首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Catchment runoff is the most widely used catchment scale measurement in modelling studies, and we have a reasonable degree of confidence in its accuracy. The advent of satellites gives access to a new suite of measurements taken over a defined spatial range. These measurements, principally reflected or emitted radiation, provide hydrologists with new possibilities for quantifying the state of a catchment. Surface temperatures can be readily measured by a satellite on a scale comparable to the size of a small catchment.

In this paper we show that satellite sensed temperatures can provide an important measure of catchment status, which can complement runoff measurements in water balance studies. A one-dimensional model, which couples the land surface energy balance with the soil and surface water balance is tested by comparison with runoff and with remotely sensed surface temperature measurements. Simulations have been run over four years for two small catchments which have a fairly homogeneous vegetation, one being forest and its neighbour pasture. Satellite “surface” temperatures have been interpreted in terms of the energy balance, and used as a test of modelling accuracy. An “effective” surface temperature is calculated as a weighted mean of temperatures of the separate soil and leaf surfaces. This modelled “effective” temperature correlates well with Landsat TM surface temperatures.

When pasture replaces forest, the model predicts a reduction in evapotranspiration of around 30%, a three-fold increase in runoff, and an increase in mean soil moisture status. The change to pasture also results in a rise in mean effective surface temperature of about 4°C, and an increase in summer diurnal temperature range from 10 to 22°C. The winter diurnal temperature range is similar for both vegetation systems.

Inclusion of soil moisture variability in thermal properties results in an increase in mean daily maximum temperature of about 2°C in summer and winter, without much change in daily minima. The daily mean temperature is not significantly affected.  相似文献   


2.
End users face a range of subjective decisions when evaluating climate change impacts on hydrology, but the importance of these decisions is rarely assessed. In this paper, we evaluate the implications of hydrologic modelling choices on projected changes in the annual water balance, monthly simulated processes, and signature measures (i.e. metrics that quantify characteristics of the hydrologic catchment response) under a future climate scenario. To this end, we compare hydrologic changes computed with four different model structures – whose parameters have been obtained using a common calibration strategy – with hydrologic changes computed with a single model structure and parameter sets from multiple options for different calibration decisions (objective function, local optima, and calibration forcing dataset). Results show that both model structure selection and the parameter estimation strategy affect the direction and magnitude of projected changes in the annual water balance, and that the relative effects of these decisions are basin dependent. The analysis of monthly changes illustrates that parameter estimation strategies can provide similar or larger uncertainties in simulations of some hydrologic processes when compared with uncertainties coming from model choice. We found that the relative effects of modelling decisions on projected changes in catchment behaviour depend on the signature measure analysed. Furthermore, parameter sets with similar performance, but located in different regions of the parameter space, provide very different projections for future catchment behaviour. More generally, the results obtained in this study prompt the need to incorporate parametric uncertainty in multi‐model frameworks to avoid an over‐confident portrayal of climate change impacts. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

The effect of land-use or land-cover change on stream runoff dynamics is not fully understood. In many parts of the world, forest management is the major land-cover change agent. While the paired catchment approach has been the primary methodology used to quantify such effects, it is only possible for small headwater catchments where there is uniformity in precipitation inputs and catchment characteristics between the treatment and control catchments. This paper presents a model-based change-detection approach that includes model and parameter uncertainty as an alternative to the traditional paired-catchment method for larger catchments. We use the HBV model and data from the HJ Andrews Experimental Forest in Oregon, USA, to develop and test the approach on two small (<1 km2) headwater catchments (a 100% clear-cut and a control) and then apply the technique to the larger 62 km2 Lookout catchment. Three different approaches are used to detect changes in stream peak flows using: (a) calibration for a period before (or after) change and simulation of runoff that would have been observed without land-cover changes (reconstruction of runoff series); (b) comparison of calibrated parameter values for periods before and after a land-cover change; and (c) comparison of runoff predicted with parameter sets calibrated for periods before and after a land-cover change. Our proof-of-concept change detection modelling showed that peak flows increased in the clear-cut headwater catchment, relative to the headwater control catchment, and several parameter values in the model changed after the clear-cutting. Some minor changes were also detected in the control, illustrating the problem of false detections. For the larger Lookout catchment, moderately increased peak flows were detected. Monte Carlo techniques used to quantify parameter uncertainty and compute confidence intervals in model results and parameter ranges showed rather wide distributions of model simulations. While this makes change detection more difficult, it also demonstrated the need to explicitly consider parameter uncertainty in the modelling approach to obtain reliable results.

