首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elastic wave velocities and the ratiov P/v S were studied for dry and initially saturated samples of carbonate and crystalline rocks at pressures to 2 kbar. In initially saturated samplesv P increases in crystalline rock, whereas in sedimentary rock it may either increase or decrease with increasing pressure. Under the same conditionsv S remains approximately constant in crystalline rocks and decreases in sedimentary samples. The ratiov P/v S as a function of pressure increases in dry rocks and decreases in saturated ones. Saturated samples always have higherv P/v S ratios than dry ones. It appears that the geometry of the pore space influences the acoustic properties of saturated crystalline rocks.  相似文献   

2.
In a previous paper it has been shown that we can relate the transient IP electric field Ep , existing in a rock after a step wave of polarizing current, with the steady-state current density Jss during the current step wave as follows: Ep =ρ' Jss . This relation may be interpreted as a generalized Ohm's law, valid in linear cases, in which ρ’(fictitious resistivity) is defined as the product of the true resistivity ρ with the chargeability m. Supposing E p=— grad Up and applying the divergence condition div Jss = o, one can, for a layered earth, obtain a general expression for the depolarization potential Up as a solution of Laplace's equation ?2Up= o. Since the mathematical procedure for the solution of this last equation is identical to that used in resistivity problems, we propose now the introduction of an apparent fictitious resistivity ρ'a (defined as the product of the apparent resistivity ρa with the apparent chargeability ma) as a new parameter for the interpretations of IP soundings carried out over layered structures with a common electrode array. The most general expression of ρ'a as a function of the electrode distance turns out to be mathematically identical to the general expression of ρ'a. Therefore it is possible to interpret a ρ'a field curve using the same standard graphs for resistivity prospecting with the usual method of complete curve matching. In this manner a great deal of work is saved since there is no need to construct proper ma graphs for the interpretation of IP soundings, as it has been done up to now. Finally some field examples are reported.  相似文献   

3.
Storage–discharge curves are widely used in several hydrological applications concerning flow and solute transport in small catchments. This article analyzes the relation Q(S) (where Q is the discharge and S is the saturated storage in the hillslope), as a function of some simple structural parameters. The relation Q(S) is evaluated through two‐dimensional numerical simulations and makes use of dimensionless quantities. The method lies in between simple analytical approaches, like those based on the Boussinesq formulation, and more complex distributed models. After the numerical solution of the dimensionless Richards equation, simple analytical relations for Q(S) are determined in dimensionless form, as a function of a few relevant physical parameters. It was found that the storage–discharge curve can be well approximated by a power law function Q/(LKs) = a(S/(L2(? ? θr)))b, where L is the length of the hillslope, Ks the saturated conductivity, ? ? θr the effective porosity, and a, b two coefficients which mainly depend on the slope. The results confirm the validity of the widely used power law assumption for Q(S). Similar relations can be obtained by performing a standard recession curve analysis. Although simplified, the results obtained in the present work may serve as a preliminary tool for assessing the storage–discharge relation in hillslopes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper the locations where ρapp = ρ1 and ? = π/4 and where these parameters reach an extreme value in two-layer magnetotelluric (MT) sounding curves are summarized in an extremely compact form. The key parameters over two-layer models with conductivities σ1, σ2 and upper layer thickness h are the real S and α, where S is the conductivity contrast and α is the distance between the observation site and the conductivity interface, normalized to the half skindepth in the first layer. If the impedance components, various resistivity definitions ( ρRe Z, ρIm Z and ρ|Z|, based on different parts of the complex impedance Z ) and the magnetotelluric phase ? are derived as a function of S and α, then the conditions for the apparent resistivity ρapp and the phase ? are that they either satisfy ρapp = ρ1 and ? = π/4 or attain extreme values which can be given in terms of simple algebraic equations between S and α. All equations are valid for observation sites at any depth 0 ≤ zh in the first layer. The set of equations, presented in a tabular form, may make it possible to determine a layer boundary from the short period part of the sounding curves, in particular the ρRe Z and the ?MT curves.  相似文献   

