首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The Archean tectonic realm of the North China Craton (NCC) is considered in recent models as a collage of several microblocks which were amalgamated along zones of ocean closure during late Neoarchean. Here we report the finding of a dismembered ophiolite suite from the southern margin of the Jiaoliao microblock in the interior of the unified Eastern Block of the NCC. The suite is composed of lherzolite, pyroxenite, noritic and hornblende gabbro, and hornblendite intruded by veins and sheets of leuco granite. Together with transposed layers and bands of metavolcanics and amphibolites, banded iron formation (BIF), and diabase dykes in the adjacent locations, the Yishui complex corresponds well with a dismembered suprasubduction zone ophiolite suite. Clinopyroxene in the pyroxenite and gabbroic rocks is Mg rich and range in composition from augite to diopside. Among orthopyroxenes, those in lherzolite show the highest XMg of 0.84–0.85. Plagioclase in hornblende gabbro shows high anorthite content (An50–64). Calcic amphiboles in the gabbroic rocks range in composition from ferropargasite to ferro-edenite, edenite and pargasite. Spinel inclusions in lherzolite are Cr-rich magnesiospinel. Geochemically, the mafic rocks from Yishui complex show subalkaline basaltic source, whereas the granitoids show volcanic arc affinity. The hornblende gabbro and gabbro, lherzolite and hornblendite show compositional similarity to E-MORB and N-MORB respectively. The lherzolite and hornblendite possess arc-related ultramafic cumulate nature, with overall features straddling the fields of IAT and IAT-MORB. The geochemical features are consistent with evolution in a suprasubduction regime with no significant crustal contamination. The majority of zircon grains in the Yishui suite exhibit magmatic texture and high Th/U ratios. Zircon grains from hornblendite define 207Pb/206Pb upper intercept age of 2538 ± 30 Ma. Zircons from the granite show ages of 2538 ± 16 Ma and 2503 ± 21 Ma, and those from the gabbros yield ages of 2503 ± 16 Ma and 2495 ± 10 Ma. The well defined major age peak at 2500 Ma is broadly coeval with Neoarchean ages reported from the microblocks in the North China Craton. The zircon Lu–Hf data from the Yishui suite display εHf(t) values between − 2.5 and 5.0, with corresponding model ages suggesting magma derivation from Neoarchean juvenile sources together with limited reworked Paleo-Mesoarchean crustal components.Our study is the first report of Neoarchean suprasubduction-type ophiolites from a locality far from the margins of the major crustal blocks and suture zones in the NCC and strengthens the concept that the craton is a mosaic of several microblocks with intervening oceans that closed along multiple subduction zones. We envisage that the amalgamation between the Xuhuai and the Jiaoliao microblocks resulted in the accretion of the Yishui suprasubduction zone ophiolitic assemblages onto the southern margin of the Jiaoliao microblock. The Neoarchean microblock amalgamation in the North China Craton provides new insights into continental growth in the early Earth and confirms that modern style plate tectonics might have been initiated early in the history of our planet.  相似文献   

2.
Oldest rocks are sparsely distributed within the Dharwar Craton and little is known about their involvement in the sedimentary sequences which are present in the Archean greenstone successions and the Proterozoic Cuddapah basin.Stromatolitic carbonates are well preserved in the Neoarchean greenstone belts of Dharwar Craton and Cuddapah Basin of Peninsular India displaying varied morphological and geochemical characteristics.In this study,we report results from U-Pb geochronology and trace element composition of the detrital zircons from stromatolitic carbonates present within the Dharwar Craton and Cuddapah basin to understand the provenance and time of accretion and deposition.The UPb ages of the detrital zircons from the Bhimasamudra and Marikanve stromatolites of the Chitradurga greenstone belt of Dharwar Craton display ages of 3426±26 Ma to 2650±38 Ma whereas the Sandur stromatolites gave an age of 3508±29 Ma to 2926±36 Ma suggesting Paleo-to Neoarchean provenance.The U-Pb detrital zircons of the Tadpatri stromatolites gave an age of 2761±31 Ma to1672±38 Ma suggesting Neoarchean to Mesoproterozoic provenance.The Rare Earth Element(REE)patterns of the studied detrital zircons from Archean Dharwar Craton and Proterozoic Cuddapah basin display depletion in light rare earth elements(LREE)and enrichment in heavy rare earth elements(HREE)with pronounced positive Ce and negative Eu anomalies,typical of magmatic zircons.The trace element composition and their relationship collectively indicate a mixed granitoid and mafic source for both the Dharwar and Cuddapah stromatolites.The 3508±29 Ma age of the detrital zircons support the existence of 3.5 Ga crust in the Western Dharwar Craton.The overall detrital zircon ages(3.5-2.7 Ga)obtained from the stromatolitic carbonates of Archean greenstone belts and Proterozoic Cuddapah basin(2.7-1.6 Ga)collectively reflect on^800-900 Ma duration for the Precambrian stromatolite deposition in the Dharwar Craton.  相似文献   

