首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
John Houston   《Journal of Hydrology》2006,330(3-4):402-412
The Atacama Desert is hyper-arid, and areas where adequate moisture exists for evaporation are spatially highly restricted. Nevertheless, water resources exist and their evaluation requires knowledge of this elusive but important component of the hydrological cycle. Evaporation may occur in four typical areas: rivers and associated riparian zones, localized springs, large playas and extensive areas of bare soil after infrequent precipitation events. Transpiration is locally possible where moisture is sufficiently close to the surface to allow phreatophytes or scarce grass cover to grow, but virtually no information is available for quantification. Pan evaporation data from 11 stations for the period 1977–1991 is analyzed and complemented by analysis of an evaporation study conducted in the Salar de Atacama during 1987/1988. The results show that pan evaporation, and hence maximum potential evaporation may be considered largely a function of maximum temperature and elevation as well as density of the evaporating fluid. Actual evaporation is limited by available moisture and diminishes rapidly as the level of soil moisture saturation drops below the soil surface, extinguishing at ca. 2 m depth. Evaporation is greatest during the summer, but at higher elevations convective cloudiness develops during January and February reducing evaporating rates at a time when significant precipitation may occur. Inter-annual variations in pan evaporation are considerable and weakly correlated with ENSO, but variations in actual evaporation are damped by comparison. Regression equations are developed which have widespread applicability and may be used to estimate evaporation in areas where no site-specific data exists.  相似文献   

2.
Abstract

The effect that evapotranspiration has on recession curves during low flow periods is explored. Recession constants are obtained from flow data and plotted against the average daily pan evaporation occurring during the recession. The results for the three study basins are similar, showing a decrease in recession constant with an increase in average daily pan evaporation. For low values of average daily pan evaporation, the recession constant approaches a constant value.  相似文献   

3.
Z. X. Xu  J. Y. Li  C. M. Liu 《水文研究》2007,21(14):1935-1948
Some previous studies have shown that drying‐up of the lower Yellow River resulted from decreasing precipitation and excessive industrial and agricultural consumption of water from the middle and downstream regions of the Yellow River. On the basis of average air temperature, precipitation, and pan evaporation data from nearly 80 gauging stations in the Yellow River basin, the monotonic trends of major climate variables over the past several decades are analysed. The analysis was mainly made for 12 months and the annual means. The isograms for annual and typical months are given in the paper. The result shows that the average temperature in the study area exhibits an increasing trend, mainly because of the increase of temperature in December, January and February. The largest trend is shown in December and the smallest is in August. There are 65 of 77 stations exhibiting a downward trend for annual precipitation. In all seasons except summer, there is a similar trend in the upstream region of the Yellow River, south of latitude 35°N. It is interesting to note that the pan evaporation has decreased in most areas of the Yellow River basin during the past several decades. April and July showed the greatest magnitude of slope, and the area from Sanmenxia to Huayuankou as well as the Yiluo River basin exhibited the strongest declining trend. The conclusion is that the decreasing pan evaporation results from complex changes of air temperature, relative humidity, solar radiation, and wind speed, and both climate change and human activities have affected the flow regime of the Yellow River during the past several decades. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly distributed in mainland China. We first employ Fourier transformation to remove the influence of atmospheric temperature variations from the observation series, which are classified into the type of the steady-state temperature monotonously increasing with depth (type I) and other three types. Then we compare our results obtained from the data of type I, of which the values are thought to equal to those of the mean borehole heat flow, with those obtained from traditional heat flow observations mainly distributed in North China Craton. In computations of the SAHF at the observation stations, we deduce the thermal diffusivity and volumetric specific heat of the soil by employing harmonic solutions of the heat conduction equation for the same moisture group as the first step, and then we determine the SAHF using Fourier's law. Our results indicate that the SAHF derived from shallow earth geothermal data can reflect the heat flow field to a large extent.  相似文献   

