首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Partial melting and reactive melt transport may change the composition, microstructures, and physical properties of mantle rocks. Here we explore the relations between deformation and reactive melt transport through detailed microstructural analysis and crystallographic orientation measurements in spinel peridotite xenoliths that sample the shallow lithospheric mantle beneath the southeastern rim of the Siberian craton. These xenoliths have coarse-grained, annealed microstructures and show petrographic and chemical evidence for variable degrees of reaction with silicate melts and fluids, notably Fe-enrichment and crystallization of metasomatic clinopyroxene (cpx). Olivine crystal preferred orientations (CPO) range from strong to weak. [010]-fiber patterns, characterized by a point concentration of [010] normal to the foliation and by dispersion of [100] in the foliation plane with a weak maximum parallel to the lineation, predominate relative to the [100]-fiber patterns usually observed in lithospheric mantle xenoliths and peridotite massifs. Variations in olivine CPO patterns or intensity are not correlated with modal and chemical compositions. This, together with the analysis of microstructures, suggests that reactive melt percolation postdated both deformation and static recrystallization. Preferential crystallization of metasomatic cpx along (010) olivine grain boundaries points to an influence of the preexisting deformation fabrics on melt transport, with higher permeability along the foliation. Similarity between orthopyroxene (opx) and cpx CPO suggests that cpx orientations may be inherited from those of opx during melt-rock reaction. As observed in previous studies, reactive melt transport does not weaken olivine CPO and seismic anisotropy in the upper mantle, except in melt accumulation domains. In contrast, recovery and selective grain growth during static recrystallization may lead to development of [010]-fiber olivine CPO and, if foliations are horizontal, result in apparent isotropy for vertically propagating SKS waves, but strong anisotropy for horizontally propagating surface waves.  相似文献   

2.
《Journal of Geodynamics》2011,51(5):424-440
This study presents geochemical and fabric analysis of coarse-grained, porphyroclastic and mylonitic spinel peridotite xenoliths derived from the shallow subcontinental lithospheric mantle of Jeju Island (South Korea). Fabric analysis of olivines in the studied peridotites shows activation of the high temperature (0 1 0)[1 0 0] slip system; however, in the porphyroclastic and mylonitic peridotites, activation of (0 k l)[1 0 0] slip system results in a weaker fabric. Formation of porphyroclastic and mylonitic fabrics are thought to form in a shear-dominated environment. The results of the trace element analysis reveal that the smaller the grain size and weaker the fabric, the more enriched in LREE and HFSE are the peridotites, which indicates a strong relationship between metasomatic agents and mantle shear zones.  相似文献   

3.
Sr and Nd isotope analyses and REE patterns are presented for a suite of well-documented mantle-derived xenoliths from the French Massif Central. The xenoliths include spinel harzburgites, spinel lherzolites and some pyroxenites. They show a wide range of textures from undeformed protogranular material through porphyroclastic to equigranular and recrystallised secondary types. Textural differences are strongly linked to trace element geochemistry and variations in radiogenic isotope ratios. Many undeformed protogranular xenoliths are Type IA LREE-depleted with MORB-type εSr values between − 30.7 and − 23.6, and εNd values + 13.9 to + 9.4. A second group of undeformed xenoliths are Type IB LREE-enriched with higher εSr values (− 22.7 to − 10.6) and lower εNd values (+ 11.9 to + 5.6). Deformed xenoliths with porphyroclastic, equigranular and secondary recrystallised textures are all Type IB (LREE-enriched, εNd < 6.4, εSr > 11.8). It is proposed that two separate events have given rise to the observed mixing arrays: (1) MORB-source depleted mantle was enriched by a component derived from an enriched mantle. Deformation and recrystallisation accompanied this event. (2) Subsequently, unenriched MORB-source mantle interacted with magmas chemically akin to the host basalts, and enrichment occurred with little deformation. Hypotheses of Tertiary mantle diapirism resulting in isochemical deformation and refinement of protogranular mantle to equigranular mantle are untenable because of differences in REE patterns and isotopic ratios between different textural groups.  相似文献   