5.
Soil bulk density (ρb) is commonly treated as static in studies of land surface dynamics. Magnitudes of errors associated with this assumption are largely unknown. Our objectives were to (a) quantify ρb effects on soil hydrologic and thermal properties and (b) evaluate effects of ρb on surface energy balance and heat and water transfer. We evaluated 6 soil properties, volumetric heat capacity, thermal conductivity, soil thermal diffusivity, water retention characteristics, hydraulic conductivity, and vapour diffusivity, over a range of ρb, using a combination of 6 models. Thermal conductivity, water retention, hydraulic conductivity, and vapour diffusivity were most sensitive to ρb, each changing by fractions greater than the associated fractional changes in ρb. A 10% change in ρb led to 10–11% change in thermal conductivity, 6–11% change in saturated and residual water content, 49–54% change in saturated hydraulic conductivity, and 80% change in vapour diffusivity. Subsequently, 3 field seasons were simulated with a numerical model (HYDRUS‐1D) for a range of ρb values. When ρb increased 25% (from 1.2 to 1.5 Mg m?3), soil temperature variation decreased by 2.1 °C in shallow layers and increased by 1 °C in subsurface layers. Surface water content differed by 0.02 m3 m?3 for various ρb values during drying events but differences mostly disappeared in the subsurface. Matric potential varied by >100 m of water. Surface energy balance showed clear trends with ρb. Latent heat flux decreased 6%, sensible heat flux increased 9%, and magnitude of ground heat flux varied by 18% (with a 25% ρb increase). Transient ρb impacted surface conditions and fluxes, and clearly, it warrants consideration in field and modelling investigations.  相似文献   

6.
Following up our recent study of an indirect procedure for the practical determination of the maximum frequency-effect, defined as fe = 1 ? pρdc with ρ the resistivity at infinite frequency, we show at first how, through the Laplace transform theory, ρ can be related to stationary field vectors in the simple form of Ohm's law. Then applying the equation of continuity for stationary currents with a suitable set of boundary conditions, we derive the integral expression of the apparent resistivity at infinite frequency ρ,a in the case of a horizontally layered earth. Finally, from the definition of the maximum apparent frequency-effect, analytical expressions of feα are obtained for both Schlumberger and dipole arrays placed on the surface of the multi-layered earth section in the most general situation of vertical changes in induced polarization together with dc resistivity variations not at the same interfaces. Direct interpretation procedures are suggested for obtaining the layering parameters directly from the analysis of the sounding curves.  相似文献   

7.
We have correlated the longitudinal unit conductance CL obtained from interpreted vertical electrical sounding data with the formation resistivity Rt and the formation resistivity factor F, obtained by carrying out electrical borehole logging. Interpreted geophysical data of eleven soundings and two electrical borehole log records are used for the analysis. The geophysical data used were acquired in a sedimentary basin. The study area is called Lower Maner Basin located in the province of Andhra Pradesh, India. Vertical electrical soundings were carried out using a Schlumberger configuration with half current electrode separation varying from 600–1000 m. For logging the two boreholes, a Widco logger‐model 3200 PLS was used. True formation resistivity Rt was calculated from a resistivity log. Formation resistivity factor F was also calculated at various depths using Rt values. An appreciable inverse relation exists between the correlated parameters. The borehole resistivity Rt and the formation resistivity factor F decrease with the increase in the longitudinal unit conductance CL. We have shown the use of such a relation in computing borehole resistivity Rt and formation resistivity factor F at sites that posses only vertical electrical sounding data, with a fair degree of accuracy. Validation of the correlation is satisfactory. Scope for updating the correlation is discussed. Significance and applications of the relation for exploration of groundwater, namely to update the vertical electrical sounding data interpretation by translating the vertical electrical sounding data into electrical borehole log parameters, to facilitate correlations studies and to estimate the porosity (φ), permeability (K) and water saturation Sw of water bearing zones are discussed.  相似文献   

8.
In this paper, electrical properties of an anisotropic rock formation are discussed. Electrical anisotropy parameters, i.e., horizontal resistivity, R H , and vertical resistivity, R V , and anisotropy coefficient in the sandyshaly Miocene formation, are determined on the basis of induction logs and laterologs. Graphs of R V = f(R H ) calculated for different resistivities of sandstones and shales and variable volumes of those two components allow us to conclude about the correctness of the applied method for determining the resistivity parameters of autochthonous Miocene formations.  相似文献   