Citation Seibert, J. & McDonnell, J. J. (2010) Land-cover impacts on streamflow: a change-detection modelling approach that incorporates parameter uncertainty. Hydrol. Sci. J. 55(3), 316–332.  相似文献   

4.
In this study, we evaluate uncertainties propagated through different climate data sets in seasonal and annual hydrological simulations over 10 subarctic watersheds of northern Manitoba, Canada, using the variable infiltration capacity (VIC) model. Further, we perform a comprehensive sensitivity and uncertainty analysis of the VIC model using a robust and state-of-the-art approach. The VIC model simulations utilize the recently developed variogram analysis of response surfaces (VARS) technique that requires in this application more than 6,000 model simulations for a 30-year (1981–2010) study period. The method seeks parameter sensitivity, identifies influential parameters, and showcases streamflow sensitivity to parameter uncertainty at seasonal and annual timescales. Results suggest that the Ensemble VIC simulations match observed streamflow closest, whereas global reanalysis products yield high flows (0.5–3.0 mm day−1) against observations and an overestimation (10–60%) in seasonal and annual water balance terms. VIC parameters exhibit seasonal importance in VARS, and the choice of input data and performance metrics substantially affect sensitivity analysis. Uncertainty propagation due to input forcing selection in each water balance term (i.e., total runoff, soil moisture, and evapotranspiration) is examined separately to show both time and space dimensionality in available forcing data at seasonal and annual timescales. Reliable input forcing, the most influential model parameters, and the uncertainty envelope in streamflow prediction are presented for the VIC model. These results, along with some specific recommendations, are expected to assist the broader VIC modelling community and other users of VARS and land surface schemes, to enhance their modelling applications.  相似文献   

5.
We examine the value of additional information in multiple objective calibration in terms of model performance and parameter uncertainty. We calibrate and validate a semi‐distributed conceptual catchment model for two 11‐year periods in 320 Austrian catchments and test three approaches of parameter calibration: (a) traditional single objective calibration (SINGLE) on daily runoff; (b) multiple objective calibration (MULTI) using daily runoff and snow cover data; (c) multiple objective calibration (APRIORI) that incorporates an a priori expert guess about the parameter distribution as additional information to runoff and snow cover data. Results indicate that the MULTI approach performs slightly poorer than the SINGLE approach in terms of runoff simulations, but significantly better in terms of snow cover simulations. The APRIORI approach is essentially as good as the SINGLE approach in terms of runoff simulations but is slightly poorer than the MULTI approach in terms of snow cover simulations. An analysis of the parameter uncertainty indicates that the MULTI approach significantly decreases the uncertainty of the model parameters related to snow processes but does not decrease the uncertainty of other model parameters as compared to the SINGLE case. The APRIORI approach tends to decrease the uncertainty of all model parameters as compared to the SINGLE case. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

A modelling experiment is used to examine different land-use scenarios ranging from extreme deforestation (31% forest cover) to pristine (95% forest cover) conditions and related Payment for Ecosystem Services (PES) schemes to assess whether a change in streamflow dynamics, discharge extremes and mean annual water balance of a 73.4-km2 tropical headwater catchment in Costa Rica could be detected. A semi-distributed, conceptual rainfall–runoff model was adapted to conceptualize the empirically-based, dominant hydrological processes of the study area and was multi-criteria calibrated using different objective functions and empirical constraints on model simulations in a Monte Carlo framework to account for parameter uncertainty. The results suggest that land-use change had relatively little effect on the overall mean annual water yield (<3%). However, streamflow dynamics proved to be sensitive in terms of frequency, timing and magnitude of discharge extremes. For low flows and peak discharges of return periods greater than one year, land use had a minor influence on the runoff response. Below these thresholds (<1-year return period), forest cover potentially decreased runoff peaks and low flows by as much as 10%, and non-forest cover increased runoff peaks and low flows by up to 15%. The study demonstrated the potential for using hydrological modelling to help identify the impact of protection and reforestation efforts on ecosystem services.

