首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solubility controls on vanadium (V) in groundwater were studied due to concerns over possible harmful health effects of ingesting V in drinking water. Vanadium concentrations in the northeastern San Joaquin Valley ranged from <3 μg/L to 70 μg/L with a median of 21 μg/L. Concentrations of V were highest in samples collected from oxic groundwater (49% > 25 μg/L) and lowest in samples collected from anoxic groundwater (70% < 0.8 μg/L). In oxic groundwater, speciation modeling (SM) using PHREEQC predicted that V exists primarily as the oxyanion H2VO4. Adsorption/desorption reactions with mineral surfaces and associated oxide coatings were indicated as the primary solubility control of V5+ oxyanions in groundwater. Environmental data showed that V concentrations in oxic groundwater generally increased with increasing groundwater pH. However, data from adsorption isotherm experiments indicated that small variations in pH (7.4–8.2) were not likely as an important a factor as the inherent adsorption capacity of oxide assemblages coating the surface of mineral grains. In suboxic groundwater, accurate SM modeling was difficult since Eh measurements of source water were not measured in this study. Vanadium concentrations in suboxic groundwater decreased with increasing pH indicating that V may exist as an oxycationic species [e.g. V(OH)3+]. Vanadium may complex with dissolved inorganic and organic ligands under suboxic conditions, which could alter the adsorption behavior of V in groundwater. Speciation modeling did not predict the existence of V-inorganic ligand complexes and organic ligands were not collected as part of this study. More work is needed to determine processes governing V solubility under suboxic groundwater conditions. Under anoxic groundwater conditions, SM predicts that aqueous V exists as the uncharged V(OH)3 molecule. However, exceedingly low V concentrations show that V is sparingly soluble in anoxic conditions. Results indicated that V may be precipitating as V3+- or mixed V3+/Fe3+-oxides in anoxic groundwater, which is consistent with results of a previous study. The fact that V appears insoluble in anoxic (Fe reducing) redox conditions indicates that the behavior of V is different than arsenic (As) in aquifer systems where the reductive dissolution of Fe-oxides with As adsorbed to the surface is a well-documented mechanism for increasing As concentrations in groundwater. This hypothesis is supported by the relation of V to As concentrations in oxic versus anoxic redox conditions.Sequential extraction procedures (SEP) applied to aquifer material showed that the greatest amount of V was recovered by the nitric acid (HNO3) extract (37–71%), followed by the oxalate-ascorbic acid extract (19–60%) and the oxalate extract (3–14%). These results indicate that V was not associated with the solid phase as an easily exchangeable fraction. Although the total amount of V recovered was greatest for the HNO3 extract that targets V adsorbed to sorption sites of crystalline Al, Fe and Mn oxides, the greatest V saturation of sorption sites appeared to occur on the amorphous and poorly crystalline oxide solid phases targeted by the oxalate and oxalate-ascorbic acid extracts respectively. Adsorption isotherm experiments showed no correlation between V sorption and any of the fractions identified by the SEP. This lack of correlation indicates the application of an SEP alone is not adequate to estimate the sorption characteristics of V in an aquifer system.  相似文献   

2.
Development of unconventional shale gas wells can generate significant quantities of drilling waste, including trace metal-rich black shale from the lateral portion of the drillhole. We carried out sequential extractions on 15 samples of dry-drilled cuttings and core material from the gas-producing Middle Devonian Marcellus Shale and surrounding units to identify the host phases and evaluate the mobility of selected trace elements during cuttings disposal. Maximum whole rock concentrations of uranium (U), arsenic (As), and barium (Ba) were 47, 90, and 3333 mg kg−1, respectively. Sequential chemical extractions suggest that although silicate minerals are the primary host for U, as much as 20% can be present in carbonate minerals. Up to 74% of the Ba in shale was extracted from exchangeable sites in the shale, while As is primarily associated with organic matter and sulfide minerals that could be mobilized by oxidation. For comparison, U and As concentrations were also measured in 43 produced water samples returned from Marcellus Shale gas wells. Low U concentrations in produced water (<0.084–3.26 μg L−1) are consistent with low-oxygen conditions in the wellbore, in which U would be in its reduced, immobile form. Arsenic was below detection in all produced water samples, which is also consistent with reducing conditions in the wellbore minimizing oxidation of As-bearing sulfide minerals.Geochemical modeling to determine mobility under surface storage and disposal conditions indicates that oxidation and/or dissolution of U-bearing minerals in drill cuttings would likely be followed by immobilization of U in secondary minerals such as schoepite, uranophane, and soddyite, or uraninite as conditions become more reducing. Oxidative dissolution of arsenic containing sulfides could release soluble As in arsenate form under oxic acidic conditions. The degree to which the As is subsequently immobilized depends on the redox conditions along the landfill flow path. The results suggest that proper management of drill cuttings can minimize mobilization of these metals by monitoring and controlling Eh, pH and dissolved constituents in landfill leachates.  相似文献   