3.
Mafic rocks of Western Dharwar Craton (WDC) belong to two greenstone cycles of Sargur Group (3.1–3.3 Ga) and Dharwar Supergroup (2.6–2.8 Ga), belonging to different depositional environments. Proterozoic mafic dyke swarms (2.4, 2.0–2.2 and 1.6 Ga) constitute the third important cycle. Mafic rocks of Sargur Group mainly constitute a komatiitic-tholeiite suite, closely associated with layered basic-ultrabasic complexes. They form linear ultramaficmafic belts, and scattered enclaves associated with orthoquartzite-carbonate-pelite-BIF suite. Since the country rocks of Peninsular Gneiss intrude these rocks and dismember them, stratigraphy of Sargur Group is largely conceptual and its tectonic environment speculative. It is believed that the Sargur tholeiites are not fractionated from komatiites, but might have been generated and evolved from a similar mantle source at shallower depths. The layered basic-ultrabasic complexes are believed to be products of fractionation from tholeiitic parent magma. The Dharwar mafic rocks are essentially a bimodal basalt-rhyolite association that is dominated by Fe-rich and normal tholeiites. Calc-alkaline basalts and andesites are nearly absent, but reference to their presence in literature pertains mainly to carbonated, spilitized and altered tholeiitic suites. Geochemical discrimination diagrams of Dharwar lavas favour island arc settings that include fore-, intra- and back-arcs. The Dharwar mafic rocks are possibly derived by partial melting of a lherzolite mantle source and involved in fractionation of olivine and pyroxene followed by plagioclase. Distinctive differences in the petrography and geochemistry of mafic rocks across regional unconformities between Sargur Group and Dharwar Supergroup provide clinching evidences in favour of distinguishing two greenstone cycles in the craton. This has also negated the earlier preliminary attempts to lump together all mafic volcanics into a single contemporaneous suite, leading to erroneous interpretations. After giving allowances for differences in depositional and tectonic settings, the chemical distinction between Sargur and Dharwar mafic suites throws light on secular variations and crustal evolution. Proterozoic mafic dyke swarms of three major periods (2.4, 2.0–2.2 and 1.6 Ga) occur around Tiptur and Hunsur. The dykes also conform to the regional metamorphic gradient, with greenschist facies in the north and granulite facies in the south, resulting from the tilt of the craton towards north, exposing progressively deeper crustal levels towards the south. The low-grade terrain in the north does not have recognizable swarms, but the Tiptur swarm consists essentially of amphibolites and Hunsur swarm mainly of basic granulites, all of them preserving cross-cutting relations with host rocks, chilled margins and relict igneous textures. There are also younger dolerite dykes scattered throughout the craton that are unaffected by this metamorphic zonation. Large-scale geochemical, geochronological and palaeomagnetic data acquisition through state-of-the-art instrumentation is urgently needed in the Dharwar craton to catch up with contemporary advancements in the classical greenstone terrains of the world.  相似文献   

4.
We report seven high precision U–Pb age determinations for mafic dykes from a number of major Precambrian swarms located in the Dharwar craton, south India. These new age results define two previously unrecognized widespread Paleoproterozoic dyking events at 2221–2209 and 2181–2177 Ma, and confirm a third at 2369–2365 Ma. Three parallel E–W trending mafic dykes from the petrographically and geochemically variable Bangalore dyke swarm, the most prominent swarm in the Dharwar craton, yield indistinguishable U–Pb baddeleyite ages of 2365.4 ± 1.0, 2365.9 ± 1.5 and 2368.6 ± 1.3 Ma, indicating rapid emplacement in less than five million years. A compilation of Paleoproterozoic U–Pb ages for mafic magmatic events worldwide indicates that the 2369–2365 Ma Bangalore dyke swarm represents a previously unrecognized pulse of mafic magmatism on Earth.  相似文献   

5.
A vast tract of ENE–WSW to NE–SW trending mafic dyke swarm transects Archaean basement rocks within the eastern Dharwar craton. Petrographic data reveal their dolerite/olivine dolerite or gabbro/olivine gabbro composition. Geochemical characteristics, particularly HFSEs, indicate that not all these dykes are co-genetic but are probably derived from more than one magma batch and different crystallization trends. In most samples the LaN/LuN ratio is at ∼2, whereas others have a LaN/LuN ratio >2 and show higher concentrations of high-field strength elements (HFSEs) than the former group. As a consequence, we assume that the ENE–WSW to NE–SE trending mafic dykes of the eastern Dharwar craton do not represent one single magmatic event but were emplaced in two different episodes; one of them dated at about 2.37 Ga and another probably at about 1.89 Ga. Trace element modelling also supports this inference: older mafic dykes are derived from a melt generated through ∼25% melting of a depleted mantle, whereas the younger set of dykes shows its derivation through a lower degree of melting (∼15%) of a comparatively enriched mantle source.  相似文献   