4.
Abundant dunite and harzbugite xenoliths are preserved in Early Cretaceous high-Mg# [63–67, where Mg# = molar 100 × Mg/(Mg + Fetot)] diorite intrusions from western Shandong in the North China Craton (NCC). Dunite and some harzburgite xenoliths typically preserve areas of orthopyroxenite (sometimes accompanied by phlogopite) either as veins or as zones surrounding chromite grains. Harzburgite is chiefly composed of olivine, orthopyroxene, minor clinopyroxene and chromian-spinel. High Mg#'s (averaging 91.4) and depletions in Al2O3 and CaO (averaging 0.52 wt.% and 0.29 wt.%, respectively) in harzburgite and dunite xenoliths suggest that they are residues formed by large degrees of polybaric melting. However, olivines and orthopyroxenes from dunite xenoliths spatially associated with orthopyroxenite display lower Mg#'s (i.e., 82–87 and 83–89, respectively), suggesting that an adakitic melt–peridotite reaction has taken place. This is consistent with the production of veined orthopyroxene or orthopyroxene + phlogopite in dunite and some harzburgite xenoliths in response to the introduction of adakitic melt into the previously depleted lithospheric mantle (i.e., harzburgite and dunite xenoliths). The presence of orthopyroxene in veins or as a zones surrounding chromite in peridotite xenoliths is thought to be representative of adakitic melt metasomatism. The dunite and harzbugite xenoliths are relatively rich in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), poor in heavy rare earth elements (HREEs) and high field strength elements (HFSEs), and lack Eu anomalies on chondrite normalized trace element diagrams. The initial 87Sr/86Sr ratios and εNd(t) values for the xenoliths range from 0.7058 to 0.7212 and + 0.18 to ? 19.59, respectively. Taken together, these features, combined with the strong depletion in HFSE and the existence of Archean inherited zircons in the host rocks, suggest that the adakitic melt was derived from the partial melting of early Mesozoic delaminated lower continental crust. The interaction of the adakitic melt with peridotite is responsible for the high-Mg# character of the early Cretaceous diorites in western Shandong.  相似文献   

5.
Seismic anisotropy has been widely used to constrain deformation and mantle flow within the upper mantle of the Earth's interior, and is mainly affected by crystallographic preferred orientation(CPO)of anisotropic mineral in lithosphere. Anisotropy of peridotites caused by deformation is the main source of seismic anisotropy in the upper mantle. Olivine is the most abundant and easily deformed mineral to form CPO in peridotite, thus the CPO of olivine controls seismic anisotropy in the upper mantle. Based on simple shear experiments and studies of natural peridotites deformation, several CPO types of olivine have been identified, including A, B, C, D, E and AG-type. Studies on the deformation of olivine have shown that the CPO of olivine is mainly related to stress, water content, temperature, pressure, partial melting and melt/fluid percolation. Most of the seismic anisotropy has been explained by the A-type olivine CPO in the upper mantle, which is commonly found in upper-mantle peridotites and produced by the simple shear in dry conditions. Previous studies showed that anisotropy was attributed to the CPO of mica and amphibole in the middle-lower crust. The comparison between mantle anisotropy calculated from mineral CPO and regional anisotropy deduced from geophysical methods is therefore particularly useful for interpreting the deformation mechanisms and geodynamic processes which affect the upper mantle in different tectonic units such as subduction system, continental rift and continental collision zone in the world. The paper summarizes the characteristics of CPO and anisotropy of major anisotropic minerals in the upper mantle. Taking the lithosphere mantle xenoliths in the southeastern Tibetan plateau as an example, we perform detailed studies on the microstructures and seismic anisotropy to better understand the deformation mechanisms and upper mantle anisotropy in this region. Results show that the CPO of olivine in peridotite xenoliths in southeastern Tibetan plateau are A-type and AG-type. The mechanisms proposed for the formation of AG-type are different from that for the A-type. Therefore, the occurrence of AG-type olivine CPO pattern suggests that this CPO may record a change in deformation mechanism and tectonic environment of the lithosphere in southeastern Tibetan plateau. Provided that the strong SKS(shear wave splitting)observed in southeastern Tibetan plateau results from lithosphere mantle, the lithosphere mantle in this region is expected to be at least 130km thick and characterized by vertical foliation. Considering that the thickness of lithosphere in southeastern Tibetan plateau is much less than 130km and the lithosphere mantle cannot explain the anisotropy measured by SKS, other anisotropy sources should be considered, such as anisotropy in the asthenosphere and the oriented melt pockets(MPO)in the upper mantle. Therefore, detailed study of CPO of anisotropic mineral is essential for constraining geophysical measurements and analyzing the dynamic process of the lithosphere reasonably.  相似文献   