3.
《Applied Geochemistry》2005,20(10):1831-1847
The groundwater contribution into Green Lake and Black Lake (Vescovo Lakes Group), two cover collapse sinkholes in Pontina Plain (Central Italy), was estimated using water chemistry and a 222Rn budget. These data can constrain the interactions between sinkholes and deep seated fluid circulation, with a special focus on the possibility of the bedrock karst aquifer feeding the lake. The Rn budget accounted for all quantifiable surface and subsurface input and output fluxes including the flux across the sediment–water interface. The total value of groundwater discharge into Green Lake and Black Lake (∼540 ± 160 L s−1) obtained from the Rn budget is lower than, but comparable with historical data on the springs group discharge estimated in the same period of the year (800 ± 90 L s−1). Besides being an indirect test for the reliability of the Rn-budget “tool”, it confirms that both Green and Black Lake are effectively springs and not simply “water filled” sinkholes. New data on the water chemistry and the groundwater fluxes into the sinkhole area of Vescovo Lakes allows the assessment of the mechanism responsible for sinkhole formation in Pontina Plain and suggests the necessity of monitoring the changes of physical and chemical parameters of groundwater below the plain in order to mitigate the associated risk.  相似文献   

4.
《Applied Geochemistry》2005,20(1):55-68
In 49 samples of groundwater, sampled in Muzaffargarh District of south-western Punjab, central Pakistan, concentrations of As exceeded the World Health Organisation provisional guideline value, and United States Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL), of 10 μg L−1 in 58% of samples and reached up to 906 μg L−1. In this semi-arid region canal irrigation has lead to widespread water-logging, and evaporative concentration of salts has the potential to raise As concentrations in shallow groundwater well above 10 μg L−1. In fact, in rural areas, concentrations stay below 25 μg L−1 because As in the oxic shallow groundwater, and in recharging water, is sorbed to aquifer sediments. In some urban areas, however, shallow groundwater is found to contain elevated levels of As. The spatial distribution of As-rich shallow groundwater indicates either direct contamination with industrial or agricultural chemicals, or some other anthropogenic influence. Geochemical evidence suggests that pollutant organics from unconfined sewage and other sources drives reduction of hydrous ferric oxide (HFO) releasing sorbed As to shallow groundwater. The situation is slightly less clear for seven wells sampled which tap deeper groundwater, all of which were found with >50 μg L−1 As. Here As concentrations seem to increase with depth and differing geochemical signatures are seen, suggesting that As concentrations in older groundwater may be governed by different processes. Other data on parameters of potential concern in drinking water are discussed briefly at the end of the paper.  相似文献   

