首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methane gas production potential from its hydrates, which are solid clathrates, with methane gas entrapped inside the water molecules, is primarily dependent on permeability characteristics of their bearing sediments. Moreover, the dissociation of gas hydrates, which results in a multi-phase fluid migration through these sediments, becomes mandatory to determine the relative permeability of both gaseous and aqueous fluids corresponding to different hydrate saturations. However, in this context, the major challenges are: (1) obtaining undisturbed in-situ samples bearing gas hydrates; and (2) maintenance of the thermodynamic conditions to counter hydrate dissociation. One of the ways to overcome this situation is synthesis of gas hydrates in laboratory conditions, followed by conducting permeability tests on them. In addition, empirical relationships that relate permeability of the gas hydrate bearing sediments to pore-structure characteristics (viz., pore size distribution and interconnectivity) can also be conceived. With this in view, a comprehensive review of the literature dealing with different techniques adopted by researchers for synthesis of gas hydrates, permeability tests conducted on the sediments bearing them, and analytical and empirical correlations employed for determination of permeability of these sediments was conducted and a brief account of the same is presented in this article.  相似文献   

2.
ABSTRACT

A model test program for studying soil stratum failure and pore pressure variation during tetrahydrofuran (THF) hydrate dissociation considering the effects of heating and drainage conditions is presented in this paper. The temperature and pore pressures are recorded during heating. Test results show that the THF hydrate would dissociate to be liquid and then gas when heating. Once pore pressure generated by the flow of released gas/water exceeded the strength of over layer, the layered fractures and soil-gas/water mixture outburst would occur. The high heating temperature and low permeability of over layer both cause excess pore pressure generation and more serious stratum failures.  相似文献   

3.
According to the preliminary geological data of gas hydrate bearing-sediments (GHBS) at site GMGS3-W19 in the third Chinese expedition to drill gas hydrates in 2015, a production model using three different recovery pressures was established to assess the production feasibility from both production potential and geomechanical response. The simulation results show that for this special Class 1 deposit, it is a little hard for gas production rate to reach the commercial extraction rate because the degree of hydrate dissociation is limited due to the low reservoir permeability and the permeable burdens. However, the free gas accumulating in the lower part of the GHBS can significantly increase gas-to-water ratio. It also generates many secondary hydrates in the GHBS at the same time. Decreasing the well pressure can be beneficial to gas recovery, but the recovery increase is not obvious. In term of geomechanical response of the reservoir during the gas recovery, the permeable burdens are conducive to reduction of the sediment deformation, though they don't facilitate the gas recovery rate. In addition, significant stress concentration is observed in the upper and lower edges of GHBS around the borehole during depressurization because of high pressure gradient, and the greater the well pressure drop, the more obvious the phenomenon. Yield failures and sand production easily take place in the edges. Therefore, in order to achieve the purpose of safe, efficient and long-term gas production, a balance between the production pressure and reservoir stability should be reached at the hydrate site. The production pressure difference and sand production must be carefully controlled and the high stress concentration zones need strengthening or sand control treatment during gas production. Besides, the sensitivity analyses show that the hydrate saturation heterogeneity can affect the production potential and geomechanical response to some extent, especially the water extraction rate and the effective stress distribution and evolution. Increasing GHBS and its underlying free gas formation permeabilities can enhance the gas production potential, but it probably introduces geomechanical risks to gas recovery operations.  相似文献   

4.
Small amounts of free gas in interstitial sediment pores are known to significantly lower compressional (P-) wave velocity (Vp). This effect, combined with moderately elevated Vp from the presence of gas hydrates, is usually thought to be the cause for the often observed strong negative reflection coefficients of bottom simulating reflections (BSRs) at the base of gas hydrate stability (BGHS). At several locations however, weak BSRs have been observed, which are difficult to reconcile with a presence of gas in sediment pores. We here present a rock physics model for weak BSRs on the Hikurangi Margin east of New Zealand. Thin sections of a fine-grained mudstone sample from a submarine outcrop in the vicinity of a weak BSR show macroscopic porosity in the form of fractures and intrafossil macropores. We apply the Kuster-Toksöz theory to predict seismic velocities for a rock with water-saturated interstitial micropores and gas or hydrates in macroscopic pore space simulating fractures or compliant macropores. We match field observations of a weak BSR with a reflection coefficient of −0.016 with two end-member models; (1) rocks with gas hydrate-filled voids with a concentration of <4% of bulk sediment overlying water-filled voids, or (2) fully gas-saturated voids at a concentration of <2% beneath water-filled voids. A natural system is likely to consist of a combination of these end-members and of macroporosity filled with a mixture of water and gas or hydrate. Our results suggest weak BSRs may be caused by gas hydrate systems in fractures and macropores of fine-grained sediments with fully water-saturated interstitial pore space. Gas may be supplied into the macroscopic pore space by diffusion-driven short-range migration of methane generated within the gas hydrate stability field or, our favoured model based on additional geologic considerations, long-range advective migration from deeper sources along fractures.  相似文献   