6.
本文通过对出露于青藏高原东南缘云南六合地区的新生代深源岩石包体(斜长角闪岩、角闪石岩和石榴石透辉岩)的显微组构和地震波各向异性的研究来约束新生代青藏高原东南缘的地壳各向异性.通过角闪石地质压力计计算得知斜长角闪岩、角闪石岩和石榴石透辉岩包体来源于地壳28~36km,为中-下地壳岩石包体.EBSD测量结果显示包体中角闪石的CPO (晶格优选定向)为Type-IV型和(100)[001]滑移,单斜辉石的CPO为SL型和(100)[001]滑移,暗示中-下地壳为高温强变形的特征.通过CPO数据计算获得斜长角闪岩、角闪石岩和石榴石透辉岩包体全岩VP各向异性为1.9%~13.3%,最大分裂的剪切波各向异性(AVS)为1.17%~8.01%.结合前人的研究结果,该地区的地壳岩石能够解释利用Pms震相测量获得的分裂延迟时间,表明云南西北地区的壳内各向异性源于中-下地壳矿物的定向排列.云南西北地区的Pms快波方向近NW-SE向分布并与SKS的快波方向相近,暗示岩石圈变形是耦合的,受控于青藏高原向东南挤出的构造背景.  相似文献   

7.
Peridotite xenoliths with a broad range of textures provides evidence for consistent microstructural evolution in a vertical transect of the shallow lithospheric mantle (35–55 km depth) beneath the Persani Mountains, SE Carpathians, Romania, due to ongoing plate convergence in the Carpathian Arc nearby. The recrystallized grain size, crystal preferred orientations strength, and resulting seismic anisotropy vary continuously and display a strong correlation to equilibrium temperatures, suggesting a continuous change in deformation conditions with depth. The shallowmost xenoliths have microstructures typical of high stress deformation, marked by strong recrystallization to fine grain sizes, which results in weak crystal preferred orientations and anisotropy. The deepest xenoliths have coarse-grained porphyroclastic microstructures and strong crystal preferred orientations. Replacive orthopyroxene structures, consuming olivine, and high H2O concentrations in the pyroxenes are observed in some xenoliths indicating limited percolation of fluids or volatile-rich melts. Despite the high stress deformation and high H2O contents in some of the studied xenoliths, analysis of olivine crystallographic orientations indicates that [100] slip systems, rather than “wet” [001] accommodate most of the deformation in all samples. Seismic anisotropy estimated from the measured olivine and pyroxene crystal preferred orientations suggests that the strike-parallel fast SKS polarization directions and ~ 1 s delay times measured in the SE Carpathians are likely the consequence of convergence-driven belt-parallel flow in the lithospheric mantle.  相似文献   