5.
A conceptual groundwater flow model was developed for the crystalline aquifers in southeastern part of the Eastern region, Ghana. The objective was to determine approximate levels of groundwater recharge, estimate aquifer hydraulic parameters, and then test various scenarios of groundwater extraction under the current conditions of recharge. A steady state groundwater flow model has been calibrated against measured water levels of 19 wells in the area. The resulting recharge is estimated to range from 8.97 × 10?5 m/d to 7.14 × 10?4 m/d resulting in a basin wide average recharge of about 9.6% of total annual precipitation, which results in a basin wide quantitative recharge of about 2.4 million m3/d in the area. This compares to recharge estimated from the chloride mass balance of 7.6% of precipitation determined in this study. The general groundwater flow in the area has also been determined to conform to the general northeast–southwest structural grain of the country. The implication is that the general hydrogeology is controlled by post genetic structural entities imposed on the rocks to create ingresses for sufficient groundwater storage and transport. Calibrated aquifer hydraulic conductivities range between 0.99 m/d and over 19.4 m/d. There is a significant contribution of groundwater discharge to stream flow in the study area. Increasing groundwater extraction will have an effect on stream flow. This study finds that the current groundwater extraction levels represent only 0.17% of the annual recharge from precipitation, and that groundwater can sustain future increased groundwater demands from population growth and industrialization.  相似文献   

6.
《Applied Geochemistry》2006,21(7):1169-1183
The Cornia Plain alluvial aquifer, in Tuscany, is exploited intensely to meet the demand for domestic, irrigation and industrial water supplies. The B concentration of groundwater, however, is often above the European limit of 1 mg L−1, with the result that exploitation of these water resources requires careful management. Boron and Sr isotopes have been used as part of a study on the origin and distribution of B dissolved in groundwater, and indirectly as a contribution to the development of appropriate water management strategies.The geochemistry of the Cornia Plain groundwater changes from a HCO3 facies in the inland areas to a Cl facies along the coastal belt, where seawater intrusion takes place. The B concentration of groundwater increases towards the coastal areas, while the 11B/10B ratio decreases. This indicates that there is an increasing interaction between dissolved B and the sediments forming the aquifer matrix, whose B content is in the order of 100 mg kg−1. Adsorption–desorption exchanges take place between water and the sediment fine fraction rich in clay minerals, with a net release of B from the matrix into the groundwater, and a consequent δ11B shift from positive to negative values. The aquifer matrix sediments therefore seem to be the major source of B dissolved in the groundwater.The groundwater–matrix interactions triggered by the ionic strength increase caused by seawater intrusion can also be detected in the Ca–Na ion exchanges. Dissolved Sr follows a trend similar to that of Ca, while the 87Sr/86Sr ratio is equal to that of the exchangeable Sr of the aquifer matrix and therefore does not change significantly.These results have helped to define a new strategy for groundwater exploitation, with the final objective of reducing B concentration in the water extracted from the aquifer.  相似文献   

7.
The Korba aquifer on the east coast of Cape Bon has been overexploited since the 1960s with a resultant reversal of the hydraulic gradient and a degradation of the quality due to seawater intrusion. In 2008 the authorities introduced integrated water resources planning based on a managed aquifer recharge with treated wastewater. Water quality monitoring was implemented in order to determine the different system components and trace the effectiveness of the artificial recharge. Groundwater samples taken from recharge control piezometers and surrounding farm wells were analyzed for their chemical contents, for their B isotopes, a proven tracer of groundwater salinization and domestic sewage, and their carbamazepine content, an anti-epileptic known to pass through wastewater treatment and so recognized as a pertinent tracer of wastewater contamination. The system equilibrium was permanently disturbed by the different temporal dynamics of continuous processes such as cation exchange, and by threshold processes linked to oxidation–reduction conditions. The B isotopic compositions significantly shifted back-and-forth due to mixing with end-members of various origin. Under the variable contribution of meteoric recharge, the Plio-Quaternary groundwater (δ11B of 35–40.6‰, a mean B concentration of 30 μmol/L, no carbamazepine, n = 7) was subject to seawater intrusion that induced a high δ11B level (δ11B of 41.5–48.0‰, a mean B concentration of 36 μmol/L, and n = 8). Fresh groundwater (δ11B of 19.89‰, B concentration of 2.8 μmol/L, no carbamazepine) was detected close to the recharge site and may represent the deep Miocene pole which feeds the upper Plio-Quaternary aquifer. The managed recharge water (δ11B of 10.67–13.8‰, n = 3) was brackish and of poor quality with a carbamazepine content showing a large short term variability with an average daily level of 328 ± 61 ng/L. A few piezometers in the vicinity of the recharge site gradually acquired a B isotopic composition close to the wastewater signature and showed an increasing carbamazepine content (from 20 to 910 ng/L). The combination of B isotopic signatures with B and carbamazepine contents is a useful tool to assess sources and mixing of treated wastewaters in groundwaters. Effluent quality needs to be greatly improved before injection to prevent further degradation of groundwater quality.  相似文献   

