首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ledong gas field, consisting of three gas pools in a shale diapir structure zone, is the largest gas discovery in the Yinggehai Basin. The gases produced from the Pliocene and Quaternary marine sandstone reservoirs show a considerable variation in chemical composition, with 5.4–88% CH4, 0–93% CO2, and 1–23.7% N2. The CO2-enriched gases often display heavier methane δ13C values than those with low CO2 contents. The δ15N values of the gases range from −8 to −2‰, and the N2 content correlates negatively with the CO2 content. The high geothermal gradient associated with a relatively great burial depth in this area has led to the generation of hydrocarbon and nitrogen gases from the Lower–Middle Miocene source rocks and the formation of abundant CO2 from the Tertiary calcareous-shales and pre-Tertiary carbonates. The compositional heterogeneities and stable carbon isotope data of the produced gases indicate that the formation of the LD221 gas field is attributed to three phases of gas migration: initially biogenic gas, followed by thermogenic hydrocarbon gas, and then CO2-rich gas. The filling processes occurred within a short period approximately from 1.2 to 0.1 Ma based on the results of the kinetics modeling. Geophysical and geochemical data show that the diapiric faults that cut through Miocene sediments act as the main pathways for upward gas migration from the deep overpressured system into the shallow normal pressure reservoirs, and that the deep overpressure is the main driving force for vertical and lateral migration of the gases. This gas migration pattern implies that the transitional pressure zone around the shale diapir structures was on the pathway of upward migrating gases, and is also a favorable place for gas accumulation. The proposed multiple sources and multiple phases of gas migration and accumulation model for the Ledong gas field potentially provide useful information for the future exploration efforts in this area.  相似文献   

2.
Inorganic gases are commonly seen in eastern China and occasionally in southern China from the shallow water columns above hot and cold springs. The gases contain 68% to nearly 100% CO2, with δ13CCO2 and δ13C1 values in the range of −1.18‰ to −6.00‰ and −19.48‰ to −24.94‰, respectively. All of the 34 large inorganic CO2 and one inorganic methane accumulations discovered in China are distributed in eastern parts of the country, from both onshore and continental shelf basins. No commercial inorganic gas accumulation has been found in central and western China. This is a review of the occurrence and geochemical characteristics of inorganic gas accumulations in Chinese sedimentary basins. A detailed study of gas samples collected from four representative inorganic CO2 pools and one possible inorganic methane pool indicates that inorganic alkane gases typically show δ13C1 values greater than −10‰ versus PDB (mostly −30‰), with a positive stable carbon isotope sequence of δ13C1 < δ 13C2 < δ13C3 < δ 13C4. In contrast, the δ13C1 values of biogenic alkane gases are lighter than −30‰, with a negative isotope sequence (i.e. δ13C1 > δ13C2 > δ 13C3 > δ13C4). Inorganic gases also tend to show less negative δ13CCO2 values (−10‰) than biogenic gases (<−10‰).  相似文献   

3.
Because of their economic importance as hydrocarbon reservoirs, the Upper Devonian dolomitized carbonate reefs in southwest Alberta have been the subject of several studies. Still, there is no consensus on the process of matrix dolomitization and furthermore, the process of vug development is not often addressed. The studied outcrops show features of an early diagenetic matrix-selective dolomitization by a Late Devonian seawater-derived fluid. Seepage reflux dolomitization combined with latent reflux is proposed, which best explains most chemical characteristics. The cements in the vugs are precipitated from warm saline, 87Sr-enriched fluids and testify to thermogenic sulphate reduction based on the presence of sulphur, CO2 and H2S in inclusions, relatively high homogenization temperatures and depleted δ13C values, which sets constraints on the timing of vug formation. Secondary porosity may be created by the mixing of formation water with a tectonically and topographically driven fluid and by the dissolution of anhydrite nodules.  相似文献   

