首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Garnetiferous basic granulites occur, as parts of hornblende-pyroxene- and pyroxene granulites, in a Precambrian terrain around Saltora. The chemistry of the garnetiferous basic granulites is broadly similar to that of the hornblende-pyroxene granulites, their immediate precursors, but in detail they have distinctly higher Fe/Mg ratios. The compositions of the major mafic silicates of the garnetiferous varieties do not reflect higher pressures of formation: the Jd/Ts ratios in calcic pyroxenes are similar to those from the non-garnetiferous varieties, and the pyrope contents of garnets are low. Exchange equilibrium in respect of major elements was established among the mafic silicates in spite of garnets being late overprints. The orthopyroxene — calcic pyroxene pairs from the garnetiferous granulites show lower values of K D(Mg-Fe) opx-cpx than those from the non-garnetiferous granulites, pointing to lower temperature of equilibration. The K D(Mg-Fe) opx-hbl K D(Mg-Fe) cpx-hbl relations show that the more magnesian triads equilibrated at lower temperatures; viewed against experimental data regarding the effect of Mg/Fe ratios on the appearance of garnets in basic rocks, formation of garnets by cooling is strongly indicated. Several intergrowth textures, especially garnet-ilmenite and garnet-quartz (±albite) symplectites, and modal relations argue in favour of composite reactions of the type hornblende+ quartz-→calcic pyroxene+garnet+albite+H2O, which couple hornblende breakdown reactions with orthopyroxene+anorthite→garnet reactions. The approximate range of pressure and temperature conditions, estimated from experimental data, are 6–8.5 kb and 750–830° C. Since garnets formed by cooling in iron-rich granulites, the garnetiferous granulites do not represent higher pressure subfacies of the granulite facies.  相似文献   

2.
The atomic fractions Mg/(Mg + Fe) and the Mg-Fe distribution coefficient $$K_{{\text{D}}{\text{.Mg - Fe}}}^{{\text{Ca - am - Cum}}} \left( { = \tfrac{{[{\text{Mg/Fe]}}_{{\text{Ca - am}}} }}{{{\text{[Mg/Fe]}}_{{\text{Cum}}} }}} \right)$$ are calculated for 31 metamorphic cummingtonite-hornblende pairs. Data on 21 pairs are taken from the litterature, and new electron microprobe analyses and structural formulae are presented of nine pairs from Tydal, Sör-Tröndelag, Norway, and of one pair from Cooma, N.S.W., Australia (cf. Kisch, 1969). The electron microprobe methods used are described, particularly the use of mineral standards, and the variation of the mass absorption in substitution series. The hornblendes from the Tydal pairs are markedly pargasitic in composition, and contain minor proportions of the cummingtonite “molecule”. The Mg-Fe distributions in the cummingtonite-hornblende pairs — as plotted on a [Mg/(Mg + Fe)]Ca-am vs. [Mg/(Mg + Fe)]Cum diagram (Fig. 3) — differ significantly from the Mg-Fe distribution curve for cummingtonite-actinolite pairs from Quebec (Mueller, 1961). Whereas the actinolites have markedly higher Mg/Fe ratios than the co-existing cummingtonites (K D.Mg-Fe Ca-am-Cum ≈ 1.5–2.0), the cummingtonite-hornblende pairs diverge towards lower values from the distribution coefficient. In most of the metamorphic cummingtonite-hornblende pairs — including the nine pairs from Tydal — the Mg/Fe ratio of the hornblende is lower than in the co-existing cummingtonite, i.e K D.Mg-Fe Ca-am-Cum <1. A relation appears to exist between the Mg-Fe distribution and the Al content of the calcic amphibole phase. This is believed to be due to the non-random distribution of AlY among the octahedral lattice sites: in hornblende AlVI enters the M 1+M3 positions, in which Mg is preferred over Fe, rather than M 2, in which Fe is preferred (Ghose, 1965). Since the cummingtonites remain Al-poor, the over-all Mg/Fe ratio in the hornblende is reduced relative to the co-existing cummingtonite as a result. The variations of the Mg-Fe distribution in the cummingtonite-hornblende pairs can also be related directly to the presence and composition of the plagioclase and other Al-rich phases in the metamorphic mineral assemblage. In any range of Mg/Fe ratios, the cummingtonite-hornblende pairs associated with oligoclase have lower distribution coefficients (0.61–0.81; 12 pairs) than those associated with calcic plagioclase or plagioclase-free assemblages (0.97 to 1.89; 6 pairs); the pairs associated with andesine have intermediate Mg-Fe distributions (0.74–1.15; 6 pairs).  相似文献   