6.
Coupled paleomagnetic and geochronologic data derived from mafic dykes provide valuable records of continental movement. To reconstruct the Proterozoic paleogeographic history of Peninsular India, we report paleomagnetic directions and U-Pb zircon ages from twenty-nine mafic dykes in the Eastern Dharwar Craton near Hyderabad. Paleomagnetic analysis yielded clusters of directional data that correspond to dyke swarms at 2.37 Ga, 2.22 Ga, 2.08 Ga, 1.89–1.86 Ga, 1.79 Ga, and a previously undated dual polarity magnetization. We report new positive baked contact tests for the 2.08 Ga swarm and the 1.89–1.86 Ga swarm(s), and a new inverse baked contact test for the 2.08 Ga swarm. Our results promote the 2.08 Ga Dharwar Craton paleomagnetic pole (43.1° N, 184.5° E; A95 = 4.3°) to a reliability score of R = 7 and suggest a position for the Dharwar Craton at 1.79 Ga based on a virtual geomagnetic pole (VGP) at 33.0° N, 347.5° E (a95 = 16.9°, k = 221, N = 2). The new VGP for the Dharwar Craton provides support for the union of the Dharwar, Singhbhum, and Bastar Cratons in the Southern India Block by at least 1.79 Ga. Combined new and published northeast-southwest moderate-steep dual polarity directions from Dharwar Craton dykes define a new paleomagnetic pole at 20.6° N, 233.1° E (A95 = 9.2°, N = 18; R = 5). Two dykes from this group yielded 1.05–1.01 Ga 207Pb/206Pb zircon ages and this range is taken as the age of the new paleomagnetic pole. A comparison of the previously published poles with our new 1.05–1.01 Ga pole shows India shifting from equatorial to higher (southerly) latitudes from 1.08 Ga to 1.01 Ga as a component of Rodinia.  相似文献   

7.
The Dangqiong ophiolite, the largest in the western segment of the Yarlung-Zangbo Suture Zone(YZSZ)ophiolite belt in southern Tibet, consists of discontinuous mantle peridotite and intrusive mafic rocks. The former is composed dominantly of harzburgite, with minor dunite, locally lherzolite and some dunite containing lenses and veins of chromitite. The latter, mafic dykes(gabbro and diabase dykes), occur mainly in the southern part. This study carried out geochemical analysis on both rocks. The results show that the mantle peridotite has Fo values in olivine from 89.92 to 91.63 and is characterized by low aluminum contents(1.5–4.66 wt%) and high Mg# values(91.06–94.53) of clinopyroxene. Most spinels in the Dangqiong peridotites have typical Mg# values ranging from 61.07 to 72.52, with corresponding Cr# values ranging from 17.67 to 31.66, and have TiO2 contents from 0 to 0.09%, indicating only a low degree of partial melting(10–15%). The olivine-spinel equilibrium and spinel chemistry of the Dangqiong peridotites suggest that they originated deeper mantle(20 kbar). The gabbro dykes show N-MORB-type patterns of REE and trace elements. The presence of amphibole in the Dangqiong gabbro suggests the late-stage alteration of subduction-derived fluids. All the lherzolites and harzburgites in Dangqiong have similar distribution patterns of REE and trace elements, the mineral chemistry in the harzburgites and lherzolites indicates compositions similar to those of abyssal and forearc peridotites, suggesting that the ophiolite in Dangqiong formed in a MOR environment and then was modified by late-stage melts and fluids in a suprasubduction zone(SSZ) setting. This formation process is consistent with that of the Luobusa ophiolite in the eastern Yarlung-Zangbo Suture Zone and Purang ophiolite in the western Yarlung-Zangbo Suture Zone.  相似文献   

8.
The Bastar craton in central India, surrounded by cratonic blocks and Paleoproterozoic to Neoproterozoic orogenic belts, is a window to investigate the Archean-Paleoproterozoic crustal evolution and tectonic processes. Here we propose a new tectonic classification of the craton into the Western Bastar Craton (WBC), Eastern Bastar Craton (EBC), and the intervening Central Bastar Orogen (CBO). We present petrologic, geochemical and zircon U-Pb, REE and Lu-Hf data from a suite of rocks from the CBO and along the eastern margin of the WBC Including: (1) volcanic successions comprising meta-andesite and fine-grained amphibolite, representing arc-related volcanics along a convergent margin; (2) ferruginous sandstone, in association with rhyolite, representing a volcano-sedimentary succession, deposited in an active trench; and (3) metamorphosed mafic-ultramafic suite including gabbro, pyroxenite and dunite invaded by trondhjemite representing the section of sub-arc mantle and arc root adjacent to a long-lasting subduction system. Petrologic studies indicate that the mafic-ultramafic suite crystallized from an island arc tholeiitic parental magma in a suprasubduction zone environment. The chondrite-normalized and primitive mantle normalized diagrams of the mafic and ultramafic rocks suggest derivation from MORB magma. The mixed characters from N-MORB to E-MORB of the studied samples are consistent with subduction modification of a MORB related magma, involving partial melting of the metasomatized mantle wedge. Our zircon U-Pb age data suggest that the cratonic nuclei was constructed as early as Paleoarchean. We present evidence for active subduction and arc magmatism through Mesoarchean to Neoarchean and early Paleoproterozoic, with the trench remaining open until at least 2.3 Ga. Two major crust building events are recognized in the Bastar craton: during Mesoarchean (recycled Paleoarchean subduction-related as well as juvenile/depleted mantle components) and Neoarchean (accretion of juvenile oceanic crust, arc magmatism including granite batholiths and related porphyry mineralization). The final cratonization occurred during latest Paleoproterozoic, followed by collisional assembly of the craton and its incorporation within the Peninsular Indian mosaic during Mesoproterozoic. In the global supercontinent context, the craton preserves the history of Ur, the earliest supercontinent, followed by the Paleo-Mesoproterozoic Columbia, as well as minor thermal imprints of the Neoproterozoic Rodinia and associated Grenvillian orogeny.  相似文献   

