首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A periodically stratified elastic medium can be replaced by an equivalent homogeneous transverse isotropic medium in the long wavelength limit. The case of a homogeneous medium with equally spaced parallel interfaces along which there is imperfect bonding is a special instance of such a medium. Slowness surfaces are derived for all plane wave modes through the equivalent medium and reflection coefficients for a half-space of such a medium are found. The slowness surface for the SH mode is an ellipsoid. The exact solution for the reflection of SH-waves from a half-space with parallel slip interfaces is found following the matrix method of K. Gilbert applied to elastic waves. Explicit results are derived and in the long wavelength limit, shown to approach the results for waves in the equivalent homogeneous medium. Under certain conditions, a half-space of a medium with parallel slip interfaces has a reflection coefficient independent of the angle of incidence and thus acts like an acoustic reducing mirror. The method for the reflection of P- and SV-waves is fully outlined, and reflection coefficients are shown for a particular example. The solution requires finding the eigenvalues of a 4 × 4 transfer matrix, each eigenvalue being associated with a particular wave. At higher frequencies, unexpected eigenvalues are found corresponding to refracted waves for which shear and compressional parameters are completely coupled. The two eigenvalues corresponding to the transmitted wavefield give amplitude decay perpendicular to the stratification along with up- and downgoing phase propagation in some other direction. Much of this work was performed while the author was at the Department of Geophysics and Planetary Sciences, Tel-Aviv University, Ramat-Aviv, Israel. The author is grateful for illuminating discussions with K. Helbig and K. Gilbert.  相似文献   

2.
This study investigates the reflection and transmission of plane SH-waves in two semi-infinite anisotropic magnetoelastic media. The lower half-space is considered as initially stressed and inhomogeneous. The density of lower half-space is taken exponentially varying with depth. The solutions for half-spaces are obtained analytically. The expressions for reflection and transmission coefficient are obtained in the closed form subject to continuity conditions at the interfaces of anisotropic magnetoelastic half-spaces and the Snell’s law. It is found that these coefficients depend on the initial stress, inhomogeneity parameter, the magnetoelastic coupling parameter, and the angle at which wave crosses the magnetic field of the half-spaces. Numerical computations are performed for these coefficients for a specific model of two different anisotropic magnetoelastic half-spaces. The numerical results are illustrated by the graph of reflection and transmission coefficient versus the angle of incidence. In general, as the initial stress increases the reflection and transmission coefficient increases, the affect is more prominent for more than 10 GPa. Inhomogeneity in the density of the material also increases the reflection and transmission coefficient. The anisotropic magnetoelastic parameter and the angle at which the wave crosses the magnetic field for both the half-spaces have a quite significant effect on the reflection and transmission coefficient.  相似文献   

3.
The relationship between the maximum shear stress in a substrate solid and the elastic wave reflection coefficient from the interface between the substrate solid and an overlying solid half-space is investigated. Both substrate and overlying solid media are assumed to be initially isotropic and stress-free. Then as the substrate is subjected to horizontal confined stresses it becomes anisotropic. It is shown that longitudinal and shear wave reflection coefficients are related to the degree of stress induced anisotropy in the substrate medium. From this relation the confined stress level and the maximum shear stress generated on the vertical planes of the substrate are estimated. Authors in their previous investigation computed plane wave reflection coefficient in a biaxially compressed solid substrate immersed in a fluid. This paper reports for the first time how the maximum shear stress in a biaxially compressed substrate medium can be measured from the plane wave reflection coefficients when the overlying medium is also a solid half-space.  相似文献   

4.
Approximate dynamic-stiffness coefficients of a disk on the surface of a single layer on a half-space may be calculated using cone models. This concept is generalized to the case of a horizontally stratified site consisting of many layers on a homogeneous half-space. After constructing the so-called ‘backbone cone’ determining the radii of the disks at all interfaces, the dynamic-stiffness matrices of the layers (modelled as cone frustums) and the dynamic-stiffness coefficient of the underlying half-space (modelled as a cone) are assembled to that of the site. The dynamic-stiffness matrix of a layer is a complex-valued function of frequency because radiation of energy in the horizontal direction is considered. In this model of the layered half-space the properties of the cone reproduce themselves (cloning). The advantages of using cone models are also present for the layered half-space; in particular, no transformation to the wave-number domain is performed.  相似文献   