5.
The Red Sea is a modern example of continental fragmentation and incipient ocean formation. Heat flow data have been collected from eastern Egypt to provide information relating to the mode and mechanism of Red Sea opening. Preliminary heat flow data, including new data reported here, are now available from twenty-five sites in eastern Egypt and one site in western Sinai. A pattern of low to normal heat flow (35–55 mW m−2) inland with high heat flow (75–100 mW m−2) in a zone within 30 to 40 km of the coast is indicated.Moderately high heat flow (around 70 mW m−2) is indicated for the Gulf of Suez. The coastal zone thermal anomaly appears continuous with high heat flow previously reported for the Red Sea shelf. Heat production data indicate that the coastal thermal anomaly is not primarily related to crustal radiogenic heat production. The effects of rapid erosion may contribute to the anomaly, but are not thought to be the primary cause of the anomaly. If the anomaly is caused by lateral conduction from hot, extended, offshore lithosphere, the extension must have been active for the last 30 Ma or so, and a minimum of 100% extension is indicated. Alternatively, the anomaly is primarily caused by high mantle heat flow causing lithospheric thinning, centred beneath the Red Sea. The Red Sea is probably underlain by dominantly basic crust, formed either by intrusion into attenuated continental crust or sea-floor spreading, and for most purposes the crust formed in these two modes of extension may be essentially indistinguishable. Fission-track ages from eastern Egypt indicate that uplift started prior to, or at latest at the time of initial Red Sea opening, and this result, together with thermo-mechanical considerations, suggests an active asthenospheric upwelling beneath the Red Sea and high temperature in the lithosphere prior to extension.  相似文献   

6.
Heat-flow and coal-maturation data suggest that the thermal history of the San Juan Basin has been influenced by magmatic and volcanic activity in the San Juan Mountains-San Juan volcanic field located to the north of the Basin. Time-dependent isothermal step models indicate that the observed heat flow may be modelled by a (near) steadystate isothermal step extending from 30–98 km depth whose edge underlies the northern San Juan Basin. The observed maturation levels of the Fruitland formation coals in the northern and central Basin, however, require more heat than can be associated with conduction from a deep thermal source (steady-state step) and from the shallow crustal batholith which underlies the San Juan volcanic field. Magmatic activity within the Basin does not appear to be a reasonable source of additional heat. Increased burial depths of the coals may explain some of the elevated maturation levels observed in the central and northern Basin, but it seems likely that an additional source of heat is still required. Heat advection by groundwater movement may have influenced the coal maturation levels in the Basin as well. Both magmatic activity associated with the emplacement of the San Juan batholith and elevated geothermal gradients associated with the steady-state thermal source at depth may have contributed to heating of the groundwater. An appreciation of heat advection by groundwater flow may therefore be most important to understanding regional patterns of heat flow and hydrocarbon maturation.  相似文献   

7.
鄱阳湖夏季水面蒸发与蒸发皿蒸发的比较   总被引:3,自引:1,他引:2  
水面蒸发是湖泊水量平衡要素的重要组成部分.基于传统蒸发皿观测蒸发不能代表实际水面蒸发,而实际水面蒸发特征仍不清楚.本研究基于涡度相关系统观测的鄱阳湖水体实际水面蒸发过程,在小时和日尺度分析了水面蒸发的变化规律及其主要影响因子,并与蒸发皿蒸发进行比较.研究表明,实际水面蒸发日变化波动剧烈,变化范围在0~0.4 mm/h之间.水面蒸发的日变化特征主要受风速的影响.鄱阳湖8月份日水面蒸发量与蒸发皿蒸发量在总体趋势上具有很好的一致性.8月份平均日水面蒸发速率(5.90 mm/d)比蒸发皿蒸发速率(5.65 mm/d)高4.6%.水面日蒸发量与蒸发皿蒸发量的比值在8月上、中、下旬平均值分别为1.24、1.00、0.92,呈现下降的趋势.鄱阳湖夏季水面日蒸发量与风速和相对湿度相关性显著,而蒸发皿蒸发与净辐射、气温、饱和水汽压差和相对湿度均呈显著相关.这是由于蒸发皿水体容积小,与湖泊相比其水体热存储能力小,因此更容易受到环境因子的影响.  相似文献   