9.
One of the best-preserved Neo-Tethyan ophiolite complexes of Iran (Southern Caspian Sea ophiolite complex) is exposed in north of Iran. Crustal ultramafic cumulative rocks are mainly composed of dunite, wehrlite, olivine clinopyroxenite and clinopyroxenite. Mafic plutonic rocks consist of isotropic and layered gabbros. Geochemical studies show that these rocks have subalkalic tholeiitic affinity. Partial melting has been an important process in the formation of the studied rocks. Normalized trace element patterns in the studied rocks show enrichment in LREE and depletion in Nb and Zr. Studied mafic–ultramafic samples are formed by 30 % partial melting of mantle lherzolite from a depleted-arc source. These characteristics show suprasubduction environment and formation in a marginal basin above a subduction zone.  相似文献   

10.
Southern India occupies a central position in the Late Neoproterozoic–Cambrian Gondwana supercontinent assembly. The Proterozoic mosaic of southern India comprises a collage of crustal blocks dissected by Late Neoproterozoic–Cambrian crust-scale shear/suture zones. Among these, the Palghat–Cauvery Suture Zone (PCSZ) has been identified as the trace of the Cambrian suture representing Mozambique Ocean closure during the final phase of amalgamation of the Gondwana supercontinent. Here we propose a model involving Pacific-type orogeny to explain the Neoproterozoic evolution of southern India and its final amalgamation within the Gondwana assembly. Our model envisages an early rifting stage which gave birth to the Mozambique Ocean, followed by the initiation of southward subduction of the oceanic plate beneath a thick tectosphere-bearing Archean Dharwar Craton. Slices of the ocean floor carrying dunite–pyroxenite–gabbro sequence intruded by mafic dykes representing a probable ophiolite suite and invaded by plagiogranite are exposed at Manamedu along the southern part the PCSZ. Evidence for the southward subduction and subsequent northward extrusion are preserved in the PCSZ where the orogenic core carries high-pressure and ultrahigh-temperature metamorphic assemblages with ages corresponding to the Cambrian collisional orogeny. Typical eclogites facies rocks with garnet + omphacite + quartz and diagnostic ultrahigh-temperature assemblages with sapphirine + quartz, spinel + quartz and high alumina orthopyroxene + sillimanite + quartz indicate extreme metamorphism during the subduction–collision process. Eclogites and UHT granulites in the orogenic core define PT maxima of 1000 °C and up to 20 kbar. The close association of eclogites with ultramafic rocks having abyssal signatures together with linear belts of iron formation and metachert in several localities within the PCSZ probably represents subduction–accretion setting. Fragments of the mantle wedge were brought up through extrusion tectonics within the orogenic core, which now occur as suprasubduction zone/arc assemblages including chromitites, highly depleted dunites, and pyroxene bearing ultramafic assemblages around Salem. Extensive CO2 metasomatism of the ultramafic units generated magnesite deposits such as those around Salem. High temperature ocean floor hydrothermal alteration is also indicated by the occurrence of diopsidite dykes with calcite veining. Thermal metamorphism from the top resulted in the dehydration of the passive margin sediments trapped beneath the orogenic core, releasing copious hydrous fluids which moved upward and caused widespread hydration, as commonly preserved in the Barrovian amphibolite facies units in the PCSZ. The crustal flower structure mapped from PCSZ supports the extrusion model, and the large scale north verging thrusts towards the north of the orogenic core may represent a fold-thrust belt. Towards the south of the PCSZ is the Madurai Block where evidence for extensive magmatism occurs, represented by a number of granitic plutons and igneous charnockite massifs of possible tonalite–trondhjemite–granodiorite (TTG) setting, with ages ranging from ca. 750–560 Ma suggesting a long-lived Neoproterozoic magmatic arc within a > 200 km wide belt. All these magmatic units were subsequently metamorphosed, when the Pacific-type orogeny switched over to collision-type in the Cambrian during the final phase of assembly of the Gondwana supercontinent. One of the most notable aspects is the occurrence of arc magmatic rocks together with high P/T rocks, representing the deeply eroded zone of subduction. The juxtaposition of these contrasting rock units may suggest the root of an evolved Andean-type margin, as in many arc environments the roots of the arc comprise ultramafic/mafic cumulates and the felsic rocks represent the core of the arc. The final phase of the orogeny witnessed the closure of an extensive ocean — the Mozambique Ocean — and the collisional assembly of continental fragments within the Gondwana supercontinent amalgam. The tectonic history of southern India represents a progressive sequence from Pacific-type to collision-type orogeny which finally gave rise to a Himalayan-type Cambrian orogen with characteristic magmatic, metasomatic and metamorphic factories operating in subduction–collision setting.  相似文献   

