岩相变质作用 ,是扬子陆块北缘陆壳俯冲基底的一部分  相似文献   

13.
Classical structural analysis, in combination with new techniques including pyroxene thermobarometry and recrystallized-grain- and subgrain-size paleopiezometry, has been used to deduce the tectonic history of the Vourinos Ophiolite Complex, Greece. Results can be used to infer the variation with depth of differential stress in the upper mantle and indicate that these rocks were subjected to an initial stress level of 10–100 bar over a depth interval from 100 to 40 km, respectively. Subsequently, they underwent mylonitization, associated with stresses of about 2500 bar at 30 km depth. Rocks equilibrated at the deepest levels commonly have the highest structural positions within the ultramafic tectonites and also show appreciable Al depletion. Lack of annealing recrystallization in the mylonitic rocks, together with low stress levels and an abnormally high pyroxene geotherm for the Complex lead to the interpretation of the Complex being the remnant of a mantle diapir, with an overlying magma chamber, located at a spreading ridge.  相似文献   

14.
北秦岭松树沟超镁铁岩的成因类型   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

15.
The North Puruliya Shear zone (NPSZ) is characterized by occurrence of mafic-ultramafic rocks aligned parallel to the shear zone, intruding the high grade Proterozoic rocks of Chhotanagpur Gneissic Complex. The ultramafic rocks occur as small lenses, pockets, veins, thin dykes and are intimately associated with mafic (gabbro, norite) rocks. Pyroxenites (viz. olivine websterite, websterite, plagioclase websterite) and hornblendite are the two important members of the ultramafic rocks containing clinopyroxene, orthopyroxene, olivine, plagioclase, amphibole, phlogopite and ilmenite. The mafic-ultramafic rocks show evidence of shearing and retrogressive metamorphism. Linear correlation of chemical attributes suggests fractionation-controlled magmatic differentiation. Enrichment of LILE and LREE in the mafic-ultramafic suite suggests an enriched mantle source and pronounced negative Eu-anomalies in all the rock types except hornblendite suggest fractionation of plagioclase under low fO2 condition. Progressive iron enrichment trend in rocks of the mafic-ultramafic suite also indicate magmatic differentiation under low fO2 condition. Early fractionation and accumulation of clinopyroxene and plagioclase from a basaltic magma may have given rise to the ultramafic rocks of the area. Little change in the Nb/Zr and Ce/Zr ratios of ultramafic and mafic rocks (except alkali norite) strongly support low crustal contamination. A few samples of norite and gabbro-norites appeared to be variably contaminated by a crustal component or affected by late granitic intrusion resulting in enrichment of alkali in the former.  相似文献   

16.
Zirconium and hafnium are valuable strategic metals which are in high demand in industry. The Zr and Hf contents are elevated in the final products of magmatic differentiation of alkali carbonatite rocks in the Polar Siberia region (Guli Complex) and Ukraine (Chernigov Massif). Early pyroxene fractionation led to an increase in the Zr/Hf ratio in the evolution of the ultramafic–alkali magmatic system due to a higher distribution coefficient of Hf in pyroxene with respect to Zr. The Rayleigh equation was used to calculate a quantitative model of variation in the Zr/Hf ratio in the development of the Guli magmatic system. Alkali carbonatite rocks originated from rare element-rich mantle reservoirs, in particular, the metasomatized mantle. Carbonated mantle xenoliths are characterized by a high Zr/Hf ratio due to clinopyroxene development during metasomatic replacement of orthopyroxene by carbonate fluid melt.  相似文献   

17.
Strontium isotopes are used as tracers of crustal contamination of alpine-type ultramafic rocks from the Basal Gneiss Complex of the Caledonides of southern Norway. Minerals from anhydrous assemblages that occur in the cores of these ultramafic lenses give Sr87/Sr86 ratios (0.7011 to 0.7047) that reflect the expected ambient Sr87/Sr86 conditions of the ancient upper mantle. Rb-Sr evidence for crustal contamination is found in hydrous assemblages that occur within fractures and around the margins of the ultramafio bodies. Olivine, enstatite, amphibole, and magnesite from these assemblages have present-day Sr87/Sr86 ratios (0.7049 to 0.7085) that are significantly higher than those of compositionally equivalent minerals from the interiors of the ultramafic bodies. The high Sr87/Sr86 values were acquired as a result of the reaction between the ultramafic rock and ion-charged hydrous solutions carrying strontium with the ambient Sr87/Sr86 ratio (around 0.713) of the enclosing country rook during the waning phases of the Caledonian Orogeny. Mineral separates from the interiors of these ultramafic bodies can yield useful information on the ancient upper mantle. Wholerock samples, however, will show some evidence of contamination from the crust as a result of the formation of at least trace amounts of secondary hydrous minerals. Most whole-rook Sr87/Sr86 ratios from alpine-type ultramafic rocks from other orogenic belts show evidence of this contamination.  相似文献   