4.
川东宣汉地区天然气地球化学特征及成因   总被引:13,自引:1,他引:12       下载免费PDF全文
依据10余口探井60多个气样的化学成份和碳同位素组成数据,结合烃源岩和储层沥青分析资料,系统剖析了四川盆地东部宣汉地区普光、毛坝场等构造带天然气地球化学特征,并探讨了其成因及来源。研究结果表明:这些构造带中飞仙关组—长兴组天然气为高含硫化氢的干气,天然气化学成份表现出古油藏原油裂解气的特点。其烃类气体中以甲烷为主(高于99.5%);富含非烃气体,CO2和H2S平均含量分别达5.32%和11.95%。甲烷碳同位素较重(-33‰~-29‰),表征高热演化性质;乙烷δ13C值主要分布在-33‰至-28‰范围,属油型气。这些天然气与川东邻近气田的同层位天然气具有同源性,而与石炭系气藏天然气在化学成份、碳同位素组成上有所不同,意味着有不同的气源。硫化物硫同位素和沥青元素组成证实高含量的H2S是气藏发生TSR作用所致。δ34S值表征层状沉积成因的硬石膏是TSR作用的反应物,而脉状硬石膏则是其残余物。储层的孔隙类型可能与TSR作用强度和H2S含量高低有联系,裂缝型气层中H2S少,孔洞型储层中H2S丰富。乙烷、沥青和各层系烃源岩干酪根碳同位素对比表明研究区飞仙关组—长兴组气藏天然气主要来自二叠系烃源层。  相似文献   

5.
Natural gas from the Zhaolanzhuang field of the Jizhong Superdepression, Bohai Bay Basin contains the highest proportions of H2S (40–92%) among the sour gases encountered in China. The gas payzones include the Eocene–Oligocene Kongdian Formation (Ek) and the Es4 member of the Shahejie Formation. The sedimentary sequence consists of halite, anhydrite, carbonate, sandstone and shale interbeds deposited in the evaporative brackish water lacustrine – salt lake setting. In the deepest part of the Jinxian sag, the total thickness of evaporites is more than 1000 m, of which halite accounts for over 40%. Various organic-rich mudstones intercalated with the evaporites are currently within the conventional hydrocarbon window (with a depth of 2500–3500 m), and likely the source for the oil and sour gas in the Zhaolanzhuang field. The temperatures of the gas reservoirs range from 75 to 100 °C, too low for significant thermochemical sulfate reduction. The co-occurrence of abundant elemental sulfur with the sour gas and the δ34S values of the various sulfur-containing compounds indicate that the H2S gases were most likely derived from much deeper source kitchens where significant thermochemical sulfate reduction has occurred.  相似文献   

6.
Coal-derived hydrocarbons from Middle–Lower Jurassic coal-bearing strata in northwestern China are distributed in the Tarim, Junggar, Qaidam, and Turpan-Harmi basins. The former three basins are dominated by coal-derived gas fields, distributed in Cretaceous and Tertiary strata. Turpan-Harmi basin is characterized by coal-derived oil fields which occur in the coal measures. Based on analysis of gas components and carbon isotopic compositions from these basins, three conclusions are drawn in this contribution: 1) Alkane gases with reservoirs of coal measures have no carbon isotopic reversal, whereas alkane gases with reservoirs not of coal measures the extent of carbon isotopic reversal increases with increasing maturity; 2) Coal-derived alkane gases with high δ13C values are found in the Tarim and Qaidam basins (δ13C1: − 19.0 to − 29.9‰; δ13C2: − 18.8 to − 27.1‰), and those with lowest δ13C values occur in the Turpan-Harmi and Junggar basins (δ13C1: − 40.1 to − 44.0‰; δ13C2: − 24.7 to − 27.9‰); and 3) Individual specific carbon isotopic compositions of light hydrocarbons (C5–8) in the coal-derived gases are lower than those in the oil-associated gases. The discovered carbon isotopic reversal of coal-derived gases is caused by isotopic fractionation during migration and secondary alteration. The high and low carbon isotopic values of coal-derived gases in China may have some significance on global natural gas research, especially the low carbon isotope value of methane may provide some information for early thermogenic gases. Coal-derived methane typically has much heavier δ13C than that of oil-associated methane, and this can be used for gas–source rock correlation. The heavy carbon isotope of coal-derived ethane is a common phenomenon in China and it shed lights on the discrimination of gas origin. Since most giant gas fields are of coal-derived origin, comparative studies on coal-derived and oil-associated gases have great significance on future natural gas exploration in the world.  相似文献   