8.
Pristine tropical forests play a critical role in regional and global climate systems. For a better understanding of the eco-hydrology of tropical “evergreen” vegetation, it is essential to know the partitioning of water into transpiration and evaporation, runoff and associated water ages. For this purpose, we evaluated how topography and vegetation influence water flux and age dynamics at high temporal (hourly) and spatial (10 m) resolution using the Spatially Distributed Tracer-Aided Rainfall-Runoff model for the tropics (STARRtropics). The model was applied in a tropical rainforest catchment (3.2 km2) where data were collected biweekly to monthly and during intensive monitoring campaigns from January 2013 to July 2018. The STARRtropics model was further developed, incorporating an isotope mass balance for evapotranspiration partitioning into transpiration and evaporation. Results exhibited a rapid streamflow response to rainfall inputs (water and isotopes) with limited mixing and a largely time-invariant baseflow isotope composition. Simulated soil water storage showed a transient response to rainfall inputs with a seasonal component directly resembling the streamflow dynamics which was independently evaluated using soil water content measurements. High transpiration fluxes (max 7 mm/day) were linked to lower slope gradients, deeper soils and greater leaf area index. Overall water partitioning resulted in 65% of the actual evapotranspiration being driven by vegetation with high transpiration rates over the drier months compared to the wet season. Time scales of water age were highly variable, ranging from hours to a few years. Stream water ages were conceptualized as a mixture of younger soil water and slightly older, deeper soil water and shallow groundwater with a maximum age of roughly 2 years during drought conditions (722 days). The simulated soil water ages ranged from hours to 162 days and for shallow groundwater up to 1,200 days. Despite the model assumptions, experimental challenges and data limitation, this preliminary spatially distributed model study enhances knowledge about the water ages and overall young water dominance in a tropical rainforest with little influence of deeper and older groundwater.  相似文献   

9.
20 cm蒸发皿蒸发量的数学物理模型研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文以能量守恒原理和边界层梯度输送理论为基础,应用Monin-Obukhov相似函数计算蒸发皿水面感、潜热通量,参数化蒸发皿侧壁热传输能量,建立了一个单层的20 cm蒸发皿蒸发模型.之后利用"古浪非均匀近地层观测试验"中连续14天观测的每小时20 cm蒸发皿数据对所建模型进行检验.研究分析结果表明:模型能够很好地反映蒸发皿水面与地表之间所形成的非均匀性,合理地概括蒸发皿与周围环境之间的相互作用和蒸发皿蒸发的物理过程.另外,模型成功模拟了蒸发皿蒸发的日变化过程,模拟的日蒸发量均方根误差(RMSE)和平均相对误差(MRER)分别为0.44 mm·d-1和3.7%,日蒸发量观测值与模拟值的相关系数为0.998.  相似文献   

10.
依据边界层梯度输送理论和能量守恒原理分析了蒸发皿蒸发量的物理意义,蒸发皿蒸发量是多环境因子共同非线性相互作用的结果,并利用我国有长期太阳辐射观测的62个常规气象站观测资料,通过蒸发皿蒸发量与环境气象因子的相关分析对其进行了验证. 分析了近40年蒸发皿蒸发量和环境气象因子的变化趋势,分析结果也表明只利用单个环境因子的变化来解释蒸发皿蒸发量的气候变化会产生偏颇,譬如将蒸发皿蒸发量的逐年减少归因于地表接收的太阳辐射减少的解释在中国东部比在中国西部较合理. 分析1983~2001年间国际卫星云气候计划观测的资料得出,我国大部分地区的总云量保持微小的减少趋势而总云水路径处于明显的增加趋势,这表明云变得更不透明了,它的物理属性发生了明显的变化;预示着大气可降水量有逐年增加的趋势, 地气系统变得更湿润. 结合水循环过程,利用大气环流模式用数值方法证明地气系统的水汽变化能引起陆地近地层大气相对湿度、地表接收的太阳总辐射和地表潜在蒸发量的明显变化.  相似文献   