3.
Mineral assemblages, rock and mineral chemistry, and mineral reactions, in calc-silicate rocks from Koduru area, Andhra Pradesh, India are discussed. Mineralogical and bulk chemical differences indicate 3 calc-silicate rock types — type I with K feldspar+calcite+wollastonite+quartz+scapolite+diopsidess +andraditess+sphene, has relatively high rock oxidation ratios. Type II is a highly calcic variety with high rock MgFe ratios, and has K feldspar+calcite+wollastonite+quartz+scapolite + diopsidess±grossularitess+sphene+zoisite. Type III has K feldspar +calcite+wollastonite+quartz+scapolite+diopsidess +sphene+hornblende+magnetite, and has relatively low oxidation ratio and low MgFe ratio. The 3 calc-silicate rock types have originated as mixtures of limestone/dolomite/marl.Diopside was produced by a reaction involving Ca-amphibole +calcite+quartz, and reversed during retrogression. Andraditess in type I rocks was produced at the expense of hedenbergitic component of pyroxene in a continuous reaction as a consequence of increase in the oxygen content of the original sediment relative to type III. Calcite+quartz reacted to give wollastonite. During cooling an influx of water caused scapolite to alter to zoisite.  相似文献   

4.
Three new sets of mineral and rock chemical data on basic granulites confirm the trends in compositional relationships, with respect to magnesium and iron, among hornblende, orthopyroxene and calcic pyroxene advanced by Sen (1970) and Ray and Sen (1970). Analysing the interrelationships among magnesium-iron distribution coefficients between hornblende-orthopyroxene and hornblende-calcic pyroxene, tetrahedral aluminium contents of hornblendes, and temperature of equilibration, it can be shown that equilibrium temperatures are higher with the Mg/(Mg+Fe) ratios of hornblendes increasing. An application of these relations to ferromagnesian phases of some garnet-bearing basic granulites points to formation of garnets in response to decreasing temperature.  相似文献   

5.
Amphibolites of the Post Pond Volcanics, south-west corner ofthe Mt. Cube Quadrangle, Vermont, are characterized by a greatdiversity of bulk rock types that give rise to a wide varietyof low-variance mineral assemblges. Original rock types arebelieved to have been intrusive and extrusive volcanics, hydrothermallyaltered volcanics and volcanogenic sediments with or withoutadmixtures of sedimentary detritus. Metamorphism was of staurolite-kyanitegrade. Geothermometry yields a temperature of 535 ± 20°C at pressures of 5–6 kb. Partitioning of Fe and Mg between coexisting phases is systematic,indicating a close approach to chemical equilibrium was attained.Relative enrichment of Fe/Mg is garnet > staurolite >gedrite > anthophyllite cummingtonite hornblende > biotite> chlorite > wonesite > cordierite dolomite > talc;relative enrichment in Mn/Mg is garnet > dolomite > gedrite> staurolite cummingtonite > hornblende > anthophyllite> cordierite > biotite > wonesite > chlorite >talc. between coexisting amphiboles varies as a function ofbulk Fe/Mg, which is inconsistent with an ideal molecular solutionmodel for amphiboles. Mineral assemblages are conveniently divided into carbonate+ hornblende-bearing, hornblende-bearing (carbonate-absent)and hornblende-absent. The carbonate-bearing assemblages allcontain hornblende + dolomite+ calcite + plagioclase (andesineand/or anorthite) + quartz with the additional phases garnetand epidote (in Fe-rich rocks) and chlorite ± cummingtonite(in magnesian rocks). Carbonate-bearing assemblages are restrictedto the most calcic bulk compositions. Hornblende-bearing (carbonate absent) assemblages occur in rocksof lower CaO content than the carbonate-bearing assemblages.All of these assemblages contain hornblende + andesine ±quartz + Fe-Ti oxide (rutile in magnesian rocks and ilmenitein Fe-rich rocks). In rocks of low Al content, cummingtoniteand two orthoamphiboles (gedrite and anthophyllite) are common.In addition, garnet is found in Fe-rich rocks and chlorite isfound in Mg-rich rocks. Several samples were found that containhornblende + cummingtonite + gedrite + anthophyllite ±garnet +chlorite + andesine + quartz + Fe-Ti oxide ±biotite. Aluminous assemblages contain hornblende + staurolite+ garnet ± anorthite/bytownite (coexisting with andesine)± gedrite ± biotite ± chlorite ±andesine ± quartz ± ilmenite. Hornblende-absentassemblages are restricted to Mg-rich, Ca-poor bulk compositions.These rocks contain chlorite ± cordierite ± staurolite± talc ± gedrite ± anthophyllite ±cummingtonite ± garnet ± biotite ± rutile± quartz ± andesine. The actual assemblage observeddepends strongly on Fe/Mg, Ca/Na and Al/Al + Fe + Mg. The chemistry of these rocks can be represented, to a firstapproximation, by the model system SiO2–Al2O3–MgO–FeO–CaO–Na2O–H2O–CO2;graphical representation is thus achieved by projection fromquartz, andesine, H2O and CO2 into the tetrahedron Fe–Ca–Mg–Al.The volumes defined by compositions of coexisting phases filla large portion of this tetrahedron. In general, the distributionof these phase volumes is quite regular, although in detailthere are a large number of phase volumes that overlap otherphase volumes, especially with respect to Fe/Mg ratios. Algebraicand graphical analysis of numerous different assemblages indicatethat every one of the phase volumes should shift to more magnesiancompositions with decreasing µH2O. It is therefore suggestedthat the overlapping phase volumes are the result of differentassemblages having crystallized in equilibrium with differentvalues of µH2O or µCO2 and that the different valuesmay have been inherited from the original H2O and CO2 contentof the volcanic prototype. If true, this implies that eithera fluid phase was not present during metamorphism, or that fluidflow between rocks was very restricted.  相似文献   