11.
The Indian Shield is cross-cut by a number of distinct Paleoproterozoic mafic dyke swarms. The density of dykes in the Dharwar and Bastar Cratons is amongst the highest on Earth. Globally, boninitic dyke swarms are rare compared to tholeiitic dyke swarms and yet they are common within the Southern Indian Shield. Geochronology and geochemistry are used to constrain the petrogenesis and relationship of the boninitic dykes (SiO2 = 51.5 to 55.7 wt%, MgO = 5.8 to 18.7 wt%, and TiO2 = 0.30 wt% to 0.77 wt%) from the central Bastar Craton (Bhanupratappur) and the NE Dharwar Craton (Karimnagar). A single U-Pb baddeleyite age from a boninitic dyke near Bhanupratappur yielded a weighted-mean 207Pb/206Pb age of 2365.6 ± 0.9 Ma that is within error of boninitic dykes from the Dharwar Craton near Karimnagar (2368.5 ± 2.6 Ma) and farther south near Bangalore (2365.4 ± 1.0 Ma to 2368.6 ± 1.3 Ma). Rhyolite-MELTS modeling indicates that fractional crystallization is the likely cause of major element variability of the boninitic dykes from Bhanupratappur whereas trace element modeling indicates that the primary melt may be derived from a pyroxenite mantle source near the spinel-garnet transition zone. The Nd isotopes (εNd(t) = −6.4 to +4.5) of the Bhanupratappur dykes are more variable than the Karimnagar dykes (εNd(t) = −0.7 to +0.6) but they overlap. The variability of Sr-Nd isotopes may be related to crustal contamination during emplacement or is indicative of an isotopically heterogeneous mantle source. The chemical and temporal similarities of the Bhanupratappur dykes with the dykes of the Dharwar Craton (Karimnagar, Penukonda, Chennekottapalle) indicate they are members of the same giant radiating dyke swarm. Moreover, our results suggest that the Bastar and Dharwar Cratons were adjacent but likely had a different configuration at 2.37 Ga than the present day. It is possible that the 2.37Ga dyke swarm was related to a mantle plume that assisted in the break-up of an unknown or poorly constrained supercontinent.  相似文献   

12.
The Pine Creek Orogen, located on the exposed northern periphery of the North Australian Craton, comprises a thick succession of variably metamorphosed Palaeoproterozoic siliciclastic and carbonate sedimentary and volcanic rocks, which were extensively intruded by mafic and granitic rocks. Exposed Neoarchean basement is rare in the Pine Creek Orogen and the North Australian Craton in general. However, recent field mapping, in conjunction with new SHRIMP U–Pb zircon data for six granitic gneiss samples, have identified previously unrecognised Neoarchean crystalline crust in the Nimbuwah Domain, the eastern-most region of the Pine Creek Orogen. Four samples from the Myra Falls and Caramal Inliers, the Cobourg Peninsula, and the Kakadu region have magmatic crystallisation ages in the range 2527–2510 Ma. An additional sample, from northeast Myra Falls Inlier, yielded a magmatic crystallisation age of 2671 ± 3 Ma, the oldest exposed Archean basement yet recognised in the North Australian Craton. These results are consistent with previously determined magmatic ages for known outcropping and subcropping crystalline basement some 200 km to the west. A sixth sample yielded a magmatic crystallisation age of 2640 ± 4 Ma. The ca. 2670 Ma and ca. 2640 Ma samples have ca. 2500 Ma metamorphic zircon rims, consistent with metamorphism broadly coeval with emplacement of the volumetrically dominant ca. 2530–2510 Ma granites and granitic gneisses. Neoarchean zircon detritus, particularly in the ca. 2530–2510 Ma and ca. 2670–2640 Ma age span, are an almost ubiquitous feature of detrital zircon spectra of unconformably overlying metamorphosed Palaeoproterozoic strata of the Pine Creek Orogen, and of local post-tectonic Proterozoic sequences, consistent with this local provenance. Neoarchean zircon is also a common detrital component in Palaeoproterozoic sedimentary units across much of the North Australian Craton suggesting the existence of an extensive, if not contiguous, Neoarchean crystalline basement underlying not only a large part of the Pine Creek Orogen, but also much of the North Australian Craton.  相似文献   