8.
Between March 2008 and August 2009, 65,445 tonnes of ∼75 mol% CO2 gas were injected in a depleted natural gas reservoir approximately 2000 m below surface at the Otway project site in Victoria, Australia. Groundwater flow and composition were monitored biannually in two overlying aquifers between June 2006 and March 2011, spanning the pre-, syn- and post-injection periods. The shallower (∼0–100 m), unconfined, porous and karstic aquifer of the Port Campbell Limestone and the deeper (∼600–900 m), confined and porous aquifer of the Dilwyn Formation contain valuable fresh to brackish water resources. Groundwater levels in either aquifer have not been affected by the drilling, pumping and injection activities that were taking place, or by the rainfall increase during the project. In terms of groundwater composition, the Port Campbell Limestone groundwater is brackish (electrical conductivity = 801–3900 μS cm−1), cool (temperature = 12.9–22.5 °C), and near-neutral (pH = 6.62–7.45), whilst the Dilwyn Aquifer groundwater is fresher (electrical conductivity = 505–1473 μS cm−1), warmer (temperature = 42.5–48.5 °C), and more alkaline (pH = 7.43–9.35). Carbonate dissolution, evapotranspiration and cation exchange control the composition of the groundwaters. Comparing the chemical and isotopic composition of the groundwaters collected before, during and after injection shows no statistically significant changes; even if they were statistically significant, they are mostly not consistent with those expected if CO2 addition had taken place. The monitoring program reveals no impact on the groundwater resources attributable to the C storage demonstration project.  相似文献   

9.
Transient Electromagnetic (TEM), known also as Time Domain Electromagnetic (TDEM) and Magnetic Resonance Sounding (MRS) methods were applied jointly to investigate variations in lithology and groundwater salinity in the Nahal Hever South area (Dead Sea coast of Israel). The subsurface in this area is highly heterogeneous and composed of intercalated sand and clay layers over a salt formation, which is partly karstified. Groundwater is very saline, with a chloride concentration of 100–225 g/l. TEM is known as an efficient tool for investigating electrically conductive targets like saline water, but it is sensitive to both the salinity of groundwater and the porosity of rocks. MRS, however, is sensitive primarily to groundwater volume, but it also allows delineating of lithological variations in water-saturated formations. MRS is much less sensitive to variations in groundwater salinity in comparison with TEM. We show that MRS enables us to resolve the fundamental uncertainty in TEM interpretation caused by the equivalence between groundwater resistivity and lithology. Combining TEM and MRS, we found that the sandy Dead Sea aquifer filled with Dead Sea brine is characterized by a bulk resistivity of ρx > 0.4 Ωm, whereas zones with silt and clay in the subsurface are characterized by a bulk resistivity of ρx < 0.4 Ωm. These observations are confirmed by calibration of the TEM method performed near 18 boreholes.  相似文献   

10.
A detail investigation was carried out to improve the current knowledge of groundwater salinisation processes in coastal aquifers using hydrochemical and isotopic parameters. Data of major ions for 40 wells located in the Salalah plain aquifer, Sultanate of Oman, were collected during pre-monsoon 2004 and analysed. The groundwater changes along the general flow path towards the coast from fresh (EC < 1500 μS/cm), brackish (EC: 1500–3000 μS/cm) and saline (EC > 3000 μS/cm). Results of inverse modeling simulations using PHREEQC show that dissolution of halite may be the main source of Cl and Na in the study area. Ionic delta calculation indicates that the depletion of Na and K and enrichment of Ca and Mg in groundwater were probably attributed to reverse ion exchange reactions. During a sampling campaign conducted in October 2015, 11 groundwater samples were collected for Cl, Br and isotopic analysis (2H/18O). Molar Cl/Br ratios in fresh groundwater were higher than those of seawater, indicating the impact of halite dissolution on the groundwater quality. For saline groundwater, these ratios were less than those of seawater, showing the influence of anthropogenic input from agriculture on the same. Relatively depleted isotopic signature of all groundwater samples show that the monsoon precipitation is the main source of groundwater recharge in the study area.  相似文献   