6.
Meta-graywacke and meta-argillite of Archean age near Yellowknife contain biotite, cordierite, gedrite and sillimanite isograds towards the Sparrow Lake granite pluton. The chemistry of biotite, cordierite, gedrite and garnet in rocks that up-grade from the cordierite isograd indicate a small range of chemical composition, particularly with reference to Mg, Fe and Mn. The analyses show further that among the coexisting ferromagnesian minerals Fe/Fe+ Mg ratio decreases in the sequence: garnet, gedrite, biotite, cordierite while Mn/Fe+Mg+Mn ratio decreases in the sequence garnet, gedrite, cordierite, biotite. The same order is also observed in the distribution diagrams. The regular distribution of Mg, Fe and Mn among the coexisting phases demonstrate that chemical equilibrium was attained and preserved in these Archean rocks. Mg-Fe distribution between cordierite and biotite appears to be dependent on the temperature of crystallization or metamorphic grade.  相似文献   

7.
An unusual association of chromite and hornblende was found in the spessartites of andesite composition, occurring as a dike swarm associated with a Cretaceous granite batholith. The spessartites are largely porphyritic with phenocrysts of either hornblende or augite. One dike, comprising a finegrained spessartite, exhibits distinct chilled selvages of aphanitic facies. The chromites in the fine-grained and augite-spessartites are significantly higher in Cr/ (Cr+Al) than those occurring rarely as inclusions in the phenocrystic hornblendes in the hornblende spessartite, although both are similar in Mg/ (Mg+Fe), Fe2O3, and TiO2. The phenocrystic hornblendes are titaniferous pargasite with high Mg/ (Mg+Fe), and differ in their higher octahedral Al from the groundmass hornblendes including those in the fine-grained spessartite. The crystallization sequence in the phenocrystic hornblende-bearing spessartites is Al-rich chromite, phenocrystic hornblende, and plagioclase without pyroxene, suggesting a high water content in the magma and the start of the crystallization at relatively high pressures. The finegrained spessartite from which the porphyritic spessartites have been derived by fractionation of dominant mafic minerals, has the high Mg-value and Cr content equivalent to those in primitive, undifferentiated basalts, although still andesitic in SiO2 content. Chemically similar magnesian andesites, although uncommon, found in some orogenic calc-alkalic suites may represent a magma composition in equilibrium with mantle peridotite under the condition of high water pressures.  相似文献   

8.
The mineralogy and petrochemistry of the garnet-amphibolites from the highgrade part of the Abukuma metamorphic belt have been studied, using five analyses of rocks, five of hornblendes, three of garnets and one analysis of cummingtonite, Garnetiferous amphibolites are rich in Fe, whereas non-garnetiferous ones are rich in Mg, especially in cummingtonite-amphibolite. The chemical composition of hornblendes associated with garnet is pargasitic and rich in FeO and poor in CaO, but that of non-garnetiferous rocks is rich in MgO. The garnets are rich in almandine molecule. Mg/Mg + Fe2+ ratios of both hornblendes and garnets correspond with those of the host rocks. The development of garnet in the Adirondack metabasites belonging to the upper almandine-amphibolite and granulite facies is observed in Mg-rich rocks as well as in Fe-rich rocks, in which both garnet and hornblende are rich in Mg respectively. However, under the conditions of the andalusite-sillimanite type metamorphism as shown in the Abukuma Plateau, Fe-rich garnet occurs in Fe-rich basic rocks, but cummingtonite occurs in Mg-rich ones instead of Mg-rich garnet. Finally, the problem of polymetamorphism is discussed. The cummingtonite-amphibolite may be the product of polymetamorphism, and Mg-rich garnet which had been present previously was decomposed to cummingtonite and plagioclase by the subsequent regional metamorphism of andalusite-sillimanite type.  相似文献   