13.
Komatiites are presented as direct evidence for higher mantle temperatures during the Archean. In the North China Craton, komatiites with spinifex structure have been identified only at one locality, i.e. the Sujiagou area, western Shandong. They were considered as formed during the early Neoarchean mainly based on their association with supracrustal rocks considered to be that age. This study carried out SHRIMP U-Pb zircon dating on metamorphosed trondhjemitic and monzogranitic dykes intruding the Sujiagou komatiites, and they have magmatic zircon ages of 2592 ± 12 Ma and 2586 ± 13 Ma respectively. This provides direct evidence that the komatiites formed during the early Neoarchean.  相似文献   

14.
 In the Klamath Mountains, voluminous tonalite-trondhjemite magmatism was characteristic of a short period of time from about 144 to 136 Ma (Early Cretaceous). It occurred about 5 to 10 m.y. after the ∼165 to 159 Ma Josephine ophiolite was thrust beneath older parts of the province during the Nevadan orogeny (thrusting from ∼155 to 148 Ma). The magmatism also corresponds to a period of slow or no subduction. Most of the plutons crop out in the south-central Klamath Mountains in California, but one occurs in Oregon at the northern end of the province. Compositionally extended members of the suite consist of precursor gabbroic to dioritic rocks followed by later, more voluminous tonalitic and trondhjemitic intrusions. Most plutons consist almost entirely of tonalite and trondhjemite. Poorly-defined concentric zoning is common. Tonalitic rocks are typically of the low-Al type but trondhjemites are generally of the high-Al type, even those that occur in the same pluton as low-Al tonalite. The suite is characterized by low abundances of K2O, Rb, Zr, and heavy rare earth elements. Sr contents are generally moderate (∼450 ppm) by comparison with Sr-rich arc lavas interpreted to be slab melts (up to 2000 ppm). Initial 87Sr/86Sr, δ 18O, and ɛ Nd are typical of mantle-derived magmas or of crustally-derived magmas with a metabasic source. Compositional variation within plutons can be modeled by variable degrees of partial melting of a heterogeneous metabasaltic source (transitional mid-ocean ridge to island arc basalt), but not by fractional crystallyzation of a basaltic parent. Melting models require a residual assemblage of clinopyroxene+garnet±plagioclase±amphibole; residual plagioclase suggests a deep crustal origin rather than melting of a subducted slab. Such models are consistent with the metabasic part of the Josephine ophiolite as the source. Because the Josephine ophiolite was at low T during Nevadan thrusting, an external heat source was probably necessary to achieve significant degrees of melting; heat was probably extracted from mantle-derived basaltic melts, which were parental to the mafic precursors of the tonalite-trondhjemite suite. Thus, under appropriate tectonic and thermal conditions, heterogeneous mafic crustal rocks can melt to form both low- and high-Al tonalitic and trondhjemitic magmas; slab melting is not necessary. Received: 1 September 1994 / Accepted: 28 August 1995  相似文献   

15.
It has been argued that >4.0 Ga detrital zircons preserved in sediments of the Jack Hills, western Australia, preserve evidence for a well‐developed continental crust on the Earth at 4.4–4.5 Ga ago. Here, it is shown that there are geochemical similarities between the Jack Hills zircons and the zircons found in trondhjemites in ophiolite sequences, suggesting that the Earth's first felsic crust may have formed in a manner analogous to modern ophiolitic trondhjemites. The trondhjemites of the Oman ophiolite were formed by the hydrous partial melting of the upper (hornblende) gabbros in the roof‐zone of an axial magma chamber. A similar hydrous melting of a mafic protolith may have operated during the Hadean, to create small volumes of felsic rocks within a dominantly mafic crust, obviating the need to postulate a felsic continental crust at 4.4–4.5 Ga.  相似文献   