11.
《Applied Geochemistry》2006,21(1):83-97
Groundwater in the Gwelup groundwater management area in Perth, Western Australia has been enriched in As due to the exposure of pyritic sediments caused by reduced rainfall, increased groundwater abstraction for irrigation and water supply, and prolonged dewatering carried out during urban construction activities. Groundwater near the watertable in a 25–60 m thick unconfined sandy aquifer has become acidic and has affected shallow wells used for garden irrigation. Arsenic concentrations up to 7000 μg/L were measured in shallow groundwater, triggering concerns about possible health effects if residents were to use water from household wells as a drinking water source. Deep production wells used for public water supply are not affected by acidity, but trends of progressively increasing concentrations of Fe, SO4 and Ca over a 30-a period indicate that pyrite oxidation products extend to the base of the unconfined aquifer. Falling Eh values are triggering the release of As from the reduction of Fe(III) oxyhydroxide minerals near the base of the unconfined aquifer, increasing the risk that groundwater used as a drinking water source will also become contaminated with high concentrations of As.  相似文献   

12.
13.
River water infiltration into an unconfined porous aquifer (∼73% gravels, ∼12% sands, ∼15% silts and clays) in the Petrignano d’Assisi plain, central Italy, was traced combining isotopic techniques (222Rn) with hydrochemical and hydrogeologic techniques in order to characterize the system under study. The 222Rn gave information about the river water residence times within the aquifer and hydrochemical data, in a two-component mixing model, which allowed estimating the extent of mixing between surface waters and groundwater in wells at increasing distances from the river. The mixing measured in the well closer to the riverbank indicated a higher contribution of river water (up to 99%) during the groundwater recession phase and a moderate contribution (up to 64%) during the recharge phase. A model describing 222Rn concentrations in groundwater as the result of both parent/daughter nuclide equilibrium and mixing process (222Rn mixing/saturation model) was used to describe observed Rn concentrations and mixing index trends with the aim of evaluating water mean infiltration velocities along the transect. The stream bank infiltration velocities obtained by the model ranged from 1 m day−1 during groundwater recharge periods, when river water infiltration is lower, to 39 m day−1 during recession phases, when river water infiltration is larger.  相似文献   

14.
《Applied Geochemistry》2006,21(10):1799-1817
Release of acid drainage from mine-waste disposal areas is a problem of international scale. Contaminated surface water, derived from mine wastes, orginates both as direct surface runoff and, indirectly, as subsurface groundwater flow. At Camp Lake, a small Canadian Shield lake that is in northern Manitoba and is ice-covered 6 months of the year, direct and indirect release of drainage from an adjacent sulfide-rich tailings impoundment has severely affected the quality of the lake water. Concentrations of the products from sulfide oxidation are extremely high in the pore waters of the tailings impoundment. Groundwater and surface water derived from the impoundment discharge into a semi-isolated shallow bay in Camp Lake. The incorporation of this aqueous effluent has altered the composition of the lake water, which in turn has modified the physical limnology of the lake. Geochemical profiles of the water column indicate that, despite its shallow depth (6 m), the bay is stratified throughout the year. The greatest accumulation of dissolved metals and SO4 is in the lower portion of the water column, with concentrations up to 8500 mg L−1 Fe, 20,000 mg L−1 SO4, 30 mg L−1 Zn, 100 mg L−1 Al, and elevated concentrations of Cu, Cd, Pb and Ni. Meromictic conditions and very high solute concentrations are limited to the bay. Outside the bay, solute concentrations are lower and some stratification of the water column exists. Identification of locations and composition of groundwater discharge relative to lake bathymetry is a fundamental aspect of understanding chemical evolution and physical stability of mine-impacted lakes.  相似文献   