5.
ABSTRACT

The purpose of this paper is to analyze the stability of submarine slope during the natural gas hydrate dissociation. A model is deduced to calculate the excess pore fluid pressure. In addition, a new method is proposed to define and calculate the factor of safety (FoS) of the submarine slope. Case study is also performed, results of which show that dissociation of hydrates would decrease the stability of submarine slope. If the cohesion of the hydrate-bearing sediments is small, the submarine slope would become unstable because of the shear failure. If the cohesion of the hydrate-bearing sediments is large enough, the tensile failure would happen in the hydrate-bearing sediments and the excess pore pressure may explode the submarine slope. Under the drained condition, the submarine slope may remain stable because the buildup of excess pore fluid pressure could not take place. Moreover, FoS would be underestimated by the assumption that natural gas hydrates dissociate in the horizontally confined space, but would be overestimated by only taking into account of the base of the natural gas hydrate-bearing sediments. The compressibility factor of natural gas should also be considered because treating natural gas as ideal gas would underestimate the stability of submarine slope.  相似文献   

6.
7.
从勘探技术和资源评价的角度综述了甲烷水合物生成和聚集的重要特征, 如地震反射剖面、测井曲线资料、地球化学特点等以及对未知区的地质勘探和选区评价 .甲烷水合物在地震剖面上主要表现为BSR(似海底反射)、振幅变形(空白反射)、速度倒置、速度-振幅结构(VAMPS)等,大规模的甲烷水合物聚集可以通过高电阻率(>100欧姆.米)声波速度、低体积密度等号数进行直接判读.此项研究实例表明,沉积物中典型甲烷水合物具有低渗透性和高毛细管孔隙压力特点,地层孔隙水矿化度也呈异常值,并具有各自独特的地质特征.现场计算巨型甲烷水合物储层中甲烷资源量的方法可分为:测井资料计算法公式为:SW=(abRw/φm.Rt)1/n;地震资料计算法公式为:ρp=(1-φ)ρm+(1-s)φρw+sφρh、VH=λ.φ.S.对全球甲烷水合物总资源量预测的统计达20×1015m3以上.甲烷水合物形成需满足高压、低温条件,要求海水深度>300 m.因此,甲烷水合物的分布严格地局限于两极地区和陆坡以下的深水地区,并具有3种聚集类型:1.永久性冻土带;2.浅水环境;3.深水环境.深海钻探计划(DSDP)和大洋钻探计划(ODP)已在下述10个地区发现大规模的甲烷水合物聚集,他们是:秘鲁、哥斯达黎加、危地马拉、墨西哥、美国东南大西洋海域、美国西部太平洋海域、日本海域的两个地区、阿拉斯加和墨西哥湾地区.在较浅水沉积物岩心样中发现甲烷水合物的地区,包括黑海、里海、加拿大北部、美国加里福尼亚岸外、墨西哥湾北部、鄂霍茨克海的两个地区.在垂向上,甲烷水合物主要分布于海底以下2 000 m以浅的沉积层中.最新统计表明又主要分布于二个深度区间:200~450 m和700~920 m,前者是由ODP995~997站位发现的;后者在加拿大麦肯齐河三角洲马立克2L-38号井中897~922 m处发现.中国海域已发现多处甲烷水合物可能赋存地区,包括东沙群岛南部、西沙海槽北部、西沙群岛南部以及东海海域地区.姚伯初报道了南海地区9处地震剖面速度异常值的发现,海水深度为420~3 920 m,海洋地质研究所则在东海海域解释了典型BSR反射的剖面,具有速度异常、弱振幅、空白反射、与下伏反射波组具不整合接触关系(VAMPS)等,大致圈定了它们的分布范围,表明在中国海域寻找甲烷水合物具有光明的前景.  相似文献   

