首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An empirical method is developed for estimating the load transfer and deformation of drilled, in situ formed piles subjected to axial loading. Firstly, governing equations for soil–pile interaction are developed theoretically, taking into account spatial variations in: (a) shaft resistance distribution and (b) ratio of load sharing between the shaft and base. Then generic load transfer models are formulated based on examination of data from 10 instrumented test piles found in the literature. The governing equations and load transfer models are then combined and appropriate boundary conditions defined. Using an incremental-iterative algorithm whereby all the boundary conditions are satisfied simultaneously, a numerical scheme for solving the combined set of equations is developed. The algorithm is then developed into an interactive computer program, which can be used to predict the load-settlement and axial force distribution in piles. To demonstrate its validity, the program is used to analyse four published case records of test piles, which other researchers had analysed using the following three computationally demanding tools: (a) load transfer (tz), (b) finite difference and (c) finite element methods. It is shown that the proposed method which is much less resource-intensive, predicts both the load-settlement variation and axial force distribution more accurately than methods: (a–c) above.  相似文献   

2.
杨光华  范泽  姜燕  张玉成 《岩土力学》2015,36(Z1):76-84
既简便又具有较好精度的刚性桩复合地基沉降计算方法仍是工程实践中迫切需要而又有待于解决的问题,文中提出了一个解决的简化方法。在刚性桩复合地基中,由于桩间土荷载水平不高,将桩间土荷载-沉降曲线近似为线性。当桩的荷载水平不高时,对桩的沉降可按线性考虑,线性关系可按线弹性方程计算得到。若桩可能进入非线性甚至塑性,则假设桩的荷载-沉降曲线满足双曲线规律,可较好地考虑桩的非线性沉降过程。通过计算单桩承载力特征值下的沉降,然后通过双曲线方程特点得到桩的非线性沉降方程。对于有单桩静载试验的情况,提出直接利用单桩试验曲线建立单桩的双曲线方程。最后依据共同作用时桩和桩间土的变形协调条件和静力平衡方程,即可计算其实际基础下复合地基的沉降,从而得到一个刚性桩复合地基沉降计算的简化方法。工程实例表明,简化是方法既简便又具有较好的精度,可为工程实践提供一个有效实用的计算方法。  相似文献   

3.
通过8根挤扩支盘桩与直杆桩的大比例尺模型桩试验,对单桩静载试验和桩身轴力测试结果分析表明,挤扩支盘桩的荷载–沉降曲线为缓变形,在竖向荷载作用下表现出端承桩的受力特征;地基土性质、桩间距、桩径、盘径、支盘数量及支盘竖向间距是影响支盘桩承载力的主要因素。工程实例应用中,支盘桩比同径、同长的普通灌注桩提高单桩承载力89%,节省工程造价28%(541万元),工期提前52d。   相似文献   

4.
王成华  李全辉  张美娜  苏娟  占川 《岩土力学》2014,35(11):3207-3213
为评价灌注桩在施工过程中因形成缩径、扩径、断桩、泥皮等缺陷导致单桩竖向极限承载力变化的程度,针对缺陷桩单桩开展了现场模型试验研究。进行正常桩和缺陷桩的竖向静载模型试验,测试单桩竖向极限承载力,对比缺陷桩和正常桩的单桩承载特性,分析了缩径、扩径、断桩、泥皮等缺陷对单桩承载性状的影响。对比正常桩和缺陷桩的荷载-沉降关系曲线,得出了基于文中缺陷桩设计方案的结论,缩径缺陷和泥皮缺陷均使单桩竖向极限承载力降低,降幅在正常桩极限承载力的15%范围内;扩径缺陷桩的荷载-沉降关系曲线无明显陡降点,桩顶沉降较正常桩递增缓慢;断桩缺陷影响荷载-沉降关系曲线中反弯点的出现位置,即反弯点出现时的桩顶位移与断桩缺陷距地表的距离有关。  相似文献   