7.
Ordos Basin, the second largest sedimentary basin in China, contains enormous natural gas resources. Each of the four giant gas fields discovered so far in this basin (i.e., Sulige, Yulin, Wushenqi and Jingbian) has over 100 billion cubic meters (bcm) or 3.53 trillion cubic feet (tcf) of proven gas reserves. This study examines the stable carbon isotope data of 125 gas samples collected from the four giant gas fields in the Ordos Basin. Source rocks in the Upper Paleozoic coal measures are suggested by the generally high δ13C values of C1–C4 gaseous hydrocarbons in the gases from the Sulige, Yulin and Wushenqi gas fields. While the δ13CiC4 value is higher than that of the δ13CnC4, the dominant ranges for the δ13C1, δ13C2, and δ13C3 values in these Upper Paleozoic reservoired gases are −34 to −32‰, −27 to −23‰, and −25 to −24‰, respectively. The δ13C values of methane, benzene and toluene in gases from the Lower Paleozoic reservoirs of the Jingbian field indicate a significant contribution from humic source rocks, as they are similar to those in the Upper Paleozoic reservoirs of the Sulige, Yulin and Wushenqi gas fields. However, the wide variation and reversal in the δ13C1, δ13C2 and δ13C3 values in the Jinbian gases cannot be explained using a single source scenario, thus the gases were likely derived dominantly from the Carboniferous-Permian coal measures with some contribution from the carbonates in the Lower Permian Taiyuan Formation. The gas isotope data and extremely low total organic carbon contents (<0.2% TOC) suggest that the Ordovician Majiagou Formation carbonates are unlikely to be a significant gas source rock, thus almost all of the economic gas accumulations in the Ordos Basin were derived from Upper Paleozoic source rocks.  相似文献   

8.
The search for petroleum has evolved into a highly sophisticated technology where today almost every scientific discipline known is being brought to bear upon the endeavour. Yet, the use of geochemical hydrocarbon exploration remains a peripheral exploration tool. The trend toward scientific integration has led the petroleum explorationist to the point of being a specialist. It would seem that our petroleum scientists have focussed their interests mainly on the investigation of principles and less on their ultimate purpose of discovering new and larger oil and gas reserves. So, it is not by chance, that leading geochemists have been speaking more and more freely of the necessity to integrate our tools of exploration and thereby do a better job. The theoretical basis for hydrocarbon geochemistry is complex, and, as with all exploration tools, the problems and difficulties of interpreting the data will never be completely eliminated.This article considers the importance of using the ΔC method in geochemical hydrocarbon exploration which has been employed successfully for over 40 years. The addition of carbon-isotope ratios and trace-element analysis to this method has added a new dimension to geochemical hydrocarbon exploration. The theoretical basis of the ΔC method has been presented earlier by the author and will only be touched upon briefly here.Very simply, the basis of all geochemical hydrocarbon exploration is based on the much debated premise that the lighter hydrocarbon gases and their components migrate vertically from a trap through the overlying sedimentary pile to the surface. Upon reaching the surface, through oxidation, they leave their signatures in one form or another that can be detected by physicochemical methods. These physicochemical signatures are discernable as “geochemical haloes”.From soil samples, collected from 2–3 m deep, what is measured is the result of absorption and adsorption by soil particles that are altered to CO2 by oxidation and form a unique, stable, carbonate system with the surface and near-surface material. This is unlike other carbonate systems and when subjected to a differential thermal technique, dissociates into CO2 surface material is cumulative and indicates where maximum hydrocarbon leakage has taken place over the life span of the material sampled. It is durable and unaffected by pressure and temperature variation or recent hydrocarbon contamination.Values are expressed in terms of millivolts which are proportional to the CO2 given off by the dissociation of the carbonate system under standard conditions. Frequency curves are constructed for all values for the determination of significant contour levels above the normal geochemical background for mapping.After significant ΔC anomalies are located, they can be further verified by use of carbon-isotope ratios. As methane migrates to the surface from underlying hydrocarbon accumulations, there is a progressive selection or fractionation that causes enrichment of the carbon-13 isotope. The methane, thus reaching the near-surface, is isotopically lighter. When oxidized in accordance with the equation CH4 + 2O2 → 2H2O + CO2, the carbon having been converted to carbon dioxide, is taken up in the pore-filling carbonate cements that are found in the near-surface soils and sediments.High carbon dioxide values (ΔC) in the geochemical halo are related the δ 13C carbon-isotope ratios from underlying hydrocarbon accumulations. This is observed over fields containing hydrocarbon accumulations where δ 13C values in the pore-filling carbonate cements become increasingly negative (lighter) toward the crests of traps (i.e. exhibiting lower ΔC values). This indicates enrichment of 12C relative to the PDB standard. Whereas, positive values of δ 13C indicate depletion in 12C or enrichment in 13C (i.e. exhibiting higher ΔC values away from the crests of the traps).The observed ΔC anomalies and δ 13C anomalies leave an indelible pattern in the near-surface sediments and soils which are herein referred to as geochemical hydrocarbon haloes.Trace-element associations, that form organometallic compounds, are found “haloed” or concentrated over or around underlying hydrocarbon reservoirs. These associations seem to have occurred from vertically migrating methane that has acted as a “carrier” sweeping up the trace elements on the pathways to the surface. Vanadium, nickel, chromium, iron, cobalt, copper, manganese, strontium, barium are various trace element ratios seen to also halo and indicate subsurface hydrocarbon accumulations.An example presented from the Ocho-Juan Field, a producing reef field, located in Scurry and Fisher Counties, Texas shows that the combination of ΔC, δ 13C and trace-element analysis from near-surface soil sampling is a significant step forward in improving geochemical hydrocarbon exploration methods.  相似文献   