Editor Z.W. Kundzewicz

Citation Birkel, C., Soulsby, C., and Tetzlaff, D., 2012. Modelling the impacts of land-cover change on streamflow dynamics of a tropical rainforest headwater catchment. Hydrological Sciences Journal, 57 (8), 1543–1561.  相似文献   

7.
Water losses due to transpiration and evaporation of intercepted water were measured using a “natural” lysimeter in the Hafren forest of central Wales, and were compared with estimates of potential evaporation calculated from meteorological observations. Given certain assumptions concerning the forest canopy, the lysimeter observations were used to estimate runoff from the experimental catchment of the Upper Severn, within which the lysimeter is sited; this estimate agreed well with observation.  相似文献   

8.
ABSTRACT

Flood risk management strongly relies on inundation models for river basin zoning in flood-prone and risk-free areas. Floodplain zoning is significantly affected by the diverse and concurrent uncertainties that characterize the modelling chain used for producing inundation maps. In order to quantify the relative impact of the uncertainties linked to a lumped hydrological (rainfall–runoff) model and a FLO-2D hydraulic model, a Monte Carlo procedure is proposed in this work. The hydrological uncertainty is associated with the design rainfall estimation method, while the hydraulic model uncertainty is associated with roughness parameterization. This uncertainty analysis is tested on the case study of the Marta coastal catchment in Italy, by comparing the different frequency, extent and depth of inundation simulations associated with varying rainfall forcing and/or hydraulic model roughness realizations. The results suggest a significant predominance of the hydrological uncertainty with respect to the hydraulic one on the overall uncertainty associated with the simulated inundation maps.  相似文献   

9.
Vahid Nourani  Akira Mano 《水文研究》2007,21(23):3173-3180
Rainfall–runoff modelling, as a surface hydrological process, on large‐scale data‐poor basins is currently a major topic of investigation that requires the model parameters be identified by using basin physical characteristics rather than calibration. This paper describes the application of the TOPMODEL framework accompanied by a kinematic wave model to the Karun River sub‐basins in southwestern Iran with just one conceptual parameter for calibration. ISLSCP1, HYDRO1K and Reynolds data sets are presented in a geographical information system and used as data sources for meteorological information, hydrological features and soil characteristics of the study area respectively. The results show that although the model developed can adequately predict flood runoff in the catchment with only one calibrated parameter, it is suggested that the effect of surface reservoirs be considered in the proposed model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
We present a field‐data rich modelling analysis to reconstruct the climatic forcing, glacier response, and runoff generation from a high‐elevation catchment in central Chile over the period 2000–2015 to provide insights into the differing contributions of debris‐covered and debris‐free glaciers under current and future changing climatic conditions. Model simulations with the physically based glacio‐hydrological model TOPKAPI‐ETH reveal a period of neutral or slightly positive mass balance between 2000 and 2010, followed by a transition to increasingly large annual mass losses, associated with a recent mega drought. Mass losses commence earlier, and are more severe, for a heavily debris‐covered glacier, most likely due to its strong dependence on snow avalanche accumulation, which has declined in recent years. Catchment runoff shows a marked decreasing trend over the study period, but with high interannual variability directly linked to winter snow accumulation, and high contribution from ice melt in dry periods and drought conditions. The study demonstrates the importance of incorporating local‐scale processes such as snow avalanche accumulation and spatially variable debris thickness, in understanding the responses of different glacier types to climate change. We highlight the increased dependency of runoff from high Andean catchments on the diminishing resource of glacier ice during dry years.  相似文献   