9.
由于泥质所造成的附加导电现象,泥质含量及其分布形式对电阻率增大系数I和含水饱和度Sw关系具有重要影响,由于岩石物理实验中岩心孔隙结构及其组分构成、分布的微观不可调性,因而泥质分布形式所造成的影响很难通过岩心实验来单独研究。基于数字岩心的格子气自动机方法是一种有效的微观数值模拟方法,本研究利用储层岩心薄片的骨架颗粒尺寸信息资料建立数字岩心模型,结合格子气自动机技术对数字岩心不同饱和流体情况下电的传输特性进行数值模拟研究,揭示了不同泥质含量和泥质分布形式对孔隙介质导电特性非阿尔奇现象产生的影响,建立饱和度指数和泥质含量之间的关系模型,其良好的吻合性表明该方法在岩石物理研究中是一种十分有效的研究方法,而新模型适于在非阿尔奇储层进行准确的饱和度评价。  相似文献   

10.
Two seismic wave attenuation factors, scatteringattenuation Q s -1 and intrinsicabsorption Q i -1 are measured using theMultiple Lapse Time Window (MLTW) analysis method forthree different frequency bands, 1–2, 2–4, and 4–8 Hz.Data from 54 temporally deployed seismic stationslocated in northern Chile are used. This methodcompares time integrated seismic wave energies withsynthetic coda wave envelopes for a multiple isotropicscattering model. In the present analysis, the waveenergy is assumed to decay with distance in proportionto1/GSF·exp(- (Q s -1+Q i -1r/v), where r, and v are the propagationdistance, angular frequency and S wave velocity,respectively, and GSF is the geometricalspreading factor. When spatial uniformity of Q s -1, Q i -1 and v isassumed, i.e. GSF = 4r 2, theestimates of the reciprocal of the extinction length,L e -1 (= (Q s -1+Q i -1)·/v), are 0.017,0.012 and 0.010 km-1, and those of the seismicalbedo, B 0 (= Q s -1/ (Q s -1+Q i -1)), are 0.48, 0.40and 0.34 for 1–2, 2–4 and 4–8 Hz, respectively, whichindicates that scattering attenuation is comparable toor smaller than intrinsic absorption. When we assumea depth dependent velocity structure, we also findthat scattering attenuation is comparable to orsmaller than intrinsic absorption. However, since thequantitative estimates of scattering attenuationdepend on the assumed velocity structure (strength ofvelocity discontinuity and/or Moho depth), it isimportant to consider differences in velocitystructure models when comparing attenuation estimates.  相似文献   

11.
The presence of water is one of the main concerns of nuclear waste disposal in rock-salt. It can be investigated using electrical properties of the rock. Laboratory measurements of frequency-dependent resistivity and other petrophysical parameters, such as porosity, water content, and specific internal surface area, have been carried out on rock-salt from the Asse mine in Germany, in order to obtain characteristic resistivity responses for the evaluation of geoelectric field methods and to develop new methods for the estimation of the water content and saturation. The laboratory method, on a.c. half-bridge for very high impedances, allows measurements of the resistivity spectrum of rock-salt in the frequency range from 15 Hz to 10 kHz. The saturation of the samples was varied artificially and was approximately 5%, 10%, 20% and 100%. The porosity varies between 0.1% and 0.5%, the water content is approximately 0.05% or less, and the initial saturation is less than 50%. The resistivity ranges from 10 MΩm at the initial saturation down to 1 kΩm for fully saturated samples. In the low-frequency range up to 100 Hz, an Archie-type relationship may be used to estimate the water content of the rock-salt from resistivity measurements. The Archie exponent m is found to be approximately 2. The resistivity is observed to be strongly dependent on frequency. The resistivity decreases with increasing frequency, with a greater decrease for small saturations and vanishing frequency dependence at complete saturation. The relative dielectric constant was found to be 6 ± 1. Saturation dependence was not observed within this error range. The measurements imply that, by measuring resistivity in rock-salt, estimations of water content and saturation, and thus the porosity, can be made in situ. This is particularly important for the safety of nuclear waste disposal in rock-salt.  相似文献   