9.
Large-scale atmospheric circulation patterns determine the quantity and seasonality of precipitation, the major source of water in most terrestrial ecosystems. Oxygen isotope (δ18O) dynamics of the present-day hydrologic system in the Palouse region of the northwestern U.S.A. indicate a seasonal correlation between the δ18O values of precipitation and temperature, but no seasonal trends of δ18O records in soil water and shallow groundwater. Their isotope values are close to those of winter precipitation because the Palouse receives  75% of its precipitation during winter. Palouse Loess deposits contain late Pleistocene pedogenic carbonate having ca. 2 to 3‰ higher δ18O values and up to 5‰ higher carbon isotope (δ13C) values than Holocene and modern carbonates. The late Pleistocene δ18O values are best explained by a decrease in isotopically light winter precipitation relative to the modern winter-dominated infiltration. The δ13C values are attributed to a proportional increase of atmospheric CO2 in soil CO2 due to a decrease in soil respiration rate and 13C discrimination in plants under much drier paleoclimate conditions than today. The regional climate difference was likely related to anticyclonic circulation over the Pleistocene Laurentide and Ice Sheet.  相似文献   

10.
Deep fluids in a petroliferous basin generally come from the deep crust or mantle beneath the basin basement, and they transport deep substances(gases and aqueous solutions) as well as heat to sedimentary strata through deep faults. These deep fluids not only lead to large-scale accumulations of CO_2, CH_4, H_2, He and other gases, but also significantly impact hydrocarbon generation and accumulation through organic-inorganic interactions. With the development of deep faults and magmatic-volcanic activities in different periods, most Chinese petroliferous basins have experienced strong impacts associated with deep fluid activity. In the Songliao, Bohai Bay, Northern Jiangsu, Sanshui, Yinggehai and Pearl Mouth Basins in China, a series of CO_2 reservoirs have been discovered. The CO_2 content is up to 99%, with δ~(13)C_(CO2) values ranging from-4.1‰ to-0.37‰ and ~3He/~4He ratios of up to 5.5 Ra. The abiogenic hydrocarbon gas reservoirs with commercial reserves, such as the Changde, Wanjinta, Zhaozhou, and Chaoyanggou reservoirs, are mainly distributed in the Xujiaweizi faulted depression of the Songliao Basin. The δ~(13)CCH4 values of the abiogenic alkane gases are generally -30‰ and exhibit an inverse carbon isotope sequence of δ~(13)C_(CH4)δ~(13)C_(C2H6)δ~(13)C_(C3H8)δ~(13)C_(C4H10). According to laboratory experiments, introducing external H_2 can improve the rate of hydrocarbon generation by up to 147% through the kerogen hydrogenation process. During the migration from deep to shallow depth, CO_2 can significantly alter reservoir rocks. In clastic reservoirs, feldspar is easily altered by CO_2-rich fluids, leading to the formation of dawsonite, a typical mineral in high CO_2 partial pressure environments, as well as the creation of secondary porosity. In carbonate reservoirs, CO_2-rich fluids predominately cause dissolution or precipitation of carbonate minerals. The minerals, e.g., calcite and dolomite, show some typical features, such as higher homogenization temperatures than the burial temperature, relatively high concentrations of Fe and Mn, positive Eu anomalies, depletion of 18 O and enrichment of radiogenic ~(87)Sr. Due to CO_2-rich fluids, the development of high-quality carbonate reservoirs is extended to deep strata. For example, the Well TS1 in the northern Tarim Basin revealed a high-quality Cambrian dolomite reservoir with a porosity of 9.1% at 8408 m, and the Well ZS1 C in the central Tarim Basin revealed a large petroleum reserve in a Cambrian dolomite reservoir at ~6900 m. During the upward migration from deep to shallow basin strata, large volumes of supercritical CO_2 may extract petroleum components from hydrocarbon source rocks or deep reservoirs and facilitate their migration to shallow reservoirs, where the petroleum accumulates with the CO_2. Many reservoirs containing both supercritical CO_2 and petroleum have been discovered in the Songliao, Bohaiwan, Northern Jiangsu, Pearl River Mouth and Yinggehai Basins. The components of the petroleum trapped with CO_2 are dominated by low molecular weight saturated hydrocarbons.  相似文献   