15.
Measurements of low-level concentrations of halogenated volatile organic compounds (VOCs) and estimates of groundwater age interpreted from 3H/3He and SF6 data have led to an improved understanding of groundwater flow, water sources, and transit times in a karstic, fractured, carbonate-rock aquifer at the Leetown Science Center (LSC), West Virginia. The sum of the concentrations of a set of 16 predominant halogenated VOCs (TDVOC) determined by gas chromatography with electron-capture detector (GC–ECD) exceeded that possible for air–water equilibrium in 34 of the 47 samples (median TDVOC of 24,800 pg kg−1), indicating that nearly all the water sampled in the vicinity of the LSC has been affected by addition of halogenated VOCs from non-atmospheric source(s). Leakage from a landfill that was closed and sealed nearly 20 a prior to sampling was recognized and traced to areas east of the LSC using low-level detection of tetrachloroethene (PCE), methyl chloride (MeCl), methyl chloroform (MC), dichlorodifluoromethane (CFC-12), and cis-1,2-dichloroethene (cis-1,2-DCE). Chloroform (CHLF) was the predominant VOC in water from domestic wells surrounding the LSC, and was elevated in groundwater in and near the Fish Health Laboratory at the LSC, where a leak of chlorinated water occurred prior to 2006. The low-level concentrations of halogenated VOCs did not exceed human or aquatic-life health criteria, and were useful in providing an awareness of the intrinsic susceptibility of the fractured karstic groundwater system at the LSC to non-atmospheric anthropogenic inputs. The 3H/3He groundwater ages of spring discharge from the carbonate rocks showed transient behavior, with ages averaging about 2 a in 2004 following a wet climatic period (2003–2004), and ages in the range of 4–7 a in periods of more average precipitation (2008–2009). The SF6 and CFC-12 data indicate older water (model ages of 10s of years or more) in the low-permeability shale of the Martinsburg Formation located to the west of the LSC. A two-a record of specific conductance, water temperature, and discharge recorded at 30-min intervals demonstrated an approximately 3-month lag in discharge at Gray Spring. The low groundwater ages of waters from the carbonate rocks support rapid advective transport of contaminants from the LSC vicinity, yet the nearly ubiquitous occurrence of low-level concentrations of halogenated VOCs at the LSC suggests the presence of long-term persistent sources, such as seepage from the closed and sealed landfill, infiltration of VOCs that may persist locally in the epikarst, exchange with low-permeability zones in fractured rock, and upward leakage of older water that may contain elevated concentrations of halogenated VOCs from earlier land use activities.  相似文献   

16.
《Applied Geochemistry》2005,20(2):295-316
A confined aquifer system has developed in argillaceous marine and freshwater sediments of Pliocene–Holocene age in the northeastern Osaka Basin (NEOB) in central Japan. The shallow groundwater (<100 m) in the system is recharged in a northern hilly to mountainous area with dominantly Ca-HCO3 type water, which changes as it flows toward the SW to Mg-HCO3 type and then to Na-HCO3 type water. Comparison of the chemical and Sr isotopic compositions of the groundwater with those of the bulk and exchangeable components of the underground sediments indicates that elements leached from the sediments contribute negligibly to the NEOB aquifer system. Moreover, model calculations show that contributions of paleo-seawater in the deep horizon and of river water at the surface are not major factors of chemical change of the groundwater. Instead, the zonal pattern of the HCO3-dominant groundwater is caused by the loss of Ca2+ from the water as it is exchanged for Mg2+ in clays, followed by loss of Mg + Ca as they are exchanged for Na + K in clays between the Ca-HCO3 type recharge water and the exchangeable cations in the clay layers, which were initially enriched in Na+. Part of this process was reproduced in a chromatographic experiment in which Na type water with high 87Sr/86Sr was obtained from Mg type water with low 87Sr/86Sr by passing it through marine clay packed in a column. The flux of recharge water into the confined aquifer system according to this chromatographic model is estimated to be 0.99 mm/day, which is compatible with the average recharge flux to unconfined groundwater in Japan (1 mm/day).  相似文献   