8.
We have studied the phase transformation of forsterite to wadsleyite under shear stress at the Earth's transition zone pressure and temperature conditions. Two-step experiments were performed using a multi-anvil press. First, we hot pressed iron-free forsterite at 6 or 11 GPa and 1100 °C. Then we deformed a slab of this starting material using a direct simple shear assembly at 16 GPa and 1400 °C for 1, 15, 35, 40, or 60 min. Both the starting material and the deformed samples were characterized using optical and scanning electron microscopy including measurements of crystal preferred orientations (CPO) by electron back scattered diffraction (EBSD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The phase transformation occurs very rapidly, in less than 1 min, and metastable forsterite relics are not observed after deformation. The grain size of wadsleyite is slightly smaller than the forsterite starting material. The water contents obtained from FTIR analyses in forsterite and wadsleyite are 65–124 wt ppm H2O and 114–736 wt ppm H2O, respectively, which are well below water solubility at similar conditions in the presence of free water. Wadsleyite aggregates display weak CPO patterns with [1 0 0] axes concentrated at low angle to the shear direction, [0 1 0] axes perpendicular to the shear plane and nearly random [0 0 1] axes. Only a few dislocations were observed in wadsleyite with TEM. This observation is consistent with the assumption that most dislocations formed during the initial high-stress stages of these stress-relaxation experiments, were consumed in the phase transformation, probably enhancing the transformation rate. CPO patterns vary as a function of the water content: with increasing water content the density of [1 0 0] axes parallel to the shear direction decreases, and the density of [0 0 1] axes increases. Viscoplastic self-consistent modeling of CPO evolution using previously reported glide systems for wadsleyite, i.e., [1 0 0]{0 k l} and 1/2 〈1 1 1〉{1 0 1}, cannot reproduce the measured CPO, unless the [0 0 1](0 1 0) system, for which dislocations have not been observed by TEM, is also activated. In addition, wadsleyite grain growth suggests the participation of diffusion-assisted processes in deformation. Calculated anisotropies for P and S-waves using measured CPO are always below 1%. This very low anisotropy is due to both the low finite strain achieved in the experiments, which leads to weak wadsleyite CPO, and to the diluting effect of added majorite. The present experiments emphasize the importance of stress, grain size evolution and water content in the forsterite to wadsleyite phase transformation and subsequent deformation in the transition zone.  相似文献   

9.
Csaba  Szabó  Károly  Hidas  Enik&#;  Bali  Zoltán  Zajacz  István  Kovács  Kyounghee  Yang  Tibor  Guzmics  Kálmán  Török 《Island Arc》2009,18(2):375-400
In this paper we present a detailed textural and geochemical study of two equigranular textured amphibole-bearing spinel lherzolite xenoliths from Szigliget, Bakony–Balaton Highland Volcanic Field (BBHVF, western Hungary) containing abundant primary silicate melt inclusions (SMIs) in clinopyroxene rims and secondary SMIs in orthopyroxene (and rarely spinel) along healed fractures. The SMIs are dominantly composed of silicate glass and CO2-rich bubbles. Clinopyroxene and orthopyroxene are zoned in both studied xenoliths, especially with respect to Fe, Mg, Na, and Al contents. Cores of clinopyroxenes in both xenoliths show trace element distribution close to primitive mantle. Rims of clinopyroxenes are enriched in Th, U, light rare earth elements (LREEs) and medium REEs (MREEs). Amphiboles in the Szg08 xenolith exhibit elevated Rb, Ba, Nb, Ta, LREE, and MREE contents. The composition of silicate glass in the SMIs covers a wide range from the basaltic trachyandesite and andesite to phonolitic compositions. The glasses are particularly rich in P2O5. Both primary and secondary SMIs are strongly enriched in incompatible trace elements (mostly U, Th, La, Zr) and display a slight negative Hf anomaly. The development of zoned pyroxenes, as well as the entrapment of primary SMIs in the clinopyroxene rims, happened after partial melting and subsequent crystallization of clinopyroxenes, most probably due to an interaction between hot volatile-bearing evolved melt and mantle wall-rocks. This silicate melt filled microfractures in orthopyroxenes (and rarely spinels) resulting in secondary SMIs.  相似文献   

10.

The pyroxenite xenoliths in the volcanic rocks of Hoh Xil consist of clinopyroxenes and orthopyroxenes. The mineral composition of these pyroxenes is similar to that of mantle xenoliths including peridotite and pyroxenite from China and abroad, and different from that of granulites. The pyroxenes formed at 1101–1400°C (averaging 1250°C) and under 30–60 kb (averaging 46 kb). We deduced that the magma was derived from the mantle at a depth of more than 150 km, which fits in with the geophysical conclusion that the low-velocity layer existed in the mantle under 150 km.