5.
Propagation in the plane of mirror symmetry of a monoclinic medium, with displacement normal to the plane, is the most general circumstance in anisotropic media for which pure shear-wave propagation can occur at all angles. Because the pure shear mode is uncoupled from the other two modes, its slowness surface in the plane is an ellipse. When the mirror symmetry plane is vertical the pure shear waves in this plane are SH waves and the elliptical SH sheet of the slowness surface is, in general, tilted with respect to the vertical axis. Consider a half-space of such a monoclinic medium, called medium M, overlain by a half-space of isotropic medium I with plane SH waves incident on medium M propagating in the vertical symmetry plane of M. Contrary to the appearance of a lack of symmetry about the vertical axis due to the tilt of the SH-wave slowness ellipse, the reflection and transmission coefficients are symmetrical functions of the angle of incidence, and further, there exists an isotropic medium E with uniquely determined density and shear speed which gives exactly the same reflection and transmission coefficients underlying medium J as does monoclinic medium M. This means that the underlying monoclinic medium M can be replaced by isotropic medium E without changing the reflection and transmission coefficients for all values of the angle of incidence. Thus no set of SH seismic experiments performed in the isotropic medium in the symmetry plane of the underlying half-space can reveal anything about the monoclinic anisotropy of that underlying half-space. Moreover, even when the underlying monoclinic half-space is stratified, there exists a stratified isotropic half-space that gives the identical reflection coefficient as the stratified monoclinic half-space for all angles of incidence and all frequencies.  相似文献   

6.
The unfolded cone model used for calculating the dynamic response of a disk on the surface of a soil layer resting on flexible rock for translational motion is extended to rotational motion. The method is analogous to that for a layer on rigid rock, the only modification being that the reflection coefficient – α replaces the coefficient of total reflection – 1. The modified value of – α, which, in general, is frequency-dependent, is determined by considering one-dimensional wave propagation along the cone for the first impingement at the layer–rock interface. The low- and high-frequency limits of – α for the rotational motion are the same as for translational motion. As these limits do not depend on frequency, the dynamic analysis using cones can be performed in the familiar time domain. The transfer function constructed by addressing the reflections–refractions at the soil–rock interface and the reflections at the free surface in the unfolded cone model is highly accurate, resulting in the same accuracy of the dynamic response of a disk on a layer resting on flexible rock as that on a homogeneous half-space modelled with a cone.  相似文献   

7.
先略述莱斯默比拟法的形成;再由半空间理论等效为质弹体系,得出辐射阻尼比、刚度及参振土质量,并论述两体系的结合;最后经实测、分析和使用,考虑土体非匀质性折减阻尼比以作修正,使其更为实用。这有助于消除在我国长期认为阻尼比大而不安全、不便使用的疑虑,以便推动半空间理论在我国的实用化。  相似文献   

8.
Formulas are derived for two-dimensional problems relating stresses across a plane boundary that divides infinite homogeneous half-spaces being in welded contact. The calculations are made for both anti-plane and in-plane stress cases. The results obtained for the former case that involve only two stress components are useful in the analysis of fracture of strike-slip type. For the in-plane case, the relations that link stresses in one half-space with the corresponding homogeneous stresses in the other half-space are presented for arbitrarily oriented shear and normal stresses and for the center of compression (dilatation). The above relations provide a compete set of expressions that, among other things, make it possible to analyze stresses involved in faulting of deep-slip type in an inhomogeneous medium. The quantitative preliminary evaluations based on the results obtained demonstrate the great role of low rigidity media in fracture processes of all kinds within the Earth’s crust.  相似文献   

9.
A spectral-domain method, for the solution of the two-dimensional electromagnetic plane-wave scattering by a finite set of perfectly-conducting or dielectric cylinders buried in a dielectric half-space, has been developed. The scattered field is represented in terms of a superposition of cylindrical waves, and use is made of the plane-wave spectrum to take into account the reflection and transmission of such waves by the interface. The problem is solved for both the near- and the far-field regions, for TM and TE polarizations. In this work we briefly resume the theoretical basis of our approach. For configurations in which more obstacles are buried in the ground, and they are near to one another, we give details about the convergence rate of our method, and about the properties of our algorithms for the integration of cylindrical functions. With our technique it is possible to simulate two-dimensional buried obstacles of general shape, by means of a suitable set of circular-section cylinders: in this paper we show preliminary results of simulations carried out using arrays of same-radius circular cylinders, and of different-radius circular cylinders.  相似文献   