11.
Oil and gas exploration in eastern Tarim Basin, NW China has been successful in recent years, with several commercial gas accumulations being discovered in a thermally mature to over-mature region. The Yingnan2 (YN2) gas field, situated in the Yingnan structure of the Yingjisu Depression, produces gases that are relatively enriched in nitrogen and C2+ alkanes. The δ13C1 (−38.6‰ to −36.2‰) and δ13C2 values (−30.9‰ to −34.7‰) of these gases are characteristic of marine sourced gases with relatively high maturity levels. The distributions of biomarkers in the associated condensates suggest close affinities with the Cambrian–Lower Ordovician source rocks which, in the Yingjisu Sag, are currently over-mature (with 3–4%Ro). Burial and thermal maturity modeling results indicate that paleo-temperatures of the Cambrian–Lower Ordovician source rocks had increased from 90 to 210 °C during the late Caledonian orogeny (458–438 Ma), due to rapid subsidence and sediment loading. By the end of Ordovician, hydrocarbon potential in these source rocks had been largely exhausted. The homogenization temperatures of hydrocarbon fluid inclusions identified from the Jurassic reservoirs of the YN2 gas field suggest a hydrocarbon emplacement time as recent as about 10 Ma, when the maturity levels of Middle–Lower Jurassic source rocks in the study area were too low (<0.7%Ro) to form a large quantity of oil and gas. The presence of abundant diamondoid hydrocarbons in the associated condensates and the relatively heavy isotopic values of the oils indicate that the gases were derived from thermal cracking of early-formed oils. Estimation from the stable carbon isotope ratios of gaseous alkanes suggests that the gases may have been formed at temperatures well above 190 °C. Thus, the oil and gas accumulation history in the study area can be reconstructed as follows: (1) during the late Caledonian orogeny, the Cambrian–Lower Ordovician marine source rocks had gone through the peak oil, wet gas and dry gas generation stages, with the generated oil and gas migrating upwards along faults and fractures to form early oil and gas accumulations in the Middle–Upper Ordovician and Silurian sandstone reservoirs; (2) since the late Yanshanian orogeny, the early oil accumulations have been buried deeper and oil has undergone thermal cracking to form gas; (3) during the late Himalayan orogeny, the seals for the deep reservoirs were breached; and the gas and condensates migrated upward and eventually accumulating in the relatively shallow Jurassic reservoirs.  相似文献   

12.
Chemical and isotope studies of natural CO2 accumulations aid in assessing the chemical effects of CO2 on rock and thus provide a potential for understanding the long-term geochemical processes involved in CO2 geological storage. Several natural CO2 accumulations were discovered during gas and oil exploration in France’s carbogaseous peri-Alpine province (south-eastern France) in the 1960s. One of these, the Montmiral accumulation at a depth of more than 2400 m, is currently being exploited. The chemical composition of the water collected at the wellhead has changed in time and the final salinity exceeds 75 g/L. These changes in time can be explained by assuming that the fraction of the reservoir brine in the recovered brine–CO2–H2O mixture varies, resulting in variable proportions of H2O and brine in the sampled water. The proportions can be estimated in selected samples due to the availability of gas and water flowrate data. These data enabled the reconstruction of the chemical and isotope composition of the brine. The proportions of H2O and brine can also be estimated from isotope (δ2H, δ18O) composition of collected water and δ18O of the sulfates or CO2. The reconstituted brine has a salinity of more than 85 g/L and, according to its Br content and isotope (δ2H, δ18O, δ34S) composition, originates from an evaporated Triassic seawater that underwent dilution by meteoric water. The reconstitution of the brine’s chemical composition enabled an evaluation of the CO2–water–rock interactions based on: (1) mineral saturation indices; and (2) comparison with initial evaporated Triassic seawater. Dissolution of K- and SO4-containing minerals such as K-feldspar and anhydrite, and precipitation of Ca and Mg containing minerals that are able to trap CO2 (carbonates) are highlighted. The changes in concentration of these elements in the brine, which are attributed to CO2 interactions, illustrate the relevance of monitoring the water quality at future industrial CO2 storage sites.  相似文献   