  相似文献   

11.
Eleven harzburgites and one dunite from Ocean Drilling Program Leg 209 Hole 1274A preserve high-temperature mantle textures. Electron backscatter diffraction (EBSD) analysis shows moderately developed crystal lattice preferred orientations (LPOs) in olivine and orthopyroxene (M-indices  0.1) indicative of crystal-plastic deformation at ~ 1250 °C. These rocks preserve a protogranular texture with a weak olivine foliation, a very weak or absent orthopyroxene foliation that may be decoupled from the orthopyroxene LPO, and minor interstitial clinopyroxene and spinel. Olivine grain size distributions, along with melt-related microstructures in orthopyroxene, clinopyroxene and spinel suggest that high-temperature deformation textures have been overprinted by pervasive post-deformation melt-rock interaction. Paleomagnetic data constrain the olivine [100] axes to be subhorizontal and oriented at low angle (≤ 28.6° ± 10.6°) to the ridge axis at the onset of serpentinization. This orientation is consistent with either complex 3-D mantle upwelling or 2-D mantle upwelling coupled with complex 3-D tectonic emplacement to the seafloor.  相似文献   

12.
A suite of highly depleted peridotite xenoliths in East Serbian Palaeogene basanites represents the lithospheric mantle beneath the Balkan Peninsula. The xenoliths are harzburgites, clinopyroxene-poor lherzolites and rare dunites. They contain mostly <5 vol.% of modal clinopyroxene and are characterized by high Mg# in silicates (>91), high Cr# in spinel (mostly 0.5–0.7), and by distinctively low Al2O3 contents in orthopyroxene (mostly 1–2 wt.%). They have experienced some mantle metasomatism which has slightly obscured their original composition. Nevertheless, the general characteristics of the xenoliths imply a composition which is significantly more depleted than most non-cratonic sub-continental mantle xenolith suites, as well as orogenic peridotites and abyssal peridotites. Geological and compositional evidence suggests that the xenoliths do not represent Archean mantle. The existence of Proterozoic mantle cannot be entirely excluded, although it is in disagreement with geological evidence. On the other hand, the studied xenoliths are compositionally very similar to peridotites of modern oceanic sub-arc settings. The existence of such a depleted lithospheric mantle segment is also inferred from the presence of rare orthopyroxene-rich xenoliths in the same suite. These are interpreted to have originated as lithospheric precipitates of high-Mg, SiO2-saturated magmas that require a highly depleted mantle source. Such source is typically required by boninitic-like magmas of intraoceanic suprasubduction settings. A proposed geodynamic model to explain these observations involves accretion or underplating of the lower parts of the Tethyan oceanic lithosphere during the Upper Jurassic closure of the eastern branch of the Vardar ocean.  相似文献   

13.
Trace elements and isotopic compositions of whole rocks and mineral separates are reported for 15 spinel-bearing harzburgite and lherzolite xenoliths from southeastern Australia. These samples have an exceedingly large range in isotopic compositions, with87Sr/86Sr ranging from 0.70248 to 0.70834 and εNd values ranging from +12.7 to −6.3. This range in isotopic compositions can be found in xenoliths from a single locality. The isotopic compositions of clinopyroxene separates and their whole rocks were found to be different in some xenoliths. Samples containing small glass pockets, which replace pre-existing hydrous minerals, generally show only small differences in isotopic composition between clinopyroxene and whole rock. In a modally metasomatized peridotite, significant differences in the Sr and Nd isotopic compositions of a coexisting phlogopite-clinopyroxene pair are present. Coexisting clinopyroxenes and orthopyroxenes from an anhydrous lherzolite have Sr isotopic compositions that are significantly different (0.70248 versus 0.70314), and yield an apparent age of 625 Ma, similar to that found previously by Dasch and Green [1]. However, the Nd isotopic compositions of the clinopyroxene and orthopyroxene are identical indicating recent (within 40 Ma) re-equilibration of Nd.Sr and Nd concentrations in the whole rocks and clinopyroxenes show an excellent positive correlation, and have an average Sr/Nd ratio of 15. This ratio is similar to the primitive mantle value, as well as that found in primitive MORBs and OIBs, but is much lower than that measured in island arc basalts and what might be predicted for a subduction zone-derived fluid. This indicates that a significant proportion of the Sr and Nd in these peridotites is introduced as a basaltic melt with intraplate chemical characteristics.The isotopic compositions of the peridotites reflect long-term, small-scale heterogeneities in the continental lithospheric mantle, and are in marked contrast to the near uniform isotopic compositions of the host alkali basalts (87Sr/86Sr= 0.7038–0.7041andεNd = +3.6 to +2.9). A minimum of three evolutionary stages are identified in the growth of the continental lithospheric mantle: an early basalt depletion event, recording the initial development and stabilization of the lithospheric mantle, followed by at least two enrichment episodes. These observations are consistent with continental lithospheric mantle growth involving the underplating of refractory peridotite diapirs.  相似文献   