10.
Summary The problem of a periodic point source in a homogeneous liquid layer overlying a heterogeneous liquid half-space is discussed. After obtaining the formal solution, the path of integration for the displacement potential of the layer is transformed from the positive real axis to the positive imaginary axis and the Sommerfeld contour and the latter is further distorted to the modified Sommerfeld contour. The residues of the integrand at the poles contained within the Sommerfeld loop constitute the normal mode solution to the problem. The integrands in the expressions for the integrals along the imaginary axis are expanded in a series of negative powers of exponentials and then some of the terms in these expansions are evaluated approximately. This gives various waves reflected from the interface and the integral along the Sommerfeld loop vanishes. The frequency equation is obtained, also by the principle of constructive interference. An expression for the reflection coefficient at an interface of two liquid media, the upper medium being homogeneous and the lower one inhomogeneous, is obtained.  相似文献   

11.
Magnetotelluric (MT) soundings and gravity methods were employed to study the deep freshwater aquifer in the area north of Abo Zenema city on the eastern side of the Gulf of Suez, Egypt. Seven MT sites and 48 gravity stations were surveyed along northeast–southwest profiles as close as possible to a line perpendicular to the coast of the Gulf of Suez. The MT survey was conducted using high and low frequencies to investigate shallow and deep areas, respectively. One-dimensional inversion was conducted using a heuristic inversion scheme of the Bostick algorithm. The MT data were also inverted with a 2-D smooth model inversion routine using the nonlinear conjugate gradient method to infer variation in vertical and lateral resistivity inside the Earth. A 100-Ohm-m homogeneous half-space initial model was used to invert the TE mode data only. Then, the inverted model obtained from the TE mode data was used as an initial model for inversion of the TM mode data. The inverted model thus obtained from the TM mode data inversion was used as an initial model for the inversion of the joint TE and TM responses. Two-dimensional (2-D) forward modeling of the gravity data was conducted using the 2-D polygon method of Talwani’s algorithm for an arbitrarily shaped body and was based on the subsurface information from the MT survey and the available information about the geological structure of the study area. This method enabled us to obtain the basement structure of the coastal aquifer in the study area. The results from the analysis and the interpretation of MT and gravity data were used to detect and delineate the groundwater coastal aquifer in the study area.  相似文献   

12.
弹性层状半空间中凸起地形对入射平面SH波的放大作用   总被引:7,自引:0,他引:7  
对Wolf理论进行拓展,使之可解决凸起地形对波的散射问题,进而利用间接边界元法,求解了弹性层状半空间中凸起地形对入射平面SH波的放大作用问题。本文模型的显著特点之一是考虑了层状半空间的动力特性以及层状半空间和凸起地形的阻尼;特点之二是计算精度高。文中以基岩上单一土层中半圆凸起地形对入射平面SH波的放大作用为例进行了数值计算分析。研究表明,基岩上单一土层中凸起地形对入射平面SH波放大作用和均匀半空间中凸起地形有着本质的差别;土层动力特性不仅影响凸起地形地表位移的幅值,还会影响地表位移的频谱;阻尼会显著降低凸起地形对高频波的放大作用。  相似文献   

13.
A transient Green function due to suddenly applied line loads in an isotropic and homogeneous half-space is reported in this paper. The derivation of the half-space Green function in the Laplace and the Fourier transform spaces is first reviewed. Following an explicit inversion of the Fourier transform, the inverse Laplace transform is implemented along the contour integral on the p-complex plane in an integral form. The half-space Green function consists of full-space Green functions and a singularity-free complementary term. It can be easily incorporated into current transient boundary elements using the transient full-space Green function. Combined with finite elements, the half-space Green function can be used in a hybrid procedure to solve transient half-space problems without discretization of the free surface. Numerical results are presented to illustrate transient wave propagation in a half-space.  相似文献   

14.
A stochastic thin-layer method is developed for the analysis of wave propagation in a layered half-space. A random field of shear moduli in the layered system is considered in terms of multiple correlated random variables. Expanding the random moduli and uncertain responses by means of Hermite polynomial chaos expansions and applying the Galerkin method in the spatial as well as stochastic domains, stochastic versions of thin-layer methods for a layered half-space in plane strain and antiplane shear are obtained. In order to represent the infinite half-space, continued-fraction absorbing boundary conditions are included in the thin-layer models of the half-space. Using these stochastic methods, dynamic responses of a layered half-space subjected to line loads are examined. Means, coefficients of variance, and probability density functions of the half-space responses with a varying correlation coefficient of the shear moduli are computed and verified by comparison with Monte Carlo simulations. It is demonstrated that accurate probabilistic dynamic analysis is possible using the developed stochastic thin-layer methods for a layered half-space.  相似文献   