13.
A review of the geochemistry of methane in natural gas hydrate   总被引:7,自引:0,他引:7  
The largest accumulations on Earth of natural gas are in the form of gas hydrate, found mainly offshore in outer continental margin sediment and, to a lesser extent, in polar regions commonly associated with permafrost. Measurements of hydrocarbon gas compositions and of carbon-isotopic compositions of methane from natural gas hydrate samples, collected in subaquatic settings from around the world, suggest that methane guest molecules in the water clathrate structures are mainly derived by the microbial reduction of CO2 from sedimentary organic matter. Typically, these hydrocarbon gases are composed of > 99% methane, with carbon-isotopic compositions (δ13CPDB) ranging from − 57 to − 73‰. In only two regions, the Gulf of Mexico and the Caspian Sea, has mainly thermogenic methane been found in gas hydrate. There, hydrocarbon gases have methane contents ranging from 21 to 97%, with δ13C values ranging from − 29 to − 57‰. At a few locations, where the gas hydrate contains a mixture of microbial and thermal methane, microbial methane is always dominant. Continental gas hydrate, identified in Alaska and Russia, also has hydrocarbon gases composed of > 99% methane, with carbon-isotopic compositions ranging from − 41 to − 49‰. These gas hydrate deposits also contain a mixture of microbial and thermal methane, with thermal methane likely to be dominant. Published by Elsevier Science Ltd  相似文献   

14.
Natural gases and associated condensate oils from the Zhongba gas field in the western Sichuan Basin, China were investigated for gas genetic types and origin of H2S by integrating gaseous and light hydrocarbon geochemistry, formation water compositions, S isotopes (δ34S) and geological data. There are two types of natural gas accumulations in the studied area. Gases from the third member of the Middle Triassic Leikoupo Formation (T2l3) are reservoired in a marine carbonate sequence and are characterized by high gas dryness, high H2S and CO2 contents, slightly heavy C isotopic values of CH4 and widely variable C isotopic values of wet gases. They are highly mature thermogenic gases mainly derived from the Permian type II kerogens mixed with a small proportion of the Triassic coal-type gases. Gases from the second member of the Upper Triassic Xujiahe Formation (T3x2) are reservoired in continental sandstones and characterized by low gas dryness, free of H2S, slightly light C isotopic values of CH4, and heavy and less variable C isotopic values of wet gases. They are coal-type gases derived from coal in the Triassic Xujiahe Formation.The H2S from the Leikoupo Formation is most likely formed by thermochemical SO4 reduction (TSR) even though other possibilities cannot be fully ruled out. The proposed TSR origin of H2S is supported by geochemical compositions and geological interpretations. The reservoir in the Leikoupo Formation is dolomite dominated carbonate that contains gypsum and anhydrite. Petroleum compounds dissolved in water react with aqueous SO4 species, which are derived from the dissolution of anhydrite. Burial history analysis reveals that from the temperature at which TSR occurred it was in the Late Jurassic to Early Cretaceous and TSR ceased due to uplift and cooling thereafter. TSR alteration is incomplete and mainly occurs in wet gas components as indicated by near constant CH4 δ13C values, wide range variations of ethane, propane and butane δ13C values, and moderately high gas dryness. The δ34S values in SO4, elemental S and H2S fall within the fractionation scope of TSR-derived H2S. High organo-S compound concentrations together with the occurrence of 2-thiaadamantanes in the T2l reservoir provide supplementary evidence for TSR related alteration.  相似文献   

15.
Previous studies of methane and higher hydrocarbon gases in Precambrian Shield rocks in Canada and the Witwatersrand Basin of South Africa identified two major gas types. Paleometeoric waters were dominated by hydrocarbon gases with compositional and isotopic characteristics consistent with production by methanogens utilizing the CO2 reduction pathway. In contrast the deepest, most saline fracture waters contained gases that did not resemble the products of microbial methanogenesis and were dominated by both high concentrations of H2 gas, and CH4 and higher hydrocarbon gases with isotopic signatures attributed to abiogenic processes of water-rock reaction in these high rock/water ratio, hydrogeologically-isolated fracture waters. Based on new data obtained for the higher hydrocarbon gases in particular, a model is proposed to account for carbon isotope variation between CH4 and the higher hydrocarbon gases (specifically ethane, propane, butane, and pentane) consistent with abiogenic polymerization. Values of δ13C for CH4 and the higher hydrocarbon gases predicted by the model are shown to match proposed abiogenic hydrocarbon gas end-members identified at five field sites (two in Canada and three in South Africa) suggesting that the carbon isotope patterns between the hydrocarbon homologs reflect the reaction mechanism. In addition, the δ2H isotope data for these gases are shown to be out of isotopic equilibrium, suggesting the consistent apparent fractionation observed between the hydrocarbon homologs may also reflect reaction mechanisms involved in the formation of the gases. Recent experimental and field studies of proposed abiogenic hydrocarbons such as those found at mid-ocean spreading centers and off-axis hydrothermal fields such as Lost City have begun to focus not only on the origin of CH4, but on the compositional and isotopic information contained in the higher hydrocarbon gases. The model explored in this paper suggests that while the extent of fractionation in the first step in the hydrocarbon synthesis reaction chain may vary as a function of different reaction parameters, δ13C values for the higher hydrocarbon gases may be predicted by a simple mass balance model from the δ13C values of the lower molecular weight precursors, consistent with abiogenic polymerization. Integration of isotopic data for the higher hydrocarbon gases in addition to CH4 may be critical for delineation of the origin of the hydrocarbons and investigation of formation mechanisms.  相似文献   