5.
林智勇  戴自航 《岩土力学》2014,35(Z1):221-226
群桩中各基桩在地基土中的加筋与遮帘效应是客观存在的,然而,在目前的桩基沉降理论与实践中,相关的研究仍显不足。基于剪切变形法理论,考虑桩的加筋与遮帘效应,求得各基桩在自身桩顶荷载作用下产生的沉降以及其引起相邻桩的附加沉降量,由此提出群桩中任两桩的相互作用系数简化公式,同时,也得到各基桩桩侧及桩端桩-土接触等效弹簧刚度,并基于荷载传递法原理,建立了成层地基条件下各基桩在自身桩顶荷载作用下的桩身位移平衡方程,推导出各土层层顶处桩身沉降、轴力与层底处桩身沉降、轴力之间的递推关系,进而将公式推广到高、低承台群桩基础计算中。工程算例分析表明,用该方法计算有较高的精度,求得的荷载-沉降曲线及两桩相互作用系数与实测值吻合较好;相互作用系数要明显小于弹性理论计算结果。  相似文献   

6.
在大桩径、小桩距的群桩条件下,不仅有来自桩侧、桩端和承台传递的多重应力叠加,还有群桩对桩间土的夹持作用影响,桩-土-承台之间作用更加复杂。用有限差分软件模拟固定桩距、桩径,变化竖向荷载下桩-土-承台的相互作用。从各层土的侧摩阻力、不同位置桩的桩顶荷载、荷载-沉降关系、桩间土体位移等方面的计算结果分析桩-土-承台之间的相互影响。结果表明,荷载超出117.8 MN(略大于Pu/2,Pu为群桩极限承载力)后,群桩对上部桩间土的夹持作用开始减小,桩侧上部侧摩阻力增大;桩侧下部侧摩阻力在多重应力叠加作用下呈减小趋势,不同位置的桩侧摩阻力影响范围有差异;用群桩沉降达到5%倍桩径时的荷载作为群桩的竖向极限承载力是可取的;当沉降与桩径的比值超出1%后,承台分担荷载的比例逐渐增大,群桩分担荷载的比例减小。  相似文献   

7.
CFG桩(cement-fly ash-gravel pile)复合地基是一种重要的地基处理形式,在日益增加的大面积住宅和商业开发中作用越来越突出,然而该种桩型的加卸荷-沉降变形特性仍然需深入研究,尤其在概率评估方面。根据北京星光影视股份有限公司生产科研基地项目工地中的21根CFG桩单桩静载试验和32个复合地基静载试验的原位加卸载测试成果,采用两参数的双曲线或幂曲线回归拟合了每一条加荷-变形曲线。由于土体的内在各向异性和其强度的变异性,评估整个场地的加荷-变形曲线时,其回归参数表现出了较大的离散性。将一个场地的多组回归参数组成一个随机向量,其加载-位移曲线的不确定性可由简单的两变量随机向量体现,引入双变量联结函数(Copula)描述随机回归参数间的相依性。最后,考虑正常使用极限状态,采用基于Copula函数的模拟模型计算了CFG桩复合地基的可靠度指标。研究结果有助于改进CFG桩复合地基的概率设计与评估。  相似文献   

8.
预制桩的沉桩过程产生了对桩周土体的挤密作用,桩周土体的力学特性发生了相应的改变,这种改变会直接影响预制桩桩基础的承载力。利用有限元计算分析方法对砂性土地基预制桩沉桩过程进行了数值求解,得到了桩周土体的位移和应力变化规律;在应力路径控制的三轴试验中,模拟土体在受到预制桩沉桩影响的应力状态,试验研究了标准砂在再受荷载作用时的力学特性;在荷载传递法中,运用桩周土体性质的变化试验结果,进行了有限差分数值分析,得到了考虑和不考虑挤土作用的单桩P-S曲线。研究结果表明:预制桩的沉桩过程对桩周土中的径向和轴向应力都有明显的影响,对径向应力的影响大于对轴向应力的影响;挤土效应提高了桩周土的剪切模量值和强度,影响范围大致相当;考虑沉桩侧向挤土影响单桩承载特性有明显的提高,现行的预制桩设计偏于安全。  相似文献   