11.
Fine sediment delivery to and storage in stream channel reaches can disrupt aquatic habitats, impact river hydromorphology, and transfer adsorbed nutrients and pollutants from catchment slopes to the fluvial system. This paper presents a modelling tool for simulating the time‐dependent response of the fine sediment system in catchments, using an integrated approach that incorporates both land phase and in‐stream processes of sediment generation, storage and transfer. The performance of the model is demonstrated by applying it to simulate in‐stream suspended sediment concentrations in two lowland catchments in southern England, the Enborne and the Lambourn, which exhibit contrasting hydrological and sediment responses due to differences in substrate permeability. The sediment model performs well in the Enborne catchment, where direct runoff events are frequent and peak suspended sediment concentrations can exceed 600 mg l?1. The general trends in the in‐stream concentrations in the Lambourn catchment are also reproduced by the model, although the observed concentrations are low (rarely exceeding 50 mg l?1) and the background variability in the concentrations is not fully characterized by the model. Direct runoff events are rare in this highly permeable catchment, resulting in a weak coupling between the sediment delivery system and the catchment hydrology. The generic performance of the model is also assessed using a generalized sensitivity analysis based on the parameter bounds identified in the catchment applications. Results indicate that the hydrological parameters contributing to the sediment response include those controlling (1) the partitioning of runoff between surface and soil zone flows and (2) the fractional loss of direct runoff volume prior to channel delivery. The principal sediment processes controlling model behaviour in the simulations are the transport capacity of direct runoff and the in‐stream generation, storage and release of the fine sediment fraction. The in‐stream processes appear to be important in maintaining the suspended sediment concentrations during low flows in the River Enborne and throughout much of the year in the River Lambourn. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
This paper addresses the application of a data‐based mechanistic (DBM) modelling approach using transfer function models (TFMs) with non‐linear rainfall filtering to predict runoff generation from a semi‐arid catchment (795 km2) in Tanzania. With DBM modelling, time series of rainfall and streamflow were allowed to suggest an appropriate model structure compatible with the data available. The model structures were evaluated by looking at how well the model fitted the data, and how well the parameters of the model were estimated. The results indicated that a parallel model structure is appropriate with a proportion of the runoff being routed through a fast flow pathway and the remainder through a slow flow pathway. Finally, the study employed a Generalized Likelihood Uncertainty Estimation (GLUE) methodology to evaluate the parameter sensitivity and predictive uncertainty based on the feasible parameter ranges chosen from the initial analysis of recession curves and calibration of the TFM. Results showed that parameters that control the slow flow pathway are relatively more sensitive than those that control the fast flow pathway of the hydrograph. Within the GLUE framework, it was found that multiple acceptable parameter sets give a range of predictions. This was found to be an advantage, since it allows the possibility of assessing the uncertainty in predictions as conditioned on the calibration data and then using that uncertainty as part of the decision‐making process arising from any rainfall‐runoff modelling project. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

In this study, transferability options of the Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrological model parameter (MP) spaces were investigated to estimate ungauged catchment runoff. Three approaches were applied in the study: MP space transfer from single, neighbouring and all potential donor catchments. The model performance was evaluated by a jackknife procedure, where one catchment at a time was treated as if ungauged, and behavioural MP sets from candidate donor catchments were used to estimate the “ungauged” runoff. The results showed that ungauged catchment runoff estimation could not be guaranteed by transferring MP sets from a single physiographically nearest donor catchment. Integrating MP sets typically from one to six donor catchments supplemented the lack of effective MP sets and improved the model performance at the ungauged catchments. In addition, the analysis results revealed that the model performance converged to an average performance when the MP sets of all potential donor catchments were integrated.  相似文献   

14.
Woody plant encroachment is a global phenomenon whereby shrubs or trees replace grasses. The hydrological consequences of this ecological shift are of broad interest in ecohydrology, yet little is known of how plant and intercanopy patch dynamics, distributions, and connectivity influence catchment-scale responses. To address this gap, we established research catchments in the Sonoran and Chihuahuan Deserts (near Green Valley, Arizona and near Las Cruces, New Mexico, respectively) that represent shrub encroachment in contrasting arid climates. Our main goals in the coordinated observations were to: (a) independently measure the components of the catchment water balance, (b) deploy sensors to quantify the spatial patterns of ecohydrological processes, (c) use novel methods for characterizing catchment properties, and (d) assess shrub encroachment impacts on ecohydrological processes through modelling studies. Datasets on meteorological variables; energy, radiation, and CO2 fluxes; evapotranspiration; soil moisture and temperature; and runoff at various scales now extend to nearly 10 years of observations at each site, including both wet and dry periods. Here, we provide a brief overview of data collection efforts and offer suggestions for how the coordinated datasets can be exploited for ecohydrological inferences and modelling studies. Given the representative nature of the catchments, the available databases can be used to generalize findings to other catchments in desert landscapes.  相似文献   

15.
Before ESR/U-series models were applied to ungulate teeth, it is generally assumed that calculated ages are close to the “real” ages when they range between the values obtained with the EU and LU models. When the samples show signs of uranium-leaching, a realistic mathematical modelling of the age is not possible. On the other hand, some samples have undergone a very late U-uptake “affecting” directly the U-series ages and rendering the calculated ages younger.