9.
This paper attempts to illustrate the chemical variations of metamorphic hornblendes regarding host rocks and prograde variations. Changes related to bulk chemistry (orthoamphibolites) mainly concern Si, Al, Mg, Fetot and Ca. The Mg, Fe2+ and Fe3+ contents of hornblendes are, however, not strictly related to host rook compositions and Mg enrichments are correlated with increasing Fe3+ contents in the amphiboles. Thus, variations of oxygen fugacity may control the Mg contents of the Ca amphiboles studied but this does not show clear relations with the prograde metamorphism. The most sensitive but irregular variation related to the metamorphic conditions is the prograde enrichment of the alkalis into the A vacant position and an increase of the (Na+K)tot/Na+K+Ca ratios of the amphiboles. Increasing Ti and AlIV contents as well as decreasing AlVI concentrations are also, but much less evidently, related to increasing T and P. A variation trend from tschermakitic to edenitic hornblendes may be drawn using Shido's end members calculation; this tendency and the relative deficiency of AlVI contents in the low-grade members suggests that the amphiboles studied were subjected to conditions of a low-pressure metamorphism type. Such a conclusion is in agreement with the occurrence of andalusite-cordierite/sillimanite-cordierite associations in the metapelitic rocks, and the absence of Fe-rich garnet and epidote from the orthoamphibolites of the amphibolite facies at Aracena. Comparisons with Ca amphiboles from other metamorphic areas show, in agreement with various authors, that Abukuma hornblendes are similar to those encountered in high-grade thermal aureoles and tonalitic intrusives but different from the hornblendes of Barrovian metamorphism types.  相似文献   

10.
Diffusion of 40Ar in hornblende   总被引:8,自引:0,他引:8  
Measured radiogenic 40Ar loss from two compositionally contrasting hornblendes following isothermal-hydrothermal treatment have provided model diffusion coefficients in the temperature range of 750° C to 900° C. Eight experiments using a hornblende (77–600) with a Mg/(Mg +Fe) ratio of 0.72 yield a linear array on an Arrhenius plot with a slope corresponding to an activation energy of 66.1 kcal-mol–1 and a frequency factor of 0.061 cm2-sec–1, assuming spherical geometry for the mineral aggregate. Five experiments undertaken on a hornblende (M Mhb-1) with a Mg/(Mg+Fe) ratio of 0.36 show similar behavior to the Mgrich sample, suggesting that the diffusivity of Ar in hornblendes is not sensitive to the Mg/Fe ratio.These data are consistent with kinetic information obtained from a geological experiment using the thermal effect of a granitoid intrusion. Together these data yield an activation energy of 64.1±1.7 kcal-mol–1 and a frequency factor of 0.024± 0.011 0.053 cm2-sec–1. For a hornblende with an effective diffusion radius of 80 m, these diffusion parameters predict closure temperatures between 578° C and 490° C for cooling rates in the range 500 to 5° C-Ma–1.  相似文献   

11.
Calcic schists in the andalusite-type regional metamorphic terrainin the Panamint Mountains, California, contain the low-varianceassemblage quartz+epidote+muscovite+biotite+calcic amphibole+chlorite+plagioclase+spheneat low grade. Near the sillimanite isograd, chlorite in thisassemblage is replaced by garnet. The low variance in many calcicschists allows the determination of the nature of the reactionthat resulted in the coexistence of garnet+hornblende. A graphicalanalysis of the mineral assemblages shows that the reactioncan not be of the form biotite+epidote+chlorite+plagioclase+quartz=garnet+hornblende+muscovite+sphene+H2Obecause garnet+chlorite never coexisted during metamorphismand the chlorite-bearing and garnet-bearing phase volumes donot overlap. The compositions of the minerals show that withincreasing grade amphibole changed from actinolite to pargasitichornblende with no apparent miscibility gap, the partitioningof Fe and Mg between chlorite and hornblende changed from KD(Mg/Fe, chl&amp) < 1 to KD > 1, the partitioning betweenbiotite and hornblende changed from KD (Mg/Fe, bio/amp) <1 in chlorite-zone samples to KD > 1 in garnet + hornblende-zonesamples, and the transition to the garnet-bearing assemblageoccurred when the composition of plagioclase was between An55and An80. Both the graphical analysis and an analytical analysisof the compositions of the minerals using simplified componentsderived from the natural mineral compositions indicate thatat the garnet+hornblende isograd the composition of hornblendewas colinear with that of plagioclase and biotite, as projectedfrom quartz, epidote, muscovite, and H2O. During progressivemetamorphism, chlorite+biotite+epidote+quartz continuously brokedown to form hornblende+muscovite+sphene until the degeneracywas reached. At that point, tie lines from hornblende couldextend to garnet without allowing garnet to coexist with chlorite.Thus, the garnet+hornblende isograd was established throughcontinuous reactions within the chlorite-grade assemblage ratherthan through a discontinuous reaction. In this type of isograd,the low-grade diagnostic assemblage occurs only in Mg-rich rocks;whereas the high-grade assemblage occurs only in Fe-rich rocks.This relation accounts for the restricted occurrence of garnet+hornblendeassemblage in low-pressure terrains. In Barrovian terrains,garnet+chlorite commonly occurs, and the first appearana ofgarnet+hornblende can simply result from the continuous shiftof the garnet+chlorite tie line to Mg-rich compositions.  相似文献   