16.
《Precambrian Research》2005,136(1):67-106
A new lithotectonic framework for the northwestern Reindeer Zone of the Trans-Hudson Orogen divides rocks into five northwest- to north-dipping volcano-sedimentary assemblages: (1) at the structural base, the 1.92–1.87 Ga largely sedimentary Levesque Bay Assemblage (partly equivalent to former ‘MacLean Lake gneisses’), which lies within the confines of the Kisseynew Domain and is tectonically imbricated with metasedimentary rocks of the <1.85 Ga McLennan and Burntwood groups; (2) the turbiditic Duck Lake Assemblage, also located along the northern edge of the Kisseynew Domain; it contains detrital zircons ranging in age between 1.92 and 1.87 Ga; (3) the ?1.92 Ga mafic–ultramafic volcano-plutonic Lawrence Point Assemblage of the La Ronge Domain; (4) the ≥1.88 Ga felsic to intermediate volcano-plutonic Reed Lake Assemblage of the La Ronge Domain; and (5) the turbiditic Milton Island Assemblage of the Rottenstone Domain, which contains detrital zircons ranging in age between 2.83 and 1.86 Ga. The assemblages are intruded by a variety of 1.91–1.78 Ga mafic to felsic plutons.The Lawrence Point Assemblage is interpreted as a dismembered supra-subduction zone ophiolite. High-MgO refractory harzburgite (‘Group 1’ ultramafic rocks), at the structural base of the assemblage, is geochemically identical to the upper mantle section of selected supra-subduction zone ophiolites and mantle tectonites. Chromite and olivine compositions of the ‘Group 1’ ultramafic rocks are also comparable to those of ophiolitic harzburgite and mantle tectonite. Mafic metavolcanic rocks of the assemblage are classified as subalkaline tholeiitic basalts. Their trace element patterns and Hf, Ta, Th, Y, Nb, and La element ratios resemble those of modern back-arc basin basalts. The Reed Lake Assemblage represents a subduction-generated arc complex that was built on top of the Lawrence Point Assemblage; its mafic metavolcanic rocks are subalkaline basalts, with calc-alkaline trends, and elevated Th and Ce concentrations and negative Nb anomalies. Feldspar porphyry dykes intruding the Lawrence Point and Duck Lake assemblages constrain timing of Lawrence Point ophiolite emplacement onto the Duck Lake Assemblage to 1.86–1.84 Ga. The trace element geochemistry of the dykes suggests continued arc volcanism after ophiolite emplacement. Mafic metavolcanic rocks of the Levesque Bay Assemblage are geochemically similar to those of the Lawrence Point Assemblage. Other ultramafic rocks (peridotite to pyroxenite) are abundant in the Lawrence Point Assemblage, but have similar geochemistry to small ultramafic bodies intruding the Reed Lake, Duck Lake and Levesque Bay Assemblages. They represent a separate, later phase (?1.86 Ga) of ultramafic plutonism, which post-dates ophiolite emplacement.Timing of Lawrence Point ophiolite emplacement (between 1.86 and 1.84 Ga) and geochemistry of later felsic and mafic/ultramafic volcanism suggest that the Lawrence Point ophiolite and overlying Reed Lake arc assemblage were not accreted to the Hearne Craton prior to 1.86 Ga, but were first accreted to the Flin Flon–Glennie Complex after 1.86 Ga.  相似文献   

17.
South Indian granulite terrain had witnessed significant part of Precambrian mafic igneous activity in the form of episodic mafic dyke intrusions of the Palaeoproterozoic period. Strike trends of these dykes are not uniform over the region and the dykes are generally fresh, massive, black dolerites except in the Bhavani shear zone bordering the southern fringes of Nilgiri massif. In Agali-Coimbatore area of our study in the western Bhavani shear zone, the dykes appear to be penecontemporaneous with shearing. Isotopic data place age of Agali-Coimbatore dyke intrusions at about 2.1 Ga. The age of these dykes is significant to constrain an early Palaeoproterozoic age for major shearing event in the Bhavani shear zone. Other dyke emplacement ages are placed at about 1.8 Ga and 1.65 Ga based on the Ar/Ar and K-Ar isotopic results of dykes in Dharmapuri and Tiruvannamalai areas. Older ages comparable to those of the Dharwar craton are not known and in this respect future isotopic dating is vital. Geochemically, these dykes are quartz/hypersthene normative subalkalic tholeiites. An attempt is made here to provide insights into the general petrogenetic history of the Precambrian dykes. Compositional trends are explained by the fractional crystallization of ferromagnesian phases and plagioclase control is conspicuous at the advanced stages of fractionation. Geochemical characteristics suggest that the dykes have tapped Fe-rich non-pyrolite mantle sources with LIL and LREE enrichment as in many continental basalts. The data suggest that role of crustal contamination is limited in petrogenesis; crustal signatures are noticed in the more mafic end members formed in early stage of evolution suggesting that contamination was temperature controlled with most primitive high temperature magmas being most vulnerable to the process. Nd-Sr isotopic data, at present restricted to Agali-Coimbatore dykes, suggest that Palaeoproterozoic magmas tapped subcontinental lithosphere that may have stabilized in the Archaean times at about 3 Ga during the major crustal building activity in the shield region. Further work coupled with isotopic and mineral chemistry will improve our knowledge on the petrological evolution of the dyke magmas and mafic magmatism in general.  相似文献   

18.
The Hongseong area, located in the western Gyeonggi Massif, South Korea, can be correlated with the northern margin of the South China block (Yangtze Craton). This area experienced Neoproterozoic igneous activity related to subduction before the amalgamation of Rodinia. Several isolated, lenticular, and serpentinized ultramafic–mafic bodies occur in the Hongseong area. The Baekdong body, one of the largest ultramafic bodies, has been highly deformed and metamorphosed to eclogite- and granulite-facies. The petrogenesis and tectonic environment of the Baekdong rocks are assessed using the composition of unaltered cores of spinel and olivine grains, and show that these rocks represent the mantle section of a suprasubduction ophiolite. The rocks originated from oceanic lithosphere that formed during the transition from nascent back-arc to mature island arc, related to subduction roll-back. During the back-arc stage, Al-rich spinel harzburgite formed through melt–rock interaction caused by the intrusion of magma. This magma was produced in small amounts, by less than 10% of partial melting of the wedge mantle. Subsequently, during the mature island arc stage, Cr-rich spinel dunite formed through melt–rock interaction caused by the intrusion of relatively evolved magma that formed by 30–35% partial melting due to a high input of volatiles from the subducted slab and sediments. The Baekdong ultramafic rocks, together with the Bibong ultramafic rocks, indicate that a suprasubduction tectonic setting prevailed before the amalgamation of Rodinia (at 860–890 Ma) in the Hongseong area, which may be an extension of the northern margin of the Yangtze Craton.  相似文献   