16.
The oxygen (δ18Oc) and carbon (δ13Cc) isotope compositions of the structural carbonate group (CO3) in apatites from lateritic profiles were investigated. The weathering profiles, located in southern Brazil and in western Senegal, are developed on three different types of apatite-rich parent rock: carbonatite, metamorphosed marine phosphorite and sedimentary marine phosphorite. The parent rock apatites are of magmatic, hydrothermal, metamorphic and sedimentary origins. The in situ formation of apatite of weathering origin in the profiles is well documented petrographically and geochemically.The overall range of measured δ18Oc and δ13Cc values of apatites of weathering origin (22 to 27 SMOW for δ18Oc and −15 to −10 PDB for δ13Cc) is much smaller than the range of measured and/or published isotope compositions of parent rock apatites (4–35 for δ18Oc and −11 to +1 for δ13Cc). In any profile, the apatites of weathering origin can exhibit lower, similar or higher δ18Oc values than parent rock apatites. In contrast, their δ13Cc values are systematically and significantly lower than those of the parent rock apatites. Apatites formed as a result of weathering in laterites can therefore be readily distinguished from apatites of other origin on the basis of their isotope composition.Assuming that apatite CO3 fractionates O in a way similar to calcite CO3, the structural carbonate group of the apatites of weathering origin appears to form in approximate isotopic equilibrium with the weathering solutions. The very low δ13Cc values exhibited by these apatites indicate that the dominant sources of dissolved CO2 in the soil water are organic. The isotope composition of structural carbonate in apatite of weathering origin in lateritic profiles may provide useful information for paleoenvironmental studies.  相似文献   

17.
Stable isotope ratios of oxygen and carbon were determined for CO2 in soil gas in the vicinity of the massive sulfide deposit at Crandon, Wisconsin with the objective of determining the source of anomalously high CO2 concentrations detected previously by McCarthy et al. (1986). Values of δ13C in soil gas CO2 from depths between 0.5 and 1.0 m were found to range from −12.68‰ to −20.03‰ (PDB). Organic carbon from the uppermost meter of soil has δ13C between −24.1 and −25.8‰ (PDB), indicating derivation from plant species with the C3 (Calvin) type of photosynthetic pathway. Microbial decomposition of the organic carbon and root respiration from C3 and C4 (Hatch-Slack) plants, together with atmospheric CO2 are the likely sources of carbon in soil gas CO2. Values of δ18O in soil-gas CO2 range from 32 to 38‰ (SMOW). These δ18O values are intermediate between that calculated for CO2 gas in isotopic equilibrium with local groundwaters and that for atmospheric CO2. The δ18O data indicate that atmospheric CO2 has been incorporated by mixing or diffusion. Any CO2 generated by microbial oxidation of organic matter has equilibrated its oxygen isotopes with the local groundwaters.The isotopic composition of soil-gas CO2 taken from directly above the massive sulfide deposit was not distinguishable from that of background samples taken 1 to 2 km away. No enrichment of the δ13C value of soil-gas CO2 was observed, contrary to what would be expected if the anomalous CO2 were derived from the dissolution of Proterozoic marine limestone country rock or of Paleozoic limestone clasts in glacial till. Therefore, it is inferred that root respiration and decay of C3 plant material were responsible for most CO2 generation both in the vicinity of the massive sulfide and in the “background” area, on the occasion of our sampling. Interpretation of our data is complicated by the effects of rainfall, which significantly reduced the magnitude of the CO2 anomaly. Therefore, we cannot rule out the possible mechanism of carbonate dissolution driven by pyrite oxidation, as proposed by Lovell et al. (1983) and McCarthy et al. (1986). Further work is needed on seasonal and daily variations of CO2 concentrations and stable isotope ratios in various hydrogeologic and ecologic settings so that more effective sampling strategies can be developed for mineral exploration using soil gases.  相似文献   