We present results obtained on two open-air sites, which show the limits of such combined models in the case of late uranium incorporation. For the Middle Pleistocene site of Isernia la Pineta (Italy), the ESR dates are expected to fall within the limits imposed by the Ar–Ar results. The other site, the Lower Palaeolithic deposits of Ambrona (Spain), yielded two sets of samples: some at the top of the sequence with uranium uptake ranging between EU and LU limits and thus giving a good idea of the “real” age of the site; others at the base displaying a very late U-uptake, which render an age determination difficult.  相似文献   


16.
Climate change impact assessments form the basis for the development of suitable climate change adaptation strategies. For this purpose, ensembles consisting of stepwise coupled models are generally used [emission scenario → global circulation model → downscaling approach (DA) → bias correction → impact model (hydrological model)], in which every item is affected by considerable uncertainty. The aim of the current study is (1) to analyse the uncertainty related to the choice of the DA as well as the hydrological model and its parameterization and (2) to evaluate the vulnerability of the studied catchment, a subcatchment of the highly anthropogenically impacted Spree River catchment, to hydrological change. Four different DAs are used to drive four different model configurations of two conceptually different hydrological models (Water Balance Simulation Model developed at ETH Zürich and HBV‐light). In total, 452 simulations are carried out. The results show that all simulations compute an increase in air temperature and potential evapotranspiration. For precipitation, runoff and actual evapotranspiration, opposing trends are computed depending on the DA used to drive the hydrological models. Overall, the largest source of uncertainty can be attributed to the choice of the DA, especially regarding whether it is statistical or dynamical. The choice of the hydrological model and its parameterization is of less importance when long‐term mean annual changes are compared. The large bandwidth at the end of the modelling chain may exacerbate the formulation of suitable climate change adaption strategies on the regional scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The impact of global climate change on runoff components, especially on the type of overland flow, is of utmost significance. High‐resolution temporal rainfall plays an important role in determining the hydrological response of quick runoff components. However, hydrological climate change scenario analyses with high temporal resolution are rare. This study investigates the impact of climate change on discharge peak events generated by rainfall, snowmelt, and soil‐frost induced runoff using high‐resolution hydrological modelling. The study area is Schäfertal catchment (1.44 km2) in the lower Harz Mountains in central Germany. The WaSiM‐ETH hydrological model is used to investigate the rainfall response of runoff components under near future (2021–2050) and far‐distant future (2071–2100) climatic conditions. Disaggregated daily climate variables of WETTREG2010 SRES scenario A1B are used on a temporal resolution of 10 min. Hydrological model parameter optimization and uncertainty analysis was conducted using the Differential Evolution Adaptive Metropolis (DREAM_(ZS)) uncertainty tool. The scenario results show that total runoff and interflow will increase by 3.8% and 3.5% in the near future and decrease by 32.85% and 31% in the far‐distant future compared to the baseline scenario. In contrast, overland flow and the number and size of peak runoff will decrease moderately for the near future and drastically for the far‐distant future compared to the baseline scenario. We found the strongest decrease for soil‐frost induced discharge peaks at 79.6% in the near future and at 98.2% in the far‐distant future scenario. It can be concluded that high‐resolution hydrological modelling can provide detailed predictions of future hydrological regimes and discharge peak events of the catchment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The selection of calibration and validation time periods in hydrologic modelling is often done arbitrarily. Nonstationarity can lead to an optimal parameter set for one period which may not accurately simulate another. However, there is still much to be learned about the responses of hydrologic models to nonstationary conditions. We investigated how the selection of calibration and validation periods can influence water balance simulations. We calibrated Soil and Water Assessment Tool hydrologic models with observed streamflow for three United States watersheds (St. Joseph River of Indiana/Michigan, Escambia River of Florida/Alabama, and Cottonwood Creek of California), using time period splits for calibration/validation. We found that the choice of calibration period (with different patterns of observed streamflow, precipitation, and air temperature) influenced the parameter sets, leading to dissimilar simulations of water balance components. In the Cottonwood Creek watershed, simulations of 50-year mean January streamflow varied by 32%, because of lower winter precipitation and air temperature in earlier calibration periods on calibrated parameters, which impaired the ability for models calibrated to earlier periods to simulate later periods. Peaks of actual evapotranspiration for this watershed also shifted from April to May due to different parameter values depending on the calibration period's winter air temperatures. In the St. Joseph and Escambia River watersheds, adjustments of the runoff curve number parameter could vary by 10.7% and 20.8%, respectively, while 50-year mean monthly surface runoff simulations could vary by 23%–37% and 169%–209%, depending on the observed streamflow and precipitation of the chosen calibration period. It is imperative that calibration and validation time periods are chosen selectively instead of arbitrarily, for instance using change point detection methods, and that the calibration periods are appropriate for the goals of the study, considering possible broad effects of nonstationary time series on water balance simulations. It is also crucial that the hydrologic modelling community improves existing calibration and validation practices to better include nonstationary processes.  相似文献   