19.
We present field and petrographic data on Mafic Magmatic Enclaves (MME), hybrid enclaves and synplutonic mafic dykes in the calc-alkaline granitoid plutons from the Dharwar craton to characterize coeval felsic and mafic magmas including interaction of mafic and felsic magmas. The composite host granitoids comprise of voluminous juvenile intrusive facies and minor anatectic facies. MME, hybrid enclaves and synplutonic mafic dykes are common but more abundant along the marginal zone of individual plutons. Circular to ellipsoidal MME are fine to medium grained with occasional chilled margins and frequently contain small alkali feldspar xenocrysts incorporated from host. Hybrid magmatic enclaves are intermediate in composition showing sharp to diffused contacts with adjoining host. Spectacular synplutonic mafic dykes commonly occur as fragmented dykes with necking and back veining. Similar magmatic textures of mafic rocks and their felsic host together with cuspate contacts, magmatic flow structures, mixing, mingling and hybridization suggest their coeval nature. Petrographic evidences such as disequilibrium assemblages, resorption, quartz ocelli, rapakivi-like texture and poikilitically enclosed alkali feldspar in amphibole and plagioclase suggest interaction, mixing/mingling of mafic and felsic magmas. Combined field and petrographic evidences reveal convection and divergent flow in the host magma chamber following the introduction of mafic magmas. Mixing occurs when mafic magma is introduced into host felsic magma before initiation of crystallization leading to formation of hybrid magma under the influence of convection. On the other hand when mafic magmas inject into host magma containing 30–40% crystals, the viscosities of the two magmas are sufficiently different to permit mixing but permit only mingling. Finally, if the mafic magmas are injected when felsic host was largely crystallized (~70% or more crystals), they fill early fractures and interact with the last residual liquids locally resulting in fragmented dykes. The latent heat associated with these mafic injections probably cause reversal of crystallization of adjoining host in magma chamber resulting in back veining in synplutonic mafic dykes. Our field data suggest that substantial volume of mafic magmas were injected into host magma chamber during different stages of crystallization. The origin of mafic magmas may be attributed to decompression melting of mantle associated with development of mantle scale fractures as a consequence of crystallization of voluminous felsic magmas in magma chambers at deep crustal levels.  相似文献   

20.
《地学前缘(英文版)》2020,11(6):2127-2139
The Dharwar Craton in Peninsular India was intruded by a series of mafic dykes during the Paleoproterozoic and these mafic magmatic events have important implications on continental rifting and LIPs. Here we report ten precise Pb–Pb TE-TIMS age determinations on baddeleyite grains separated from seven mafic dykes and three sills, intruding into Archean basement rocks and Proterozoic sedimentary formations of the Eastern Dharwar Craton respectively. The crystallization age of the baddeleyite shows 2366.3 ​± ​1.1 ​Ma, and 2369.2 ​± ​0.8 ​Ma for the NE–SW trending dykes, 2368.1 ​± ​0.6 ​Ma, 2366.4 ​± ​0.8 ​Ma, 2207.2 ​± ​0.7 ​Ma and 1887.3 ​± ​1.0 ​Ma for the ENE–WNW to E–W striking dykes, 1880.6 ​± ​1.0 ​Ma, 1864.3 ​± ​0.6 ​Ma and 1863.6 ​± ​0.9 ​Ma for Cuddapah sills, and 1861.8 ​± ​1.4 ​Ma for the N–S trending dyke. Our results in conjunction with those from previous studies identify eight distinct stages of widespread Paleoproterozoic magmatism in the Dharwar craton. The mantle plume centres of the four radiating dyke swarms with ages of ~2367 ​Ma, ~2210 ​Ma, ~2082 ​Ma, and ~1886 ​Ma were traced to establish their proximity to the EDC kimberlite province. Though the ~2367 ​Ma and ~1886 ​Ma plume centres are inferred to be located to the west and east of the present day Dharwar craton respectively away from the kimberlite province, location of plume heads of the other two swarms with ages of ~2207 ​Ma and ~2082 ​Ma are in close proximity. In spite of the ubiquitous occurrence of dyke intrusions of all the seven generations in the kimberlite province, only few of these kimberlites are diamondiferous. Kimberlite occurrences elsewhere in the vicinity of older Large Igneous Provinces (LIPs) like the Mackenzie, Karoo, Parana-Etendeka and Yakutsk-Vilui are also non-diamondiferous. This has been attributed to the destruction of the lithospheric mantle keel (that hosts the diamonds) by the respective mantle plumes. The diamondiferous nature of the EDC kimberlites therefore suggests that plume activity does not always result in the destruction of the mantle keel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号