12.
We carried out a magnetotelluric field campaign in the South–East Lower Saxony Basin, Germany, with the main goal of testing this method for imaging regional Posidonia black shale sediments. Two‐dimensional inversion results of the magnetotelluric data show a series of conductive structures correlating with brine‐saturated sediments but also with deeper, anthracitic Westphalian/Namurian coals. None of these structures can be directly related with the Posidonia black shale, which appears to be generally resistive and therefore difficult to resolve with the magnetotelluric method. This assumption is supported by measurements of electrical resistivity on a set of Posidonia shale samples from the Hils syncline in the Lower Saxony basin. These rock samples were collected in shallow boreholes and show immature (0.53% Ro), oil (0.88% Ro), and gas (1.45% Ro) window thermal maturities. None of the black shale samples showed low electrical resistivity, particularly those with oil window maturity show resistivity exceeding 104 Ωm. Moreover, we could not observe a direct correlation between maturity and electrical resistivity; the Harderode samples showed the highest resistivity, whereas the Haddessen samples showed the lowest. A similar trend has been seen for coals in different states of thermal maturation. Saturation of the samples with distilled and saline water solutions led to decreasing electrical resistivity. Moreover, a positive correlation of electrical resistivity with porosity is observed for the Wickensen and Harderode samples, which suggests that the electrical resistivity of the Posidonia black shale is mainly controlled by porosity.  相似文献   

13.
The laboratory ultrasonic pulse‐echo method was used to collect accurate P‐ and S‐wave velocity (±0.3%) and attenuation (±10%) data at differential pressures of 5–50 MPa on water‐saturated core samples of sandstone, limestone and siltstone that were cut parallel and perpendicular to the vertical borehole axis. The results, when expressed in terms of the P‐ and S‐wave velocity and attenuation anisotropy parameters for weakly transversely isotropic media (ɛ, γ, ɛQ, γQ) show complex variations with pressure and lithology. In general, attenuation anisotropy is stronger and more sensitive to pressure changes than velocity anisotropy, regardless of lithology. Anisotropy is greatest (over 20% for velocity, over 70% for attenuation) in rocks with visible clay/organic matter laminations in hand specimens. Pressure sensitivities are attributed to the opening of microcracks with decreasing pressure. Changes in magnitude of velocity and attenuation anisotropy with effective pressure show similar trends, although they can show different signs (positive or negative values of ɛ, ɛQ, γ, γQ). We conclude that attenuation anisotropy in particular could prove useful to seismic monitoring of reservoir pressure changes if frequency‐dependent effects can be quantified and modelled.  相似文献   

14.
Tillage on hillslopes may not only induce severe soil erosion, but may also cause bedrock erosion under certain conditions. Yet, little is known about bedrock erosion by tillage in a hilly agricultural landscape, southwest China. The aim of this study is to quantify the translocation of rock fragments derived from bedrock fragmentation by hoeing under different conditions, including slope gradient, hoeing depth and soil-covered thickness using a gravel tracing method. The reliability of the gravel tracing method was confirmed by the bedrock dyeing tracing method. Hoeing depth is a significant factor affecting the translocation rate of rock fragments (Qr ). Meanwhile, under the condition of overlying soil layers (0.06−0.10 m thick), the values of Qr were significantly smaller with a reduction of 20.7−25.6%, compared with rock fragmentation by hoeing for bare bedrock. However, slope gradient was found to have insignificant effects on Qr . Fractured bedrock moved as individual small fragments, which was mainly controlled by the hitting force of the hoe, while soil moved in the shape of lumps, which was dominated by both drag force of the hoe and gravity. This study suggests that hoeing into soil-covered bedrock can diminish bedrock erosion while providing soil matrix for shallow soil layers. Our work presents a quantitative assessment of bedrock erosion by hoeing and an underlying insight into characteristics of bedrock erosion by tillage operations in hilly agricultural regions with mudstone and shale, southwest China. © 2020 John Wiley & Sons, Ltd.  相似文献   

15.
16.
Improvements in the joint inversion of seismic and marine controlled source electromagnetic data sets will require better constrained models of the joint elastic‐electrical properties of reservoir rocks. Various effective medium models were compared to a novel laboratory data set of elastic velocity and electrical resistivity (obtained on 67 reservoir sandstone samples saturated with 35 g/l brine at a differential pressure of 8 MPa) with mixed results. Hence, we developed a new three‐phase effective medium model for sandstones with pore‐filling clay minerals based on the combined self‐consistent approximation and differential effective medium model. We found that using a critical porosity of 0.5 and an aspect ratio of 1 for all three components, the proposed model gave accurate model predictions of the observed magnitudes of P‐wave velocity and electrical resistivity and of the divergent trends of clean and clay‐rich sandstones at higher porosities. Using only a few well‐constrained input parameters, the new model offers a practical way to predict in situ porosity and clay content in brine saturated sandstones from co‐located P‐wave velocity and electrical resistivity data sets.  相似文献   