9.
A neural network approach for the prediction of pile bearing capacity by the stress-wave matching technique is presented. The main advantage of this approach over the traditional manual or automated matching approach is that it avoids the time-consuming process of iterative adjustment. This makes it feasible to determine the static pile capacity in real time in the field. Another benefit of this approach is that as more case histories become available, the neural network can be improved by learning from these new examples. A three-layer back-propagation network is set up to illustrate the capability of the proposed approach for 70 dynamically tested concrete bored piles. A wave equation model developed at the National University of Singapore and coded in the NUSWAP computer program is used to formulate the problem. Up to 14 of the 70 piles (20 percent) are used in training the network. The NUSWAP program is used to generate simulation training examples based on the manually fitted training examples for further training of the network. Different network configurations are examined. The trained network produces results exhibiting good stress-wave matching qualities compared to those obtained by manual fitting. The pile bearing capacities predicted by the two approaches agree very closely. The load-settlement curve and axial load distribution in the pile computed using the network-predicted soil parameters are in good agreement with the field measurements obtained from a maintained load test.  相似文献   

10.
An interactive computer program “GLAMCPT” is developed for application in soil profiling and prediction of pile load capacity using cone penetration test (CPT) and laboratory soil test results. GLAMCPT calculates pile capacity according to 10 selected methods from European design codes, refereed international publications and recommendations of professional institutions. To demonstrate the capabilities of the program, a database of comprehensive ground investigation and full-scale pile tests in sand, at a Belgian site, is analysed using GLAMCPT. The database comprises 11 static tests and 12 dynamic tests on piles of different construction techniques, including driven pre-cast concrete piles and screwed cast in-situ piles, installed using 5 different procedures. Prior to pile installation, CPTs were carried out at each proposed pile location. Comparison of GLAMCPT predictions with the observed pile capacities reveals that the most accurate of the existing methods yields an average, μ, of predicted to observed pile head capacity [Puh(p)/Puh(m)] equal to 0.94. The most consistent method produces a coeffcient of variation (COV) of [Puh(p)/Puh(m)] equal to 0.1 and ranking index (RI) of 0.08. Parametric studies have been carried out using GLAMCPT to formulate an improved predictive method, which yielded: μ = 0.99, COV = 0.07 and RI = 0.04.  相似文献   

11.
由于基桩纵向截面形式的差异,竖向荷载作用下桩侧摩阻力和桩端阻力发挥存在明显的差异,尽管纵向截面异形桩在工程中得到了一定的应用,然而针对极限荷载下桩端和桩侧土体破坏形式的研究却相对较少。基于透明土材料和粒子图像测速(particle image velocimetry)技术,针对等体积的扩底楔形桩、楔形桩和等截面桩的承载特性及破坏形式进行对比模型试验,测得桩顶荷载-沉降曲线,研究了各级荷载下桩端和桩侧土体位移场的变化规律以及极限荷载下桩端和桩侧土体的破坏形式;同时分析了不同桩长情况下各类型桩的承载力特性。研究结果表明,在此试验条件下,扩底楔形桩的极限承载力约为常规楔形桩的3.5倍和等截面桩的2.5倍;极限荷载作用下各类型纵向截面异形桩桩端的破坏形式规律基本一致。  相似文献   

12.

This paper presents the analyses of twelve prestressed concrete (PSC) instrumented test piles that were driven in different bridge construction projects of Louisiana in order to develop analytical models to estimate the increase in pile capacity with time or pile setup. The twelve test piles were driven mainly in cohesive soils. Detailed soil characterizations including laboratory and in situ tests were conducted to determine the different soil properties. The test piles were instrumented with vibrating wire strain gauges, piezometers, pressure cells that were monitored during the whole testing period. Several static load tests (SLTs) and dynamic load tests were conducted on each test pile at different times after end of driving (EOD) to quantify the magnitude and rate of setup. Measurements of load tests confirmed that pile capacity increases almost linearly with the logarithm of time elapsed after EOD. Case pile wave analysis program was performed on the restrikes data and was used along with the load distribution plots from the SLTs to evaluate the increase in skin friction capacity of individual soil layers along the length of the piles. The logarithmic linear setup parameter “A” for unit skin friction was calculated of the 70 individual clayey soil layers and was correlated with different soil properties such as undrained shear strength (Su), plasticity index, vertical coefficient of consolidation (cv), over consolidation ratio and sensitivity (St). Nonlinear multivariable regression analyses were performed, and three different empirical models are proposed to predict the pile setup parameter “A” as a function of soil properties. For verification, the subsurface soil conditions and setup information for additional 18 PSC piles collected from local database were used to compare the measured versus predicted “A” parameters from the proposed models, which showed good agreement.