18.
We have developed a quantitative model of CO2 and H2O isotopic mixing between magmatic and hydrothermal gases for the fumarolic emissions of the La Fossa crater (Vulcano Island, Italy). On the basis of isotope balance equations, the model takes into account the isotope equilibrium between H2O and CO2 and extends the recent model of chemical and energy two-end-member mixing by Nuccio et al. (1999). As a result, the H2O and CO2 content and the δD, δ18O, and δ13C isotope compositions for both magmatic and hydrothermal end-members have been assessed. Low contributions of meteoric steam, added at a shallow depth, have been also recognized and quantified in the fumaroles throughout the period from 1988 to 1998. Nonequilibrium oxygen isotope exchange also seems to be occurring between ascending gases and wall rocks along some fumarolic conduits.The δ13CCO2 of the magmatic gases varies around −3 to 1‰ vs. Peedee belemnite (PDB), following a perfect synchronism with the variations of the CO2 concentration in the magmatic gases. This suggests a process of isotope fractionation because of vapor exsolution caused by magma depressurization. The hydrogen isotopes in the magmatic gases (−1 to −‰ vs. standard mean ocean water [SMOW]), as well as the above δ13CCO2 value, are coherent with a convergent tectonic setting of magma generation, where the local mantle is widely contaminated by fluids released from the subducted slab. Magma contamination in the crust probably amplifies this effect.The computed isotope composition of carbon and hydrogen in the hydrothermal vapors has been used to calculate the δD and δ13C of the entire hydrothermal system, including mixed H2O-CO2 vapor, liquid water, and dissolved carbon. We have computed values of about 10‰ vs. SMOW for water and −2 to −6.5‰ vs. PDB for CO2. On these grounds, we think that Mediterranean marine water (δDH2O ≈ 10‰) feeds the hydrothermal system. It infiltrates at depth throughout the local rocks, reaching oxygen isotope equilibrium at high temperatures. Interaction processes between magmatic gases and the evolving seawater also seem to occur, causing the dissolution of isotopically fractionated aqueous CO2 and providing the source for hydrothermal carbon. These results have important implications concerning fluid circulation beneath Vulcano and address the more convenient routine of geochemical surveillance.  相似文献   

19.
《Chemical Geology》1992,94(4):321-329
Light hydrocarbon and isotope compositions of methane were analyzed in well steam samples from the Matsukawa vapour-dominated type geothermal system. Alkanes (C1-C4) and alkene (C2) were detected in all samples. Light hydrocarbon contents of CO2-type steam are slightly higher than those of CO2-H2S-type steam. The isotope composition of methane and the relationship between methane/ethane ratio and δ13C-value of methane suggest that these light hydrocarbon gases are mixtures of thermogenic and abiogenic components. The abiogenic hydrocarbon may be attributed to magmatic hydrocarbon gases equilibrated with carbon dioxide at fo2 defined by the fayalite-magnetite-quartz buffer (FMQ).  相似文献   

20.
During 2003–2006, a pilot project of alternating water and CO2 injection was performed on a limited part of the Upper Miocene sandstone oil reservoir of the Ivani? Field. During the test period oil and gas recovery was significantly increased. Additionally 4,440 m3 of oil and 2.26 × 106 m3 of gas were produced. It has initiated further modelling of sandstone reservoirs in the Ivani? Field in order to calculate volumes available for CO2 injection for the purpose of increasing hydrocarbon production from depleted sandstone reservoirs in the entire Croatian part of the Pannonian Basin System. In the first phase, modelling was based on results of laboratory testing on the core samples. It considered applying analogies with world-known projects of CO2 subsurface storage and its usage to enhance hydrocarbon production. In the second phase, reservoir variables were analysed by variograms and subsequently mapped in order to reach lithological heterogeneities and to determine reliable average values of reservoir volumes. Data on porosity, depth and reservoir thickness for the “Gamma 3” and the “Gamma 4” reservoirs, are mapped by the ordinary kriging technique. Calculated volume of CO2 expressed at standard condition which can be injected in the main reservoirs of the Ivani? Field at near miscible conditions is above 15.5 billion m3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号