12.
Contents of major and most trace elements of granitoids in three intrusions associated with the Cretaceous Independence volcanic complex, Montana, correlate well with SiO2. Major-element contents in granitoids in each intrusion are accurately modeled as mixtures of minimum melts and phenocryst assemblages (presumably restite). Restite assemblages are hypersthene+augite+plagioclase, hornblende+plagioclase, and biotite+plagioclase+quartz. Residues of melting are granulite or amphibolite. Melts in two of the bodies were LREE-enriched but unfractionated in MREE and HREE. REE patterns are consistent with residues dominated by pyroxene or amphibole and feldspar. Initial 207Pb/204Pb and 206Pb/204Pb of granitoids define a line interpreted as a secondary isochron established during crustal homogenization 3.3 Ga ago. The relatively low of source rocks (8.25) suggests that they did not spend long in U-rich environments. Source regions had variable trace element patterns; Th/Pb and U/Pb were correlated, Rb/Sr and Sm/Nd moderately well correlated, but Rb/Sr and U/Pb were decoupled. This is consistent with poor correlation of Rb, Sr and Ba with SiO2 in some granitoids and may suggest that minor phases that concentrate these elements were inhomogeneously distributed in source regions. The source probably consisted of LREE-rich, Rb-poor metamorphic rocks. Archean amphibolites, exposed in the Beartooth Mountains, are similar to the postulated source materials. They contain plagioclase, hornblende, minor quartz, biotite, and muscovite, and have low Rb/Sr and high LREE/HREE. Certain trace-element characteristics of the granitoids indicate that the deep crust in this part of Montana may be dominated by metamorphosed mafic-intermediate lavas that formed on the sea-floor. Metapelites, intercalated with amphibolites at the surface, were rare in granitoid source regions. This buried supracrustal pile was isotopically homogenized 3.3 Ga ago. Although some material melted 2.7 Ga ago to form granites that dominate the exposed basement, enough remained fertile that heating by mantle-derived magmas 85–90 Ma ago produced the granitic rocks at Independence.  相似文献   