8.
The present study is the first to directly address the issue of gas hydrates offshore West Greenland, where numerous occurrences of shallow hydrocarbons have been documented in the vicinity of Disko Bugt (Bay). Furthermore, decomposing gas hydrate has been implied to explain seabed features in this climate-sensitive area. The study is based on archive data and new (2011, 2012) shallow seismic and sediment core data. Archive seismic records crossing an elongated depression (20×35 km large, 575 m deep) on the inner shelf west of Disko Bugt (Bay) show a bottom simulating reflector (BSR) within faulted Mesozoic strata, consistent with the occurrence of gas hydrates. Moreover, the more recently acquired shallow seismic data reveal gas/fluid-related features in the overlying sediments, and geochemical data point to methane migration from a deeper-lying petroleum system. By contrast, hydrocarbon signatures within faulted Mesozoic strata below the strait known as the Vaigat can be inferred on archive seismics, but no BSR was visible. New seismic data provide evidence of various gas/fluid-releasing features in the overlying sediments. Flares were detected by the echo-sounder in July 2012, and cores contained ikaite and showed gas-releasing cracks and bubbles, all pointing to ongoing methane seepage in the strait. Observed seabed mounds also sustain gas seepages. For areas where crystalline bedrock is covered only by Pleistocene–Holocene deposits, methane was found only in the Egedesminde Dyb (Trough). There was a strong increase in methane concentration with depth, but no free gas. This is likely due to the formation of gas hydrate and the limited thickness of the sediment infill. Seabed depressions off Ilulissat Isfjord (Icefjord) previously inferred to express ongoing gas release from decomposing gas hydrate show no evidence of gas seepage, and are more likely a result of neo-tectonism.  相似文献   

9.
Permeability characterisation of low permeability, clay-rich gas sandstones is part of production forecasting and reservoir management. The physically based Kozeny (1927) equation linking permeability with porosity and pore size is derived for a porous medium with a homogeneous pore size, whereas the pore sizes in tight sandstones can range from nm to μm. Nuclear magnetic resonance (NMR) transverse relaxation was used to estimate a pore size distribution for 63 samples of Rotliegend sandstone. The surface relaxation parameter required to relate NMR to pore size is estimated by combination of NMR and mercury injection data. To estimate which pores control permeability to gas, gas permeability was calculated for each pore size increment by using the Kozeny equation. Permeability to brine is modelled by assuming a bound water layer on the mineral pore interface. The measured brine permeabilities are lower than predicted based on bound water alone for these illite rich samples. Based on the fibrous textures of illite as visible in electron microscopy we speculate that these may contribute to a lower brine permeability.  相似文献   

10.
In this study we provide evidence for methane hydrates in the Taranaki Basin, occurring a considerable distance from New Zealand's convergent margins, where they are well documented. We describe and reconstruct a unique example of gas migration and leakage at the edge of the continental shelf, linking shallow gas hydrate occurrence to a deeper petroleum system. The Taranaki Basin is a well investigated petroleum province with numerous fields producing oil and gas. Industry standard seismic reflection data show amplitude anomalies that are here interpreted as discontinuous BSRs, locally mimicking the channelized sea-floor and pinching out up-slope. Strong reverse polarity anomalies indicate the presence of gas pockets and gas-charged sediments. PetroMod™ petroleum systems modelling predicts that the gas is sourced from elevated microbial gas generation in the thick slope sediment succession with additional migration of thermogenic gas from buried Cretaceous petroleum source rocks. Cretaceous–Paleogene extensional faults underneath the present-day slope are interpreted to provide pathways for focussed gas migration and leakage, which may explain two dry petroleum wells drilled at the Taranaki shelf margin. PetroMod™ modelling predicts concentrated gas hydrate formation on the Taranaki continental slope consistent with the anomalies observed in the seismic data. We propose that a semi-continuous hydrate layer is present in the down-dip wall of incised canyons. Canyon incision is interpreted to cause the base of gas hydrate stability to bulge downward and thereby trap gas migrating up-slope in permeable beds due to the permeability decrease caused by hydrate formation in the pore space. Elsewhere, hydrate occurrence is likely patchy and may be controlled by focussed leakage of thermogenic gas. The proposed presence of hydrates in slope sediments in Taranaki Basin likely affects the stability of the Taranaki shelf margin. While hydrate presence can be a drilling hazard for oil and gas exploration, the proposed presence of gas hydrates opens up a new frontier for exploration of hydrates as an energy source.  相似文献   