15.
The seismic response analysis of a base-isolated liquid storage tank on a half-space was examined using a coupling method that combines the finite elements and boundary elements. The coupled dynamic system that considers the base isolation system and soil–structure interaction effect is formulated in time domain to evaluate accurately the seismic response of a liquid storage tank. Finite elements for a structure and boundary elements for liquid are coupled using equilibrium and compatibility conditions. The base isolation system is modeled using the biaxial hysteretic element. The homogeneous half-space is idealized using the simple spring-dashpot model with frequency-independent coefficients. Some numerical examples are presented to demonstrate accuracy and applicability of the developed method.Consequently, a general numerical algorithm that can analyze the dynamic response of base-isolated liquid storage tanks on homogeneous half-space is developed in three-dimensional coordinates and dynamic response analysis is performed in time domain.  相似文献   

16.
Summary The formulas for the elastic residual field of a very long strike-slip fault in a multilayered elastic half-space are given. It is assumed that the medium is made up ofn parallel, isotropic and homogeneous layers lying over an isotropic, homogeneous half-space and being in welded contact. The formulas which allow the calculation of the displacement and stress fields due to an arbitrary very long strike-slip fault are derived. The explicit expressions of coefficients which appear in these formulas are listed for the casesn=1 andn=2.  相似文献   

17.
The dynamic soil-tunnel interaction is studied by indirect boundary element method (IBEM), using the model of a rigid tunnel in layered half-space, which is simplified to a single soil layer on elastic bedrock, subjected to incident plane SH waves. The accuracy of the results is verified through comparison with the analytical solution. It is shown that soil-tunnel interaction in layered half-space is larger than that in homogeneous half-space and this interaction mechanism is essentially different from that of soil-foundation-superstructure interaction.  相似文献   

18.
Using a thin-layer method enhanced by continued-fraction absorbing boundary conditions, dynamic responses of a layered half-space subjected to a series of constant and time-harmonic line loads moving at a constant speed are studied. The thin-layer method for moving line loads is formulated for plane-strain as well as antiplane-shear conditions and is verified by comparison of computed responses of a homogeneous half-space subjected to a single constant load on its surface against available analytical solutions. Next, time-harmonic loads on a homogeneous half-space are examined. The study continues with both constant and time-harmonic loads on a layered half-space. Finally, multiple constant and time-harmonic loads are considered. The formulation and results demonstrate the effectiveness and versatility of the method in problems of dynamic response of layered media to moving loads.  相似文献   

19.
层状半空间中洞室对平面SH波的放大作用   总被引:1,自引:0,他引:1  
利用间接边界元法,求解了弹性层状半空间中洞室对入射平面SH波的放大作用问题,并以基岩上单一土层中洞室对入射平面SH波的放大作用为例进行了数值计算分析。本文模型的特点之一是考虑了层状场地的动力特性,因而更接近于实际工程;特点之二是计算精度非常高。研究表明,层状半空间中洞室对波的放大作用与均匀半空间中情况有着本质的差别;层状半空间中洞室附近地表动力响应由土层动力特性和洞室对波的散射二者共同决定。土层动力特性不仅影响洞室附近地表位移的幅值,还会影响地表位移的频谱。在土层的前几阶共振频率附近,随着基岩与土层剪切波速比的增大,土层的影响随之增大,而随着土层厚度的增加,土层的影响随之减小,并逐渐趋于均匀半空间情况。  相似文献   

20.
In this paper, we have considered the reflection and refraction of a plane wave at an interface between two half-spaces. The lower half-spaces is composed of highly anisotropic triclinic crystalline material and the upper half-space is homogeneous and isotropic. It has been assumed that due to incidence of a plane quasi-P (qP) wave, three types of waves, namely, quasi-P (qP), quasi-SV (qSV) and quasi-SH (qSH), will be generated in the lower half space whereas P and S waves will be generated in the upper half space. The phase velocities of all the quasi waves have been calculated. It has been assumed that the direction of particle motion is neither parallel nor perpendicular to the direction of propagation. Some specific relations have been established between directions of motion and propagation, respectively. The expressions for reflection coefficients of qP, qSV, qSH and refracted coefficients of P and SV waves are obtained. Results of reflection and refraction coefficients are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号