13.
《Applied Geochemistry》1988,3(5):499-516
“Stratabound” disseminated pyritic Au ore bodies were produced by reactions between wall rocks and through-flowing fluids in Mesozoic epigenetic Au quartz vein systems in the Sierra Nevada metamorphic belt. Equilibrium relations among Fe-bearing carbonate and sulfide minerals were critical in determining which rock types were likely to host disseminated mineralization along portions of discordant veins. The compositions of metasomatic carbonates in hydrothermally altered wall rocks at Alleghany, California, U.S.A., were larely predetermined by the relative proportions of Fe, Mg and Ca in the unaltered wall rocks. Thus, coexisting solid solutions in the magnesite-siderite and dolomite-ankerite series from a variety of different wall rocks yield an empirical phase diagram for a large part of the Ca CO3MgCO3FeCO3 system at the temperature of metasomatism (325 ± 50°C). Because Fe,Mg-silicates were unstable in alteration zones adjacent to the veins, wall rock Fe was partitioned between carbonates and sulfides. Pyritization and disseminated Au mineralization occur in a variety of igneous and metasedimentary wall rocks in which the initial molar Fe/(Fe + Mg) ≧ 0.5. In altered wall rocks with initial molar Fe/(Fe + Mg) ≦ 0.5, Fe was incorporated almost entirely within Mg-rich carbonates (XFeCO3 ≦ 0.6 in magnesite-siderite solutions). It is proposed that the CO2-rich vein fluid responsible for the alteration and mineralization was partially buffered with respect to H2S/CO2/H2 ratios by equilibrium between pyrite and Mg0.4Fe0.6CO3 (+graphite?) as it traversed and altered intermediate volcanic and sedimentary rocks. This fluid then locally reacted with lower Fe/(Fe + Mg) rocks to form Fe-bearing dolomite + magnesite assemblages, and reacted with higher Fe/(Fe + Mg) rocks to form ankerite + pyrite assemblages. Gold precipitated from saturated solutions of bisulfide complexes partly in response to fluid desulfidation and reduction caused by the pyritization reactions. In terranes dominated by intermediate metavolcanic and metasedimentary rocks, favorable host rocks for this type of mineralization need not have high Fe contents, but do require high Fe/(Fe + Mg) ratios. They may include felsic volcanic and plutonic rocks, Fe-rich tholeiitic differentiates, banded Fe formations, and a variety of siliceous and argillaceous sedimentary rocks. Rocks which tend not to be heavily sulfidized because they have low initial Fe/(Fe + Mg) ratios include ultramafic and mafic igneous rocks, and some argillaceous sedimentary rocks. Exploration guidelines based on these principles may be useful elsewhere in the Sierra Nevada and in other comparable heterogeneous metamorphic terranes, if modified to reflect the dominant buffering rock types in a given fluid flow path. Carbonate-sulfide equilibria are capable of approximately buffering the carbonate-sulfide ratios of CO2-rich vein fluids (fCO2≧ 102.8 at 325°C, 200MPa or 2000 bar). The Alleghany fluid (fCO2 ≈ 103.2, or ∼ 10 mol % CO2) had a molar CO2/H2S ratio of approximately 103, assuming graphite saturation. At lower CO2 fugacities, Fe-bearing silicates entered the buffering assemblages. Carbonatization reactions could potentially de-sulfidize some wall rocks, releasing S (and associated metals?) to the fluid. This would be most likely to occur in pyrite-bearing mafic and ultramafic rocks and some argillites.  相似文献   

14.
Abstract Compositions of actinolite, hornblende and cummingtonite, together with pyroxene and plagioclase, are studied in basic intrusions in the Dalradian of north-east Scotland, and the Glen Scaddle complex in the West Moine. Amphibolitization is due to influx of water from the country rocks. Pyroxene compositions are found to have adjusted to the regional metamorphic environment. Owing to the difficulty of diffusion of Al and Si, calcic amphiboles are zoned and commonly contain quartz blebs. Discontinuities in zoning give rise to actinolite-hornblende pairs. Compared with north-east Scotland, disequilibrium is less strong in the Glen Scaddle area: in the latter, plagioclase compositions have been greatly changed, Na partition between hornblende and plagioclase is close to equilibrium, the maximum Al content of hornblende is lower and zoning patterns are more consistent. The Fe/Mg ratio in calcic amphiboles varies with Al content, while approaching equilibrium partition with other minerals. Both zoning patterns and Fe/Mg partition with cummingtonite suggest that Fe/Mg of the calcic amphiboles increases more strongly with increasing (Alvi+Fe3+) than can be explained simply by substitution of Al,Fe3+ for Mg on M2. Model reactions for amphibole formation are constructed. Cummingtonite formed at lower chemical potential of CaO than actinolite: Ca was exchanged for Mg,Fe between orthopyroxene-derived and clinopyroxene-derived local systems. Both cummingtonite and actinolite were formed because of kinetic constraints, as intermediate reaction products: actinolite-hornblende pairs represent disequilibrium. This work suggests that many occurrences of actinolite with hornblende, where the minerals are zoned, may also be due to diffusion kinetics.  相似文献   