  相似文献   

13.
This paper presents the results from a pile load testing program for a bridge construction project in Louisiana. The testing includes two 54-in. open-ended spun cast concrete cylinder piles, one 30-in. open-ended steel pile and two (30- and 16-in.) square prestressed concrete (PSC) piles driven at two locations with very similar soil conditions. Both cone penetration tests (CPTs) and soil borings/laboratory testing were used to characterize the subsurface soil conditions. All the test piles were instrumented with vibrating wire strain gauges to measure the load distribution along the length of the test piles and measure the skin friction and end-bearing capacity, separately. Dynamic load tests were performed on all test piles at different times after pile installations to quantify the amount of setup with time. Static load tests were also performed on the PSC and open-ended steel piles. Due to expected large pile capacities, the statnamic test method was used on the two open-ended cylinder piles. The pile capacities of these piles were evaluated using various CPT methods (such as Schmertmann, De Ruiter and Beringen, LCPC, Lehane et al. methods). The result showed that all the methods can estimate the skin friction with good accuracy, but not the end-bearing capacity. The normalized cumulative blow counts during pile installation showed that the blow count was always higher for the PSC piles compared to the large-diameter open-ended cylinder pile, regardless of pile size and hammer size. Setup was observed for all the piles, which was mainly attributed to increase in skin frictions. The setup parameters “A” were back-calculated for all the test piles and the values were between 0.31 and 0.41.  相似文献   

14.
Lateral load-deflection behaviour of single piles is often analysed in practice on the basis of methods of load-transfer PY curves. The paper is aimed at presenting the results of the interpretation of five full-scale horizontal loading tests of single instrumented piles in two sandy soils, in order to define the parameters of PY curves, namely the initial lateral reaction modulus and the lateral soil resistance, in correlation with the pressuremeter test parameters. PY curve parameters were found varying as a power of lateral pile/soil stiffness, on the basis of which hyperbolic PY curves in sand were proposed. The predictive capabilities of the proposed PY curves were assessed by predicting the soil/pile response in full-scale tests as well as in centrifuge tests and a very good agreement was found between the computed deflections and bending moments, and the measured ones. Small-sized database of full-scale pile loading tests in sand was built and a comparative study of some commonly used PY curve methods was undertaken. Moreover, it was shown that the load-deflection curves of these test piles may be normalised in a practical form for an approximate evaluation of pile deflection in a preliminary stage of pile design. At last, a parametric study undertaken on the basis of the proposed PY curves showed the significant influence of the lateral pile/soil stiffness on the non-linear load-deflection response.  相似文献   

15.
A piled raft foundation is a combined foundation, which is developed to utilize the load-carrying capabilities of both raft and piles. To obtain an optimum piled raft design, it is important to properly evaluate and consider the load-sharing behavior between the raft and piles, which changes according to the settlement level of the piled raft. In this study, 27 three-dimensional finite element models were analyzed to investigate the piled raft coefficient with linear and nonlinear load-settlement behaviors. The length of piles was varied between 10, 15, and 20 m. The spacing between pile centers was varied between 3D, 5D, and 7D, and the pile diameter was kept constant. The number of piles and the distance between the exterior piles and the edge of the raft were maintained at 9 and 1 m, respectively. The sand conditions varied between dense, medium, and loose. The results indicated that the piled raft coefficient increases when the load-settlement curve is linear and decreases when the load-settlement curve is nonlinear. The influence of the incremental increase in pile length on the piled raft coefficient is more pronounced in short piles than in longer piles. The raft thickness has a negligible effect on the piled raft coefficient.  相似文献   