11.
Understanding the pore structure characteristics of tight gas sandstones is the primary purpose of reservoir evaluation and efforts to characterize tight gas transport and storage mechanisms and their controls. Due to the various pore types and multi-scale pore sizes in tight reservoirs, it is essential to combine several techniques to characterize pore structure. Scanning electron microscopy (SEM), nitrogen gas adsorption (N2GA), mercury intrusion porosimetry (MIP) and nuclear magnetic resonance (NMR) were conducted on tight sandstones from the Lower Cretaceous Shahezi Formation in the northern Songliao Basin to investigate pore structure characteristics systematically (e.g., type and size distribution of pores) and to establish how significant porosity and permeability are for different pore types. The studied tight sandstones are composed of intergranular pores, dissolution pores and intercrystalline pores. The integration of N2GA and NMR can be used as an efficient method to uncover full pore size distribution (PSD) of tight sandstones, with pore sizes ranging from 2 nm to dozens of microns. The full PSDs indicate that the pore sizes of tight sandstones are primarily distributed within 1.0 μm. With an increase in porosity and permeability, pores with larger sizes contribute more to porosity. Intercrystalline pores and intergranular/dissolution pores can be clearly distinguished on the basis of mercury intrusion and surface fractal. The relative contribution of intercrystalline pores to porosity ranges from 58.43% to 91.74% with an average of 79.74%. The intercrystalline pores are the primary contributor to pore space, whereas intergranular/dissolution pores make a considerably greater contribution to permeability. A specific quantity of intergranular/dissolution pores is the key to producing high porosity and permeability in tight sandstone reservoirs. The new two permeability estimation models show an applicable estimation of permeability with R2 values of 0.955 and 0.962 for models using Dmax (pore diameter corresponding to displacement pressure) and Df (pore diameter at inflection point), respectively. These results indicate that both Dmax and Df are key factors in determining permeability.  相似文献   

12.
We investigate gas hydrate formation processes in compressional, extensional and un-faulted settings on New Zealand's Hikurangi margin using seismic reflection data. The compressional setting is characterized by a prominent subduction wedge thrust fault that terminates beneath the base of gas hydrate stability, as determined from a bottom-simulating reflection (BSR). The thrust is surrounded by steeply dipping strata that cross the BSR at a high angle. Above the BSR, these strata are associated with a high velocity anomaly that is likely indicative of relatively concentrated, and broadly distributed, gas hydrates. The un-faulted setting—sedimentary infill of a slope basin on the landward side of a prominent thrust ridge—is characterized by a strong BSR, a thick underlying free gas zone, and short positive polarity reflection segments that extend upward from the BSR. We interpret the short reflection segments as the manifestation of gas hydrates within relatively coarse-grained sediments. The extensional setting is a localized, shallow response to flexural bending of strata within an anticline. Gas has accumulated beneath the BSR in the apex of folding. A high-velocity zone directly above the BSR is probably mostly lithologically-derived, and only partly related to gas hydrates. Although each setting shows evidence for focused gas migration into the gas hydrate stability zone, we interpret that the compressional tectonic setting is most likely to contain concentrated gas hydrates over a broad region. Indeed, it is the only setting associated with a deep-reaching fault, meaning it is the most likely of the three settings to have thermogenic gas contributing to hydrate formation. Our results highlight the importance of anisotropic permeability in layered sediments and the role this plays in directing sub-surface fluid flow, and ultimately in the distribution of gas hydrate. Each of the three settings we describe would warrant further investigation in any future consideration of gas hydrates as an energy resource on the Hikurangi margin.  相似文献   