15.
Amphibole-bearing, Late Archean (2.73–2.68 Ga) granitoids of the southern Superior Province are examined to constrain processes of crustal development. The investigated plutons, which range from tonalite and diorite to monzodiorite, monzonite, and syenite, share textural, mineralogical and geochemical attributes suggesting a common origin as juvenile magmas. Despite variation in modal mineralogy, the plutons are geochemically characterized by normative quartz, high Al2O3 (> 15 wt%), Na-rich fractionation trends (mol Na2O/K2O >2), low to moderate Rb (generally<100 ppm), moderate to high Sr (200–1500 ppm), enriched light rare earth elements (LREE) (CeN generally 10–150), fractionated REE (CeN/YbN 8–30), Eu anomaly (Eu/Eu*) 1, and decreasing REE with increasing SiO2. The plutons all contain amphibole-rich, mafic-ultramafic rocks which occur as enclaves and igneous layers and as intrusive units which exhibit textures indicative of contemporaneous mafic and felsic magmatism. Mafic mineral assemblages include: hornblende + biotite in tonalites; augite + biotite ± orthopyroxene ± pargasitic hornblende or hornblende+biotite in dioritic to monzodioritic rocks; and aegirine-augite ± silicic edenite ± biotite in syenite to alkali granite. Discrete plagioclase and microcline grains are present in most of the suites, however, some of the syenitic rocks are hypersolvus granitoids and contain only perthite. Mafic-ultramafic rocks have REE and Y contents indicative of their formation as amphibole-rich cumulates from the associated granitoids. Some cumulate rocks have skeletal amphibole with XMg(Mg/(Mg+ Fe2+)) indicative of crystallization from more primitive liquids than the host granitoids. Geochemical variation in the granitoid suites is compatible with fractionation of amphibole together with subordinate plagioclase and, in some cases, mixing of fractionated and primitive magmas. Mafic to ultramafic units with magnesium-rich cumulus phases and primitive granitoids (mol MgO/ (MgO+0.9 FeOTOTAL) from 0.60 to 0.70 and CT >150 ppm) are comagmatic with the evolved granitoids and indicate that the suites are mantle-derived. Isotopic studies of Archean monzodioritic rocks have shown LREE enrichment and initial 143Nd/144Nd ratios indicating derivation from mantle sources enriched in large ion lithophile elements (LILE) shortly before melting. Mineral assemblages record lower PH2O with increased alkali contents of the suites. This evidence, in conjunction with experimental studies, suggests that increased alkali contents may reflect decreased PH2O during mantle melting. These features indicate that 2.73 Ga tonalitic rocks are derived from more hydrous mantle sources than 2.68 Ga syenitic rocks, and that the spectrum of late Archean juvenile granitoid rocks is broader than previously recognized. Comparison with Phanerozoic and recent plutonic suites suggests that these Archean suites are subduction related.  相似文献   

16.
Anna Hietanen 《Lithos》1973,6(3):261-264
Electron microprobe analyses of green hornblende and coexisting cummingtonite from garnet amphibolite show identical Fe/Mg ratios ( = 0.9). Cummingtonite is iron-magnesium silicate with very little calcium and aluminum and practically no alkalies. In contrast, the hornblende has 1.5 tetrahedral Al, 0.9 octahedral Al and a considerable amount of Ca and alkalies. Comparison with the hornblendes from the Sierra Nevada shows a higher relative amount of tschemakite molecule in the hornblendes from Idaho where pressures during the recrystallization were higher.  相似文献   

17.
The effects of sub-blocking temperature metamorphism on the K/Ar system in hornblende, as revealed by 40Ar/39Ar release spectra, have been studied in a polymetamorphic knocker from the Franciscan Complex (FC), California. A primary amphibolite assemblage of horn-blende +rutile+epidote+apatite±garnet±sphene is variably overprinted by a blueschist facies assemblage of blue amphibole +lawsonite+chlorite+white mica+pumpellyite±sphene. The secondary assemblage formed at a temperature of 370° C, below that at which rapid Ar diffusion is expected in hornblende. Hornblendes from three, variably-altered samples of garnet amphibolite yield total gas ages of 147 to 161 Ma, but the corresponding plateau ages of 163.0±2.8, 160.6±2.2, and 161.8±2.2 Ma are identical within error. Hornblende separates with lower total gas ages come from more highly overprinted rocks, have excess K compared to that expected on the basis of electron probe analyses, and exhibit anomalously high K/Ca ratios in the low-temperature fractions of their incremental heating spectra. The reduced total gas ages result from the presence of thin (2 m) sheets of younger white mica in hornblendes from the moderately and highly altered amphibolites. The secondary micas are difficult to detect because of their small size and low abundance (2%), but because their K content is 50 to 100 times that of the host hornblende, they contribute significantly to the K and Ar budgets of the sample. The mica intergrowths are not removed by normal sample preparation, but because the mica inclusions degas at lower temperatures than hornblende during vacuum extraction, incremental heating analyses can provide precise cooling ages for the hornblendes as well as useful estimates of the age of the mica inclusions. The hornblende separate from the most altered sample contained 20±10% younger blue amphibole replacing hornblende, but its plateau age was not significantly affected. This is consistent with a replacement process in which K and Ar loss from the hornblende are coupled, leaving the K/Ar system undisturbed in relict primary grains. The K and Ar budgets of the sample are not strongly affected by the blue amphibole because of its very low K content. Because partial replacement of primary amphibole by high-K phyllosilicates occurs in many geological environments, effects like those described here could be widespread.  相似文献   