14.
The lavas produced by the Timanfaya eruption of 1730–1736 (Lanzarote, Canary Islands) contain a great many sedimentary and metamorphic (metasedimentary), and mafic and ultramafic plutonic xenoliths. Among the metamorphosed carbonate rocks (calc-silicate rocks [CSRs]) are monomineral rocks with forsterite or wollastonite, as well as rocks containing olivine ± orthopyroxene ± clinopyroxene ± plagioclase; their mineralogical compositions are identical to those of the mafic (gabbros) and ultramafic (dunite, wherlite and lherzolite) xenoliths. The 87Sr/86Sr (around 0.703) and 143Nd/144Nd (around 0.512) isotope ratios of the ultramafic and metasedimentary xenoliths are similar, while the 147Sm/144Nd ratios show crustal values (0.13–0.16) in the ultramafic xenoliths and mantle values (0.18–0.25) in some CSRs. The apparent isotopic anomaly of the metamorphic xenoliths can be explained in terms of the heat source (basaltic intrusion) inducing strong isotopic exchange (87Sr/86Sr and 143Nd/144Nd) between metasedimentary and basaltic rocks. Petrofabric analysis also showed a possible relationship between the ultramafic and metamorphic xenoliths.  相似文献   

15.
A suite of ultramafic xenoliths 2–10 cm in size occurs in basanite near Papeete, Tahiti, and consists of spinel lherzolites with minor dunites and wehrlites. Petrographic examination of xenoliths reveals that they are typically coarse grained with well-developed annealed textures. Microprobe analyses of constituent minerals in 11 xenoliths indicate that bulk compositions of xenoliths are magnesian but with significant variability from xenolith to xenolith especially in Fe/Mg and Cr/Al ratios and in absolute amounts of Al2O3 and Cr2O3. Within any single xenolith, however, coexisting minerals are homogeneous and appear to be compositionally equilibrated. Geothermometry of coexisting orthopyroxene and augite indicates temperatures of equilibration of about 1100°C but there is considerable uncertainty in this estimate due to significant non-quadrilateral pyroxene substitutions. There is no accurate way to determine pressures, but the ubiquity of Cr-poor spinel and absence of garnet imply pressures less than about 15–20 kbar.The margins of most xenoliths show significant alteration through reaction with enclosing alkaline magma. Principal reaction features include zoning of spinels and olivines toward compositions in equilibrium with the magma, and reaction-melting of orthopyroxene to a symplectite of olivine plus silica-rich glass. Glass composition profiles across the symplectites indicate that alkalis, titanium and aluminum diffused into the symplectite from the magma and that silica diffused into the magma. All glass analyses show very low iron, magnesium and calcium.Xenolith mineral assemblages and chemistry indicate their origin in the upper mantle at relatively shallow depths. They are therefore not related genetically to the enclosing basanite magma which came from deeper in the mantle, but rather are accidental fragments of country rock picked up by magma on its way to the surface. The details of the reaction features strongly imply that the magma had partially crystallized by the time it reacted with xenoliths, possibly while still in the mantle.  相似文献   