11.
Many concepts have been proposed to explain hydrologic connectivity of hillslopes with streams. Hydrologic connectivity is most often defined by qualitative assessment of spatial patterns in perched water tables or soil moisture on hillslopes without a direct linkage to water flow from hillslopes to streams. This form of hydrologic connectivity may not explain the hydrologic response of catchments that have network(s) of preferential flow paths, for example, soil pipes, which can provide intrinsic connectivity between hillslopes and streams. Duplex soils are known for developing perched water tables on hillslopes and fostering lateral flows, but the connectivity of localized perched water tables on hillslopes with soil pipes has not been fully established. The objectives of this study were to characterize pipeflow dynamics during storm events, the relationships between perched water tables on hillslopes and pipeflows, and their threshold behaviour. Two well‐characterized catchments in loess soil with a fragipan were selected for study because they contain multiple, laterally extensive (over 100 m) soil pipe networks. Hillslopes were instrumented with shallow wells adjacent to the soil pipes, and the wells and pipe collapse features were equipped with pressure transducers. Perched water tables developed on hillslopes during a wetting up period (October–December) and became well connected spatially across hillslope positions throughout the high flow period (January–March). The water table was not spatially connected on hillslopes during the drying out (April–June) and low flow (July–September) periods. Even when perched water tables were not well‐connected, water flowing through soil pipes provided hydrologic connectivity between upper hillslopes and catchment outlets. Correlations between soil pipeflow and perched water tables depended on the size and location of soil pipes. The threshold relationship between available soil‐moisture index plus storm precipitation and pipeflow was dependent on the season and strongest during dry periods and not high‐flow seasons. This study demonstrated that soil pipes serve as a catchment backbone of preferential flow paths that provide intrinsic connectivity between upper hillslopes and streams.  相似文献   

12.
Land surface process is of great importance in global climate change, moisture and heat exchange in the interface of the earth and atmosphere, human impacts on the environment and eco- system, etc. Soil freeze/thaw plays an important role in cold land surface processes. In this work the diurnal freeze/thaw effects on energy partition in the context of GAME/Tibet are studied. A sophisti- cated land surface model is developed, the particular aspect of which is its physical consideration of soil freeze/thaw and vapor flux. The simultaneous water and heat transfer soil sub-model not only reflects the water flow from unfrozen zone to frozen fringe in freezing/thawing soil, but also demon- strates the change of moisture and temperature field induced by vapor flux from high temperature zone to low temperature zone, which makes the model applicable for various circumstances. The modified Picard numerical method is employed to help with the water balance and convergence of the numerical scheme. Finally, the model is applied to analyze the diurnal energy and water cycle char- acteristics over the Tibetan Plateau using the Game/Tibet datasets observed in May and July of 1998. Heat and energy transfer simulation shows that: (i) There exists a negative feedback mechanism between soil freeze/thaw and soil temperature/ground heat flux; (ii) during freezing period all three heat fluxes do not vary apparently, in spite of the fact that the negative soil temperature is higher than that not considering soil freeze; (iii) during thawing period, ground heat flux increases, and sensible heat flux decreases, but latent heat flux does not change much; and (iv) during freezing period, soil temperature decreases, though ground heat flux increases.  相似文献   

13.
The Sierra La Primavera, a late Pleistocene rhyolitic caldera complex in Jalisco, México, contains fumaroles and large-discharge 65°C hot springs that are associated with faults related to caldera collapse and to later magma insurgence. The nearly-neutral, sodium bicarbonate, hot springs occur at low elevations at the margins of the complex, whereas the water-rich fumaroles are high and central.The Comisión Federal de Electricidad de México (CFE) has recently drilled two deep holes at the center of the Sierra (PR-1 and Pr-2) and one deep hole at the western margin. Temperatures as high as 285°C were encountered at 1160 m in PR-1, which produced fluids with 820 to 865 mg/kg chloride after flashing to one atmosphere. Nearby, PR-2 encountered temperatures to 307°C at 2000 m and yielded fluids with chloride contents fluctuating between 1100 and 1560 mg/kg after flashing. Neither of the high-temperature wells produced steam in commercial quantities. The well at the western margin of the Sierra produced fluids similar to those from the hot springs. The temperature reached a maximum of 100°C near the surface and decreased to 80°C at 2000 m.Various geothermometers (quartz conductive, Na/K, Na-K-Ca, δ18O(SO4-H2O) and D/H (steam-water) all yield temperatures of 170 ± 20°C when applied to the hot spring waters, suggesting that these spring waters flow from a large shallow reservoir at this temperature. Because the hot springs are much less saline than the fluids recovered in PR-1 and PR-2, the mixed fluid in the shallow reservoir can contain no more than 10–20% deep fluid. This requires that most of the heat is transferred by steam. There is probably a thin vapor-dominated zone in the central part of the Sierra, through which steam and gases are transferred to the overlying shallow reservoir. Fluids from this reservoir cool from 170°C to 65°C by conduction during the 5–7 km of lateral flow to the hot springs.  相似文献   