18.
The ophiolites of New Caledonia are composed of ultramafics overlain by mafic rocks, all of which were affected by low P metamorphism. The mafic rocks studied (gabbroic cumulates, and basaltic flows and dikes) from Montagne des Sources are similar to recent mid-ocean ridge rocks. They are olivine-normative with Mg/Mg+Fe2+ ratios ranging from 0.69 in lavas to 0.90 in gabbroic cumulates and show tholeiitic fractionation trends such as a negative correlation of Ti and V with the Mg/Fe ratio. The lavas have a flat REE pattern with a slight depletion of light REE and a La/Yb ratio <2. The dikes have three different types of REE patterns. The first type is nearly parallel to that of lavas, the second one is enriched in LREE (La/Yb4) and the third type with the lowest REE contents and a distinct LREE depletion is similar to that of cumulitic pyroxene gabbro. The variations in chemical compositions of the mafic rocks can be accounted for by the dynamic partial melting process of Langmuir et al. (1977). In agreement with structural and tectonic observations, the geochemical data suggests that the ophiolites were formed during the spreading of a mid-ocean ridge with a spreading half-rate of about 1 cm/ year.  相似文献   

19.
Isothermal, hydrothermal experiments were performed on two compositionally contrasting hornblendes from amphibolites in order to examine Ar diffusion behavior in metamorphic hornblendes. Ten experiments on sample RF were performed at temperatures of 750°C, 800°C, and 850°C and pressures of 1 kbar using measured grain radii of 158, 101, and 34 m. Eight experiments on sample 118576 were performed under the same conditions using measured grain radii of 145, 77, and 25 m. Minor (<5%) alteration was observed in high temperature runs. Diffusion coefficients were calculated from measured radiogenic 40Ar loss following treatment assuming a spherical geometry for the mineral aggregate. Diffusivities calculated for different grain sizes vary by up to an order of magnitude for a given temperature indicating that the effective diffusion radius was less than the measured grain radius. Diffusivities for RF and 118576 calculated for grain radii of 101 and 145 m, respectively, form a linear array on an Arrhenius diagram with slopes indicating activation energies of 60 kcal/mol. No correlation between Mg number (100 Mg/(Mg+Fe)) and activation energy was observed. Diffusivities calculated for these experiments are higher than previously reported results from similar experiments performed on hornblendes. A comparison of results for 34 m splits from these two studies indicates higher apparent diffusivities (by a factor of 5), which probably result from observed phyllosilicate inter-growths (chlorite) and/or exsolution lamellae that partition the metamorphic hornblendes into smaller subdomains. Diffusivities calculated for experiments performed on 65 m and 34 m splits of 40Ar/39Ar standard MMhb-1 at 800°C and 1 kbar are consistent with a previously reported activation energy of 65 kcal/mol. Arrhenius parameters which emerge from the empirical model of Fortier and Giletti (1989) agree with experimental results to within analytical uncertainty. Although results of these experiments support previously reported estimates of the activation energy of 40Ar in hornblende (60 kcal/mol), phyllosilicate intergrowths and/or microstructures such as exsolution lamellae within the two metamorphic hornblendes result in extremely small diffusion domains, which may lead to lower Ar retentivities and lower closure temperatures. The effective diffusion dimension for 40Ar in hornblende is not likely to be defined by dislocations but rather by some larger structure within the crystal. TEM and SEM studies may provide some insight into the effective diffusion dimension for 40Ar in amphiboles, thereby enabling better estimates of closure temperatures and more precise temperature-time reconstructions.  相似文献   

20.
Feldspathic hornblende granulites from Doubtful Sound, New Zealand with the assemblage plagioclase+hornblende+clinopyroxene+orthopy-roxene +oxide+apatite are criss-crossed by a network of garnetiferous anorthosite veins and pegmatites. The feldspathic gneiss in contact with anorthosite has a reaction zone containing the assemblage plagioclase +garnet+clinopyroxene+quartz+rutile+apatite. The garnet forms distinctive coronas around clinopyroxene. The origin of these rocks is discussed in the light of mineral and whole rock chemical analyses and published experimental work.It is thought that under conditions leading up to 750 °C, 8 kb load pressure and 5 kb H2O pressure, partial melting occured in feldspathic hornblende granulites. The melt migrated into extensional fractures and eventually crystallised as anorthosite pegmatites and veins. The gneisses adjacent to the pegmatites from which the melt was extracted changed composition slightly, by the loss of H2O and Na2O, so that plagioclase reacted simultaneously with hornblende, orthopyroxene, and oxide to form garnet, clinopyroxene, quartz and rutile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号