16.
大直径超长钻孔灌注桩荷载分层传递特性试验分析   总被引:3,自引:2,他引:1  
基于"上海市虹桥综合交通枢纽交通中心工程西交通广场"工程现场静载荷试验和桩身应力测试结果,分析竖向荷载作用下大直径超长钻孔灌注桩在成层土中的荷载传递特性。本工程试桩已加载至破坏,对此试验结果进行分析,能为深入研究大直径超长钻孔灌注桩的承载性状提供有价值的工程参考。本次试验结果表明:1)大直径超长钻孔灌注桩桩端承载力所占比例较低,荷载-沉降关系为陡降型,存在明显拐点;2)桩侧与桩端阻力非同步发挥且相互影响,而上下土层侧阻力系先后发挥至极限;3)根据试桩实测数据,土层埋深对桩周具有相似物理力学性质土层的侧摩阻力影响较大。  相似文献   

17.
The evaluation of variability in ultimate pile capacity from the load-settlement data is useful in the context of code calibration and reliability based design in pile foundations. This paper examines the applicability of two non-linear analytical methods to calculate the load-settlement response of piles using actual test data in terms of percentage deviation from the measured capacity. The degree of agreement associated with each method with respect to field test data is quantified using two different failure criteria (FHWA and Eurocode) for determination of the ultimate load of pile. The analytical methods are used to quantify the variability associated with the soil-pile interface parameters and ultimate capacity using Monte Carlo simulations, which is useful in load-resistance factored/reliability design of pile foundations. Study reveals that variability depends on the method of analysis, percent deviation of prediction from measured values and failure criteria.  相似文献   

18.
水泥土桩复合地基桩土应力比的解析算法   总被引:7,自引:1,他引:6  
郑俊杰  黄海松 《岩土力学》2005,26(9):1432-1436
选取常用的双折线荷载传递函数,推导出一组轴向荷载-沉降曲线的解析算式,从而用其来表征桩的荷载-沉降曲线;选取双曲线函数来表征地基土的荷载-沉降曲线,推导出了水泥土桩复合地基中考虑桩-土相互作用的桩土应力比的解析算式,并讨论相关参数对桩土应力比的影响。研究结果表明,水泥土桩复合地基桩土应力比不仅与桩周土的特性有关,而且还受到桩体尺寸、弹性模量和复合地基所受的总荷载的影响。其结果为复合地基桩土应力比的计算提供了一种新思路。  相似文献   

19.
轴向荷载对斜桩水平承载特性影响试验及理论研究   总被引:1,自引:0,他引:1  
斜群桩受水平荷载作用时,群桩中的基桩受到径向荷载、轴向荷载和弯矩的共同作用。为研究轴向荷载对斜桩水平承载特性的影响,完成了3根单桩以及1组1×2斜桩的大尺寸模型试验。试验结果表明:轴向拉力作用会降低斜桩的水平刚度和极限承载力;而轴向压力作用则会使其水平刚度和极限承载力提高。基于桩侧浅层土体楔形破坏假定,推导了考虑轴向荷载影响的斜桩水平极限土抗力计算公式,提出了桩侧土抗力的p-y曲线方法,并通过模型试验及现场试验验证其合理性。  相似文献   

20.
This paper presents a simple discrete layer approach for the settlement analysis of axially loaded piles and pile groups. The soil profile may be arbitrarily layered and underlain by either a stiff or rigid stratum. The pile-soil-pile interaction is determined using a modified form of Mindlin's solution for finite soil depth. Good agreement between the present approach and more rigorous finite element and boundary element approaches is observed for the analysis of piles and pile groups embedded in finite soil layers. Settlement predictions obtained from the present approach also agree reasonably well with measurements from a number of published pile tests. Although the emphasis of this paper is on linear elastic solutions, it can easily be extended to include non-linear response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号