14.
Unzen volcano is situated on Shimabara Peninsula, western Kyushu, Japan. On the flank of the volcano, the Obama, Unzen and Shimabara hot springs are aligned in a direction from the southwest to the northeast across the peak. At Obama and Shimabara, heat is transferred mainly by water flow. But at Unzen heat is transferred by the discharge of natural steam and by conduction as well as water flow. In order to estimate the heat discharge by mechanisms other than water flow, infrared measurements by a helicopter-borne thermocamera were conducted over the Unzen hot spring area. The heat discharge was calculated from the thermal image by a method based on heat balance of the ground surface resulting in a value of 1.9 × 106 cal/s (7.9 MW). The heat discharged by all mechanisms including that by water flow is estimated to be 5.0 × 106 cal/s (21 MW). Similar preliminary estimates have been made for heat discharge at the Obama and Shimabara hot springs giving values of about 1.2 × 107 cal/s (50 MW) and 1.0 × 105 cal/s (0.4 MW), respectively. These values indicate that the heat discharge decreases with distance from the southwest to the northeast direction across the volcano. The total heat discharge from three hot spring areas on Unzen volcano is about 1.7 × 107 cal/s (71 MW).The heat balance method appears useful for quantitative analysis of regional trends but its accuracy may not be always sufficient for detailed surveys. Several methods of determining heat flow, including the heat balance method, were compared at a test field in the Unzen hot spring area. The values obtained by the heat balance method coincide roughly with the other results but more detailed analysis is necessary to improve the accuracy of current methods of geothermal measurements.  相似文献   

15.
Abstract

Evaporation is an important reference for managers of water resources. This study proposes a hybrid model (BD) that combines back-propagation neural networks (BPNN) and dynamic factor analysis (DFA) to simultaneously precisely estimate pan evaporation at multiple meteorological stations in northern Taiwan through incorporating a large number of meteorological data sets into the estimation process. The DFA is first used to extract key meteorological factors that are highly related to pan evaporation and to establish the common trend of pan evaporation among meteorological stations. The BPNN is then trained to estimate pan evaporation with the inputs of the key meteorological factors and evaporation estimates given by the DFA. The BD model successfully inherits the advantages from the DFA and BPNN, and effectively enhances its generalization ability and estimation accuracy. The results demonstrate that the proposed BD model has good reliability and applicability in simultaneously estimating pan evaporation for multiple meteorological stations.

Citation Chang, F.J., Sun, W., and Chung, C.H., 2013. Dynamic factor analysis and artificial neural network for estimating pan evaporation at multiple stations in northern Taiwan. Hydrological Sciences Journal, 58 (4), 813–825.  相似文献   

16.
There is no simple relation nor even a strong correlation between daily evaporations measured by means of a water pan and potential evapotranspirations of neighbouring natural surfaces.Generally, the evaporation of the pan is reduced in a certain proportion due to the fact that the incident global solar radiation penetrates partially into the water and because consequently a portion of the radiant energy flux is not caught by the surface. Nevertheless, during rainy periods and also under certain meteorological conditions, the evaporation of the pan is increased paradoxally as a result of a fast transfer of heat from underlying water layers towards the surface, by turbulent diffusion.  相似文献   