16.
We carried out viscosity measurements and sampling of a crystal suspension derived from alkali olivine basalt from the Matsuura district, SW Japan, at subliquidus temperatures from 1230 °C to 1140 °C under 1 atm with NNO oxygen buffered conditions. Viscosity increased from 31 to 1235 Pa s with a decrease in temperature from 1230 to 1140 °C. On cooling, olivine first appeared at 1210 °C, followed by plagioclase at 1170 °C. The crystal content of the sample attained 31 vol.% at 1140 °C (plagioclase 22%, olivine 9%). Non-Newtonian behaviors, including thixotropy and shear thinning, were pronounced in the presence of tabular plagioclase crystals. The cause of such behavior is discussed in relation to shear-induced changes in melt–crystal textures. Relative viscosities, ηr (= ηs / ηm, where ηs and ηm are the viscosities of the suspension and the melt, respectively), were obtained by calculating melt viscosities from the melt composition and temperature at 1 atm using the equation proposed by Giordano and Dingwell [Giordano, D., Dingwell, D.B., 2003. Non-Arrhenian multicomponent melt viscosity: a model. Earth and Planetary Science Letters, 208, 337–349.]. The obtained relative viscosities are generally consistent with the Einstein–Roscoe relation, which represents ηr for suspensions that contain equant and equigranular crystals, even though the crystal suspension analyzed in the present experiments contained tabular plagioclase and granular olivine of various grain sizes. This consistency is attributed to the fact that the effect of crystal shape was counterbalanced by the effect of the dispersion of crystal size. The applicability of the Einstein–Roscoe equation with respect to crystal shape is discussed on the basis of the present experimental results. Our experiments and those of Sato [Sato, H., 2005. Viscosity measurement of subliquidus magmas: 1707 basalt of Fuji volcano. Journal of Mineralogical and Petrological Sciences, 100, 133–142.] show that the relationship between relative viscosity and crystal fraction is consistent with the Einstein–Roscoe relationship for axial ratios that are smaller than the critical value of 4–6.5, but discrepancies occur for higher ratios.  相似文献   

17.
橄榄石晶格优选方位和上地幔地震波速各向异性   总被引:20,自引:5,他引:20       下载免费PDF全文
根据福建省明溪幔源包体(二辉橄榄岩)中橄榄石晶格优选方位(LPO)及其晶体弹性刚度系数,计算了地震波速度及其各向异性.研究结果表明,该区地震波各向异性是由橄榄石塑性流动产生晶格优选方位而引起的.与构造背景有关的VP,Vs1,Vs2和△Vs分布特征表明,中国东南沿海地区上地幔物质流动方向(由NWW向SEE)与橄榄石[100]定向排列方向(a轴)和VP最大方向有一致的趋势.  相似文献   

18.
New petrological and geochemical data of upper mantle and lower crustal xenoliths from a Quaternary tephra deposit in Mýtina, Czech Republic, are discussed in the frame of previous geophysical results (receiver functions, reflection seismology) of the western Eger/Ohře Rift area. The Vogtland/NW Bohemia region is well known for intraplate earthquake swarms, which are usually associated with volcanic activity. As previously reported, 3He/4He data of CO2 emissions in mofettes and mineral-water springs point at ongoing magmatic processes in this area. Using teleseismic P receiver functions, an approximately 40-km-wide Moho updoming (from 31 to 27 km) and indications for a seismic discontinuity at 50 to 60 km depth were observed beneath the active CO2-degassing field. The studied xenolith suite probes a lithospheric profile within the structural and gas geochemical anomaly field of the western Eger Rift.With regard to texture, composition, pT estimates and origin, five xenolith groups can be discriminated. Upper crustal xenoliths (quartzites, phyllites, mica schists) resemble crystalline country rocks at surface. One noritic xenolith (6 kbar, 800 °C) could represent a sample of the lower crust. Clinopyroxenites and hornblendites probably represent cumulates of the nephelinitic magma or fragments of magmatic veins. Porous wehrlites and one hornblende peridotite xenolith reflect a metasomatied upper mantle. Megacrysts of Ti-rich amphibole, olivine, clinopyroxene, and phlogopite could be fragments of pegmatitic veins or high-pressure phenocrysts. Most of the ultramafic nodules (xenoliths and megacrysts) formed at pressures between 6 and 11 kbar (22 to 38 km depth), at temperatures well above regional geotherms of the Bohemian Massif calculated from surface heat flow studies. Orthopyroxene-bearing spinel-lherzolite xenoliths were not observed. Our petrographical, geochemical, and thermobarometric results indicate a lithospheric mantle strongly altered by magmatic processes. This metasomatism can cause slower than typical uppermost-mantle seismic velocities in a greater area and might help to explain observed seismic anomalies.  相似文献   