17.
《Applied Geochemistry》2005,20(3):639-659
The oxidation of sulfide minerals from mine wastes results in the release of oxidation products to groundwater and surface water. The abandoned high-sulfide Camp tailings impoundment at Sherridon, Manitoba, wherein the tailings have undergone oxidation for more than 70 a, was investigated by hydrogeological, geochemical, and mineralogical techniques. Mineralogical analysis indicates that the unoxidized tailings contain nearly equal proportions of pyrite and pyrrhotite, which make up to 60 wt% of the total tailings, and which are accompanied by minor amounts of chalcopyrite and sphalerite, and minute amounts of galena and arsenopyrite. Extensive oxidation in the upper 50 cm of the tailings has resulted in extremely high concentrations of dissolved SO4 and metals and As in the tailings pore water (pH < 1, 129,000 mg L−1 Fe, 280,000 mg L−1 SO4, 55,000 mg L−1 Zn, 7200 mg L−1 Al, 1600 mg L−1 Cu, 260 mg L−1 Mn, 110 mg L−1 Co, 97 mg L−1 Cd, 40 mg L−1 As, 15 mg L−1 Ni, 8 mg L−1 Pb, and 3 mg L−1 Cr). The acid released from sulfide oxidation has been extensive enough to deplete carbonate minerals to 6 m depth and to partly deplete Al-silicate minerals to a 1 m depth. Below 1 m, sulfide oxidation has resulted in the formation of a continuous hardpan layer that is >1 m thick. Geochemical modeling and mineralogical analysis indicate that the hardpan layer consists of secondary melanterite, rozenite, gypsum, jarosite, and goethite. The minerals indicated mainly control the dissolved concentrations of SO4, Fe, Ca and K. The highest concentrations of dissolved metals are observed directly above and within the massive hardpan layer. Near the water table at a depth of 4 m, most metals and SO4 sharply decline in concentration. Although dissolved concentrations of metals and SO4 decrease below the water table, these concentrations remain elevated throughout the tailings, with up to 60,600 mg L−1 Fe and 91,600 mg L−1 SO4 observed in the deeper groundwater. During precipitation events, surface seeps develop along the flanks of the impoundment and discharge pore water with a geochemical composition that is similar to the composition of water directly above the hardpan. These results suggest that shallow lateral flow of water from a transient perched water table is resulting in higher contaminant loadings than would be predicted if it were assumed that discharge is derived solely from the deeper primary water table. The abundance of residual sulfide minerals, the depletion of aluminosilicate minerals in the upper meter of the tailings and the presence of a significant mass of residual sulfide minerals in this zone after 70 a of oxidation suggest that sulfide oxidation will continue to release acid, metals, and SO4 to the environment for decades to centuries.  相似文献   

18.
《Applied Geochemistry》2005,20(2):241-254
The hydrochemistry in the largest polder of the Oder River, named Oderbruch, is affected by long-term infiltration of water from the Oder into the aquifer below an alluvial loamy top layer of the polder. These exceptional hydraulic conditions are a result of dyke constructions which were built more than 250 a ago. The objective of this investigation is a better understanding and a characterisation of the contact zone between the anaerobic groundwater and the surface water of a vast drainage system. Induced by changing water levels, different hydraulic conditions occur, which strongly influence the hydrochemistry of the shallow aquifer and therefore the natural sink function of the polder area.Field investigations with a hydrochemical and hydraulic characterisation of selected drainage ditch locations show considerable chemical interactions between groundwater and surface water. Depending on the drainage ditch type, which is defined by the hydraulic situation, the redox processes create a chemical gradient combined with a distinct enrichment of Fe and Mn. The source of the high amounts of Fe and Mn in the groundwater are reduced Fe- and Mn-hydroxides from the aquifer sediments.Under exfiltrating conditions interrupted by dry phases, more than 50 g kg−1 Fe and 0.25 g kg−1 Mn have accumulated in the drainage ditch floor sediments since the construction of the drainage ditches 35 a ago. The results show a very effective fixation of trace metals in the drainage ditch sediments under these conditions. Under permanent exfiltration conditions, the enrichment of Fe and Mn is relatively low. The maximum Fe content was 4 g kg−1 sediment and the Mn content reached only 0.4 g kg−1. This is less than 10% of the mobile Fe2+ and less than 1% of the Mn2+ which migrates from the aquifer into the surface water.  相似文献   