17.
Two localities on the Leizhou Peninsula, southern China (Yingfengling and Tianyang basaltic volcanoes) yield a wide variety of mantle-derived xenoliths including Cr-diopside series mantle wall rocks and two distinct types of Al-augite series pyroxenites. Metapyroxenites have re-equilibrated granoblastic microstructures whereas pyroxenites with igneous microstructures have not thermally equilibrated to the mantle conditions. An abundant suite of megacrysts and megacrystic aggregates (including garnet, plagioclase, clinopyroxene, ilmenite and apatite) is interpreted as the pegmatitic equivalents of the igneous pyroxenite suite. Layered spinel lherzolite/spinel websterite xenoliths were formed by metamorphic differentiation caused by mantle deformation, inferred to be related to lithospheric thinning. Some metapyroxenites have garnet websterite assemblages that allow calculation of their mantle equilibration temperatures and pressures and the construction of the first xenolith geotherm for the southernmost China lithosphere. Heat flow data measured at the surface in this region yield model conductive geotherms (using average crustal conductivity values) that are consistent with the xenolith geotherm for the mantle. The calculated mean surface heat flux is 110 mW/m2. This high heat flux and the high geotherm are consistent with young lithospheric thinning in southern China, and with recent tomography results showing shallow low-velocity zones in this region. The xenolith geotherm allows the construction of a lithospheric rock type section for the Leizhou region; it shows that the crust–mantle boundary lies at about 30 km, consistent with seismic data, and that the lithosphere–asthenosphere boundary lies at about 100 km.  相似文献   

18.
Summary The aim of this paper is to calculate the correction that must be applied to the observed geothermal gradient when it is affected by a disturbance due to the contemporary effects of erosion/sedimentation and past climatic changes.This problem is treated by integrating the equation of heat conduction in a moving homogeneous medium (which accounts for the erosion/sedimentation process) with the boundary condition that the surface temperature undergoes a sinusoidal variation in time. The solution shows that the whole disturbance in the soil temperature at any depth is the sum of two terms which represent, separately, the effects of erosion/sedimentation and that of past climatic changes. The disturbance can thus be removed from the geothermal gradient by applying separately the respective corrections.Presented at the International Meeting on Terrestrial Heat Flow and the Structure of Lithosphere, Bechyn Castle, Czech Republic, September 2 – 7, 1991.  相似文献   

19.
塔里木盆地岩石层热结构特征   总被引:39,自引:10,他引:39       下载免费PDF全文
在大地热流密度分布的基础上,研究了塔里木盆地中库尔勒-若羌和阿克苏-叶城两条剖面岩石层热结构特征.由岩石层P波速度分布转换成生热率剖面,用二维数值模型获得了岩石层热结构和热状态特征.结果表明,塔里木盆地壳幔边界温度的高低与其埋深密切相关.居里等温面深度大,地幔热流密度较低.岩石层厚度变化与其新生代期间挠曲过程密切相关.在岩石层温度分布基础上,确定了深部脆-韧性过渡带深度和岩石层屈服强度,表明塔里木盆地岩石层相对较冷,且具有刚性的地球动力学特征.  相似文献   

20.
The need to understand and simulate hydrological phenomena and their interactions, and the impact of anthropogenic and climate changes on natural environments have promoted the study of evaporation from bare soils in arid climates. In closed Altiplano basins, such as those encountered in arid and hyper arid basins in northern Chile, evaporation from shallow groundwater is the main source of aquifer depletion, and thus, its study is crucial for water resources management. The objective of this work is to understand the mechanisms of evaporation in saline soils with shallow water tables, in order to better quantify evaporation fluxes and improve our understanding of the water balance in these regions. To achieve this objective, a model that couples fluid flow with heat transfer was developed and calibrated using column experiments with saline soils from the Huasco salt flat basin, Chile. The model enables determination of both liquid and water vapour fluxes, as well as the location of the evaporation front. Experimental results showed that salt transport inside the soil profile modified the water retention curve, highlighting the importance of including salt transport when modelling the evaporation processes in these soils. Indeed, model simulations only agreed with the experimental data when the effect of salt transport on water retention curves was taken into account. Model results also showed that the evaporation front is closer to the soil surface as the water table depth reduces. Therefore, the model allows determining the groundwater level depth that results in disconnection of liquid fluxes in the vadose zone. A sensitivity analysis allowed understanding the effect of water‐flux enhancements mechanisms on soil evaporation. The results presented in this study are important as they allow quantifying the evaporation that occurs in bare soils from Altiplano basins, which is typically the main water discharge in these closed basins. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号