19.
Urbanization strongly changes natural catchment by increasing impervious coverage and by creating a need for efficient drainage systems. Such land cover changes lead to more rapid hydrological response to storms and change distribution of peak and low flows. This study aims to explore and assess how gradual hydrological changes occur during urban development from rural area to a medium‐density residential catchment. The Stormwater Management Model (SWMM) is utilized to simulate a series of scenarios in a same developing urban catchment. Sub‐hourly hydro‐meteorological data in warm season is used to calibrate and validate the model in the fully developed catchment in 2006. The validated model is then applied to other cases in development stage and runoff management scenarios. Based on the simulations and observations, three key problems are solved: (1) how catchment hydrology changes with land cover change, (2) how urban development changes pre‐development flows, and (3) how stormwater management techniques affect catchment hydrology. The results show that the low‐frequency flow rates had remarkably increased from 2004 to 2006 along with the increase of impervious areas. Urbanization in the residential catchment expands the runoff contributing area, accelerates hydrological response, raises peak flows in an order of magnitude of over 10, and more than doubles the total runoff volume. The effects of several LID controls on runoff hydrograph were simulated, and the techniques were able to reduce flows towards the pre‐development levels. However, the partly restored flow regime was still clearly changed in comparison to the pre‐development flow conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
To improve our understanding of the impacts of feedback between the atmosphere and the terrestrial water cycle including groundwater and to improve the integration of water resource management modelling for climate adaption we have developed a dynamically coupled climate–hydrological modelling system. The OpenMI modelling interface is used to couple a comprehensive hydrological modelling system, MIKE SHE running on personal computers, and a regional climate modelling system, HIRHAM running on a high performance computing platform. The coupled model enables two-way interaction between the atmosphere and the groundwater via the land surface and can represent the lateral movement of water in both the surface and subsurface and their interactions, not normally accounted for in climate models. Meso-scale processes are important for climate in general and rainfall in particular. Hydrological impacts are assessed at the catchment scale, the most important scale for water management. Feedback between groundwater, the land surface and the atmosphere occurs across a range of scales. Recognising this, the coupling was developed to allow dynamic exchange of water and energy at the catchment scale embedded within a larger meso-scale modelling domain. We present the coupling methodology used and describe the challenges in representing the exchanges between models and across scales. The coupled model is applied to one-way and two-way coupled simulations for a managed groundwater-dominated catchment, the Skjern River, Denmark. These coupled model simulations are evaluated against field observations and then compared with uncoupled climate and hydrological model simulations. Exploratory simulations show significant differences, particularly in the summer for precipitation and evapotranspiration the coupled model including groundwater and the RCM where groundwater is neglected. However, the resulting differences in the net precipitation and the catchment runoff in this groundwater dominated catchment were small. The need for further decadal scale simulations to understand the differences and insensitivity is highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号