19.
We provide new petrological evidence for the strong influence of water on the formation of the oceanic lithospheric mantle, the subcontinental mantle above, and the continental lithosphere. Our analysis throws new light on the hypothesis that new continental lithosphere was formed by the passage of silicate-rich aqueous fluid through the sub-continental mantle. In order to investigate this hypothesis, we analyzed a representative collection of lherzolite and harzburgite xenoliths from the sample volcano known as “The Thumb”, located in the center of the Colorado Plateau, western United States. The studied sample collection exhibits multi-stage water enrichment processes along point, line and planar defect structures in nominally anhydrous minerals and the subsequent formation of the serpentine polymorph antigorite along grain boundaries and in totally embedded annealed cracks. Planar defect structures act like monomineralic and interphase grain boundaries in the oceanic lithosphere and the subcontinental mantle beneath the North American plate, which was hydrated by the ancient oceanic Farallon plate during the Cenozoic and Mesozoic eras. We used microspectroscopical, petrological, and seismological techniques to confirm multi-stage hydration from a depth of ∼150 km to just below the Moho depth. High-resolution mapping of the water distribution over homogeneous areas and fully embedded point, line and planar defects in olivine crystals of lherzolitic and harzburgitic origin by synchrotron infrared microspectroscopy enabled us to resolve local wet spots and thus reconstruct the hydration process occurring at a depth of ∼150 km (T  1225 °C). These lherzolites originated from the middle part of the Farallon mantle slab; they were released during the break up of the Farallon mantle slab, caused by the instability of the dipping slab. The background hydration levels in homogeneous olivines reached ∼138 ppm wt H2O, and the water concentration at the planar defects could reach up to ∼1000 ppm wt H2O. However, the formation of antigorite in grain boundaries was found to be the primary hydration mechanism for harzburgitic samples originating from the subcontinental mantle (for hydration, T  600 °C). Additionally, the formation of antigorite in lherzolites could be found in annealed cracks. From these observations, we conclude that hydration induces multi-stage water enrichment of the mantle wedge by a process that is dominated by the growth and movement of ubiquitous cracks, which acts as planar defects. Cracks in the mantle seem to be the an important feature in both the water cycle of the subduction zone and the formation of the continental lithosphere.  相似文献   

20.
The gold contents of 59 samples of mantle-derived xenoliths, along with 85 samples of sulfide assem-blages in them, of Cenozoic basalt from eight districts in eastern China are analyzed. The gold contents of mantle xenoliths usually fall in the range of 10-9―10-8, whereas those of the sulfide assemblages fall in the range of 10-4―10-2. This implies that the latter are several hundred thousand times higher than the former, and thus that Au in the mantle is concentrated mostly in sulfide assemblages. Gold con-tents of both mantle-derived xenoliths and sulfide assemblages in them are inhomogeneous spatially, but their distribution rules are similar. Except the samples from Hainan Province, either the mantle xenoliths with high gold content or sulfide assemblages of the mantle-derived xenoliths with high gold content are distributed mostly on the north and south margins of the North China platform (Hannuoba of Hebei Province and Linqu, Changle of Shandong Province), corresponding to districts with concen-trated gold deposits in northwest Hebei Province and Jiaodong Peninsula of Shandong Province. This may reflect the correlativity in age, nature and composition between the continental crust and the un-derlying lithospheric mantle. The underlying lithospheric mantle of the North China platform is an an-cient gold-rich lithospheric mantle. The gold-rich lithospheric mantle may be the material source of later activation, enrichment, transportation and mineralization of gold by auriferous CO2 mantle fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号