18.
The Brusque Metamorphic Complex (BMC) is one of the main units of the Tijucas Terrain within the Dom Feliciano Belt, located in the state of Santa Catarina in southern Brazil. In the Itapema region, the BMC is composed chiefly of metasediments, including subordinate metabasalts, meta-ultramafic rocks, and clinoamphibole schists. The metavolcanic rocks form 4 m-thick lenses interlayered with metapelites and calc-silicate schists. Based on the observed textures and the associated structural, bulk-rock geochemical, and mineral chemical data, these metamafites and ultramafites were ancient lava flows of tholeiitic basalts and ultramafic cumulates. The mineral parageneses of the metabasalts are albite?+?actinolite?+?chlorite?+?epidote?+?titanite?+?magnetite and oligoclase?+?hornblende?+?epidote?+?titanite?+?magnetite, indicating progressive transformations produced under greenschist to amphibolite facies conditions. Volcanogenic metasediments show the same geochemical patterns as the metabasalts, whereas the metamorphosed ultramafic rocks consist of cumulates generated by crystal fractionation and flow segregation. The studied rocks show similar rare-earth element (REE) patterns, characterized by clearly higher normalized contents of light REEs compared with heavy REEs, without Eu anomalies in the metabasalts and positive Eu anomalies in meta-ultramafic rocks and volcanogenic metasediments. In accordance with the trace element contents that indicate a within-plate nature, the corresponding mafic melts apparently formed in the mantle by partial fusion and were subsequently enriched with crustal components during ascent into the sialic crust. The analysed 143Nd/144Nd and 87Sr/86Sr ratios lie between 0.5123 and 0.5126 and 0.7067 and 0.7086, respectively, and are thus typical of tholeiitic basalts of the continental plateau type. Initial ?Nd(936) values and derived model ages (T DM) between 1028 and 1762 million years support a mantle source or sources, with extraction and emplacement in the Neoproterozoic. Field relations and geochemical data (including isotopic data) indicate the generation of the studied mafic and ultramafic rocks in a continental rift. In the regional geologic context, the formation of the BMC volcanic and metasedimentary units marks a period of fragmentation of the Palaeoproterozoic continental crust. This extensional event is preserved regionally in gneisses from the Santa Catarina Granulitic Complex and the Camboriú Complex.  相似文献   

19.
This paper investigates the petrogenesis of the Seqi Ultramafic Complex, which covers a total area of approximately 0.5 km~2. The ultramafic rocks are hosted by tonalitic orthogneiss of the ca. 3000 Ma Akia terrane with crosscutting granitoid sheets providing an absolute minimum age of 2978 ± 8 Ma for the Seqi Ultramafic Complex. The Seqi rocks represent a broad range of olivine-dominated plutonic rocks with varying modal amounts of chromite, orthopyroxene and amphibole, i.e. various types of dunite(s.s.),peridotite(s.l.), as well as chromitite. The Seqi Ultramafic Complex is characterised primarily by refractory dunite, with highly forsteritic olivine with core compositions having Mg# ranging from about 91 to 93. The overall high modal contents, as well as the specific compositions, of chromite rule out that these rocks represent a fragment of Earth's mantle. The occurrence of stratiform chromitite bands in peridotite, thin chromite layers in dunite and poikilitic orthopyroxene in peridotite instead supports the interpretation that the Seqi Ultramafic Complex represents the remnant of a fragmented layered complex or a magma conduit, which was subsequently broken up and entrained during the formation of the regional continental crust.Integrating all of the characteristics of the Seqi Ultramafic Complex points to formation of these highly refractory peridotites from an extremely magnesian(Mg# ~ 80), near-anhydrous magma, as olivinedominated cumulates with high modal contents of chromite. It is noted that the Seqi cumulates were derived from a mantle source by extreme degrees of partial melting(40%). This mantle source could potentially represent the precursor for the sub-continental lithospheric mantle(SCLM) in this region,which has previously been shown to be ultra-depleted. The Seqi Ultramafic Complex, as well as similar peridotite bodies in the Fiskefjord region, may thus constitute the earliest cumulates that formed during the large-scale melting event(s), which resulted in the ultra-depleted cratonic keel under the North Atlantic Craton. Hence, a better understanding of such Archaean ultramafic complexes may provide constraints on the geodynamic setting of Earth's first continents and the corresponding SCLM.  相似文献   

20.
宕昌好梯第三纪超镁铁质岩中巨晶及其形成条件   总被引:1,自引:0,他引:1  
刘素剑 《甘肃地质》1996,5(2):65-72
分布于好梯第三纪陆相地层中的超镁铁质岩属碱性超基性岩,为超镁铁煌斑岩。该岩石系中心式超基性火山爆发—喷溢产物。其产出与南北向幔型断裂活动和地幔部分熔融岩浆贯入密切相关。根据岩石组合及产状,好梯陆相超基性火山岩可分为火山颈相、喷发相和次火山岩相。其中火山颈相和喷发相内的碎屑熔岩含有大量的二辉橄榄岩包体,并与单斜辉石和橄榄石巨晶共生。研究结果表明,巨晶系岩浆在上地幔条件下结晶的高压产物  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号