13.
The coupling numerical model of wave interaction with porous medium is used to study waveinduced pore water pressure in high permeability seabed.In the model,the wave field solver is based on the two dimensional Reynolds-averaged Navier-Stokes(RANS) equations with a k-ε closure,and Forchheimer equations are adopted for flow within the porous media.By introducing a Velocity-Pressure Correction equation for the wave flow and porous flow,a highly efficient coupling between the two flows is implemented.The numerical tests are conducted to study the effects of seabed thickness,porosity,particle size and intrinsic permeability coefficient on regular wave and solitary wave-induced pore water pressure response.The results indicate that,as compared with regular wave-induced,solitary wave-induced pore water pressure has larger values and stronger action on seabed with different parameters.The results also clearly show the flow characteristics of pore water flow within seabed and water wave flow on seabed.The maximum pore water flow velocities within seabed under solitary wave action are higher than those under regular wave action.  相似文献   

14.
In western Canada gas hydrates have been thought to exist primarily in the Cascadia accretionary prism off southern Vancouver Island, British Columbia (BC). We present evidence for the existence of gas hydrate in folds and ridges of the Winona Basin up to 40 km seaward from the foot of the continental slope off northern Vancouver Island. The occurrence of a bottom-simulating reflector (BSR) observed in a number of vintage seismic reflection profiles is strongly correlated to faulted, and folded sedimentary ridges and buried folds. The observed tectonic structures of the Winona Basin are within the rapidly evolving Juan de Fuca - Cascadia - Queen Charlotte triple junction off BC. Re-processing of multi-channel data imaged mildly to strongly deformed sediments; the BSR is confined to sediments with stronger deformation. Changes in the amplitude character of sediment-reflections above and below the depth of the base of gas hydrate stability zone were also used as an indicator for the presence of gas hydrate. Additionally, regional amplitude and frequency reduction below some strong BSR occurrences may indicate free gas accumulations. Gas hydrate formation in the Winona Basin appears strongly constrained to folds and ridges and thus correlated to deeper-routed fluid-advection regimes. Methane production from in situ microbial activities as a source of gas to form gas hydrates, as proposed to be a major contributor for gas hydrates within the accretionary prism to the south, appears to be insufficient to produce the widespread gas hydrate occurrences in the Winona Basin. Potential reasons for the lack of sufficient in situ gas production may be that sedimentation rates are 5-100 times higher than those in the accretionary prism so that available organic carbon moves too quickly through the gas hydrate stability field. The confinement of BSRs to ridges and folds within the Winona Basin results in an areal extent of gas hydrate occurrences that is a factor of five less than what is expected from regional gas hydrate stability field mapping using water-depth (pressure) as the only controlling factor only.  相似文献   

15.
Abstract

Large reserves of natural gas hydrates exist, and the depressurization method has the greatest potential for gas hydrate reservoir recovery. Currently, the most commonly adopted depressurization simulation method is a constant bottom-hole pressure production scheme. This study proposes a new depressurization mode with decreasing bottom-hole pressure. The production characteristic was numerically investigated using this method. The results show the following: (1) As the depressurization exponent (n) decreases, the development effect improves, and production indexes including cumulative gas production/dissociation and gas-water ratio increase. However, the reservoir energy consumption is higher and the hydrate reformation is more severe. (2) Compared to the proposed depressurization mode, the hydrate production index of the constant bottom-hole pressure production (n?=?0) is better. However, the hydrate reservoir energy consumption is higher and the hydrate reformation is more severe using constant bottom-hole pressure production. (3) To achieve a balance between production and reservoir energy consumption during depressurization production, the bottom-hole pressure should be controlled by selecting a suitable depressurization exponent between nmin and nmax, which can be determined through numerical simulations.  相似文献   

16.
To confirm the seabed fluid flow at the Haima cold seeps, an integrated study of multi-beam and seismic data reveals the morphology and fate of four bubble plumes and investigates the detailed subsurface structure of the active seepage area. The shapes of bubble plumes are not constant and influenced by the northeastward bottom currents, but the water depth where these bubble plumes disappear (630–650 m below the sea level) (mbsl) is very close to the upper limit of the gas hydrate stability zone in the water column (620 m below the sea level), as calculated from the CTD data within the study area, supporting the “hydrate skin” hypothesis. Gas chimneys directly below the bottom simulating reflectors, found at most sites, are speculated as essential pathways for both thermogenic gas and biogenic gas migrating from deep formations to the gas hydrate stability zone. The fracture network on the top of the basement uplift may be heavily gas-charged, which accounts for the chimney with several kilometers in diameter (beneath Plumes B and C). The much smaller gas chimney (beneath Plume D) may stem from gas saturated localized strong permeability zone. High-resolution seismic profiles reveal pipe-like structures, characterized by stacked localized amplitude anomalies, just beneath all the plumes, which act as the fluid conduits conveying gas from the gas hydrate-bearing sediments to the seafloor, feeding the gas plumes. The differences between these pipe-like structures indicate the dynamic process of gas seepage, which may be controlled by the build-up and dissipation of pore pressure. The 3D seismic data show high saturated gas hydrates with high RMS amplitude tend to cluster on the periphery of the gas chimney. Understanding the fluid migration and hydrate accumulation pattern of the Haima cold seeps can aid in the further exploration and study on the dynamic gas hydrate system in the South China Sea.  相似文献   