19.
Tooeleite, nominally Fe63+(As3+O3)4(SO4)(OH)4·4H2O, is a relatively uncommon mineral of some acid-mine drainage systems. Yet, if it does occur, it does so in large quantities, indicating that some specific conditions favor the formation of this mineral in the system Fe-As-S-O-H. In this contribution, we report the thermodynamic properties of synthetic tooeleite. The sample was characterized by powder X-ray diffraction, scanning electron microscopy, extended X-ray absorption fine-structure spectroscopy, and Mössbauer spectroscopy. These methods confirmed that the sample is pure, devoid of amorphous impurities of iron oxides, and that the oxidation state of arsenic is 3+. Using acid-solution calorimetry, the enthalpy of formation of this mineral from the elements at the standard conditions was determined as −6196.6 ± 8.6 kJ mol−1. The entropy of tooeleite, calculated from low-temperature heat capacity data measured by relaxation calorimetry, is 899.0 ± 10.8 J mol−1 K−1. The calculated standard Gibbs free energy of formation is −5396.3 ± 9.3 kJ mol−1. The log Ksp value, calculated for the reaction Fe6(AsO3)4(SO4)(OH)4·4H2O + 16H+ = 6Fe3+ + 4H3AsO3 + SO42− + 8H2O, is −17.25 ± 1.80. Tooeleite has stability field only at very high activities of aqueous sulfate and arsenate. As such, it does not appear to be a good candidate for arsenic immobilization at polluted sites. An inspection of speciation diagrams shows that the predominance field of Fe3+ and As3+ overlap only at strongly basic conditions. The formation of tooeleite, therefore, requires strictly selective oxidation of Fe2+ to Fe3+ and, at the same time, firm conservation of the trivalent oxidation state of arsenic. Such conditions can be realized only by biological systems (microorganisms) which can selectively oxidize one redox-active element but leave the other ones untouched. Hence, tooeleite is the first example of an “obligatory” biomineral under the conditions prevailing at or near the Earth's surface because its formation under these conditions necessitates the action of microorganisms.  相似文献   

20.
《Applied Geochemistry》2004,19(8):1255-1293
In order to investigate the mechanism of As release to anoxic ground water in alluvial aquifers, the authors sampled ground waters from 3 piezometer nests, 79 shallow (<45 m) wells, and 6 deep (>80 m) wells, in an area 750 m by 450 m, just north of Barasat, near Kolkata (Calcutta), in southern West Bengal. High concentrations of As (200–1180 μg L−1) are accompanied by high concentrations of Fe (3–13.7 mg L−1) and PO4 (1–6.5 mg L−1). Ground water that is rich in Mn (1–5.3 mg L−1) contains <50 μg L−1 of As. The composition of shallow ground water varies at the 100-m scale laterally and the metre-scale vertically, with vertical gradients in As concentration reaching 200 μg L−1 m−1. The As is supplied by reductive dissolution of FeOOH and release of the sorbed As to solution. The process is driven by natural organic matter in peaty strata both within the aquifer sands and in the overlying confining unit. In well waters, thermo-tolerant coliforms, a proxy for faecal contamination, are not present in high numbers (<10 cfu/100 ml in 85% of wells) showing that faecally-derived organic matter does not enter the aquifer, does not drive reduction of FeOOH, and so does not release As to ground water.Arsenic concentrations are high (≫50 μg L−1) where reduction of FeOOH is complete and its entire load of sorbed As is released to solution, at which point the aquifer sediments become grey in colour as FeOOH vanishes. Where reduction is incomplete, the sediments are brown in colour and resorption of As to residual FeOOH keeps As concentrations below 10 μg L−1 in the presence of dissolved Fe. Sorbed As released by reduction of Mn oxides does not increase As in ground water because the As resorbs to FeOOH. High concentrations of As are common in alluvial aquifers of the Bengal Basin arise because Himalayan erosion supplies immature sediments, with low surface-loadings of FeOOH on mineral grains, to a depositional environment that is rich in organic mater so that complete reduction of FeOOH is common.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号