17.
Abstract

It is shown that magnetic fields generated by flows v r,(r,t)er+vT where vT is an arbitrary toroidal component (er˙vT≡V≡vT≡0), cannot be maintained indefinitely against ohmic dissipation. The poloidal field variable max |r 2 B r| is shown to decay strictly monotonically with an undetermined decay rate. A bound on the growth of the toroidal field norm ∥T1 is established solely dependent on the rate of conversion of poloidal to toroidal field, so that when the poloidal field is negligible then ∥T1 decays strictly monotonically. The main application of these results is to models of stellar evolution based on axisymmetric differential rotation and spherically symmetric contraction. This symmetric velocity theorem overlaps with two already known theorems, namely the toroidal velocity theorem where v r≡0 and the radial velocity theorem where vT≡0. The new theorem does not entirely include the already established ones, principal differences being in the rates of decay and the field variables for which the decay is proven (see Table 1).  相似文献   

18.
Summary The periods, the maximum absolute displacement amplitudes and the maximum particle velocities of the surface waves, propagating in the weathered layer are investigated. Dependences of the parameters under discussion on the distance r (km) between sites and shot points are expressed for distances from 3.6 to 38.6 km by the functions: T(s)=0.40r 0.30 , A max (m)==502.73r –1.93 and v max (mm s –1)=7.95 r –2.22.  相似文献   

19.
The occurrence of flowing wells in basins has been found to be closely related to the discharge area with an upward hydraulic gradient. Unfortunately, previous studies on upward gradient induced wellbore flow with equaling total inflow (Qin) in the deep and total outflow (Qout) in the shallow could not explain the occurrence of flowing wells. By representing wells using the MNW2 Package imbedded in MODFLOW 2005, we obtain the exchange of groundwater between the aquifer and the well in the discharge area of 3D unit basins and identify three scenarios: Qin = Qout, Qin > Qout > 0 and Qin > Qout = 0. The relationship of Qin > Qout well explains why flowing wells only develop in a limited part of the discharge area. Sensitivity analysis shows that well location, water table undulation, and basin length–depth ratio do not change the profile of the ratio of cumulative flow rate in a flowing well to total inflow (Qv/Qin) versus the relative elevation in the inflow segment, zin*, but could significantly change the length of the inflow segment; well depth could change both the length of the inflow segment and the profile of Qv/Qin versus zin*. Based on the numerical results in homogeneous and isotropic basins with different basin length–depth ratios in the current study, the ratio of inflow in the lower half part of a flowing well to the total inflow is found to be at least 67% and could be close to 100%, indicating that water at the outlets of flowing wells with long open sections is mainly from the deep part of the well.  相似文献   

20.
Synthetic rock samples can offer advantages over natural rock samples when used for laboratory rock physical properties studies, provided their success as natural analogues is well understood. The ability of synthetic rocks to mimic the natural stress dependency of elastic wave, electrical and fluid transport properties is of primary interest. Hence, we compare a consistent set of laboratory multi-physics measurements obtained on four quartz sandstone samples (porosity range 20–25%) comprising two synthetic and two natural (Berea and Corvio) samples, the latter used extensively as standards in rock physics research. We measured simultaneously ultrasonic (P- and S-wave) velocity and attenuation, electrical resistivity, permeability and axial and radial strains over a wide range of differential pressure (confining stress 15–50 MPa; pore pressure 5–10 MPa) on the four brine saturated samples. Despite some obvious physical discrepancies caused by the synthetic manufacturing process, such as silica cementation and anisotropy, the results show only small differences in stress dependency between the synthetic and natural sandstones for all measured parameters. Stress dependency analysis of the dry samples using an isotropic effective medium model of spheroidal pores and penny-shaped cracks, together with a granular cohesion model, provide evidence of crack closure mechanisms in the natural sandstones, seen to a much lesser extent in the synthetic sandstones. The smaller grain size, greater cement content, and cementation under oedometric conditions particularly affect the fluid transport properties of the synthetic sandstones, resulting in lower permeability and higher electrical resistivity for a similar porosity. The effective stress coefficients, determined for each parameter, are in agreement with data reported in the literature. Our results for the particular synthetic materials that were tested suggest that synthetic sandstones can serve as good proxies for natural sandstones for studies of elastic and mechanical properties, but should be used with care for transport properties studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号