17.
Natural fractures observed within the Lower Jurassic shales of the Cleveland Basin show evidence that pore pressure must have exceeded the lithostatic pressure in order to initiate horizontal fractures observed in cliff sections. Other field localities do not show horizontal fracturing, indicating lower pore pressures there. Deriving the burial history of the basin from outcrop, VR and heat-flow data gives values of sedimentation rates and periods of depositional hiatus which can be used to assess the porosity and pore pressure evolution within the shales. This gives us our estimate of overpressure caused by disequilibrium compaction alone, of 11 MPa, not sufficient to initiate horizontal fractures. However, as the thermal information shows us that temperatures were in excess of 95 °C, secondary overpressure mechanisms such as clay diagenesis and hydrocarbon generation occurred, contributing an extra 11 MPa of overpressure. The remaining 8.5 MPa of overpressure required to initiate horizontal fractures was caused by fluid expansion due to hydrocarbon generation and tectonic compression related to Alpine orogenic and Atlantic opening events. Where horizontal fractures are not present within the Lower Jurassic shales, overpressure was unable to build up as high due to proximity to the lateral draining of pressure within the Dogger Formation. The palaeopressure reconstruction techniques used within this study give a quick assessment of the pressure history of a basin and help to identify shales which may currently have enhanced permeability due to naturally-occurring hydraulic fractures.  相似文献   

18.
Free gas is ubiquitous at shallow sediment depths of the northern margin of the Gulf of Mexico. Gassy sediment patches are between 250 and 500 m in horizontal size. Often the gassy layers are within 100 m from the sea floor and are only a few meters thick. Both biogenic and thermogenic gas hydrates have been recovered. Stability values of temperature and pressure indicate that hydrates can exist in water depths less than 500 m. Gassy sediment geoacoustic parameter values are not well constrained because of a lack of concurrent measurements of acoustic properties and sediment gas content. For Gulf of Mexico gassy sediment, some reportedin situ values of sound speed are reduced by an order of magnitude below values for water saturated sediments. More commonly, sound speed is reduced from water saturated sediment values by only 15 to 50 percent.  相似文献   

19.
川西低渗高压气藏具有多层系的特点,层间距离一般在十至百米左右。为了提高气井产量与开采经济效益,鉴于气井加砂压裂后压井会严重伤害储层,影响压裂效果,采用压裂管柱直接作为生产管柱,研究形成了以FCY211及Y241封隔器不同组合的两层不动管柱分层压裂工艺。同时,在成熟的两层分压工艺基础上,结合投球选压工艺,研究形成了以“工具分层+投球选压”不动管柱三层分层的压裂工艺。现场应用实践表明,分层压裂极大地增加了单井的产能,取得了明显经济效益,对类似气藏的多层压裂与开采提供了有益参考。  相似文献   

20.
天然气水合物是一种高效清洁的新能源,分布广、规模大,势必成为未来的主流能源。在当前能源紧缺和环境问题日益突出的影响下,世界各国都对潜力巨大的天然气水合物产生了浓厚兴趣。文章对全球主要国家的天然气水合物研究进展进行阐述,并提出:对我国天然气水合物重点目标区加大研究力度;加大海域和陆域天然气水合物的资源调查力度,寻找更多可供试采的水合物矿区;与国际接轨,加强国际合作;考虑经济问题,以期实现低成本、高效率的开发模式;把环境安全放在突出位置,尽可能避免水合物开采带来的环境及地质灾害问题等建议。以期能为未来我国天然气水合物的勘查试采工作提供有益帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号