首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Estimates of daily lake evaporation based on energy‐budget data are poor because of large errors associated with quantifying change in lake heat storage over periods of less than about 10 days. Energy‐budget evaporation was determined during approximately biweekly periods at a northern Minnesota, USA, lake for 5 years. Various combinations of shortwave radiation, air temperature, wind speed, lake‐surface temperature, and vapour‐pressure difference were related to energy‐budget evaporation using linear‐regression models in an effort to determine daily evaporation without requiring the heat‐storage term. The model that combined the product of shortwave radiation and air temperature with the product of vapour‐pressure difference and wind speed provided the second best fit based on statistics but provided the best daily data based on comparisons with evaporation determined with the eddy‐covariance method. Best‐model daily values ranged from ?0.6 to 7.1 mm/day over a 5‐year period. Daily averages of best‐model evaporation and eddy‐covariance evaporation were nearly identical for all 28 days of comparisons with a standard deviation of the differences between the two methods of 0.68 mm/day. Best‐model daily evaporation also was compared with two other evaporation models, Jensen–Haise and a mass‐transfer model. Best‐model daily values were substantially improved relative to Jensen–Haise and mass‐transfer values when daily values were summed over biweekly energy‐budget periods for comparison with energy‐budget results.  相似文献   

2.
Water-budget components and the vertical conductance were determined for Lowry (Sand Hill) Lake in north-central Florida, USA. In this type of lake, which interacts with both the surface-water and groundwater systems, the inflow components are precipitation, surface-water inflow, groundwater inflow, and direct runoff (i.e. overland flow), and the outflow components are evaporation, groundwater outflow, and surface-water outflow. In a lake and groundwater system that is typical of many karst lakes in Florida, a large part of the groundwater outflow occurs by means of vertical leakage through an underlying confining unit to a deeper, highly transmissive aquifer called the upper Floridan aquifer. The water-budget component that represents vertical leakage to the upper Floridan aquifer was calculated as a residual using the water-budget equation. For the 13 month period from August 1994 to August 1995, relative to the surface area of the lake, rainfall at Lowry Lake was 1.55 m yr−1, surficial aquifer inflow was 0.79 m yr−1, surface-water inflow was 1.92 m yr−1, and direct runoff was 0.01 m yr−1. Lake evaporation was 1.11 m yr−1, and surface-water outflow was 1.61 m yr−1. The lake stage increased 0.07 m yr−1, and the vertical leakage to the upper Floridan aquifer was 1.48 m yr−1. Surficial aquifer outflow from the lake was negligible. At Lowry Lake, vertical leakage is a major component of the water budget, comprising about 35% of the outflow during the study period. The vertical conductance (KV/b), a coefficient that represents the average of the vertical conductances of the hydrogeologic units between the bottom of a lake and the top of the upper Floridan aquifer, was determined to be 2.51 × 10−4 day−1 for Lowry Lake.  相似文献   

3.
荆思佳  肖薇  王晶苑  郑有飞  王伟  刘强  张圳  胡诚 《湖泊科学》2022,34(5):1697-1711
湖泊蒸发对气候变化非常敏感, 是水文循环响应气候变化的指示因子, 因此研究湖泊蒸发的控制因素, 对于理解区域水文循环有重要意义. 本文利用太湖中尺度涡度通量网避风港站观测数据校正JRA-55再分析资料, 驱动CLM4.0-LISSS模型, 并利用2012—2017年涡度相关通量数据和湖表面温度数据检验模型模拟蒸发结果, 验证了该模型在太湖的适用性; 估算了1958—2017年间太湖的湖面蒸发量, 并利用Manner-Kendall趋势检验分析了湖面蒸发的变化趋势, 寻找太湖实际蒸发的年际变化的主控因子. 结果如下: 校正后的JRA-55再分析资料模拟的太湖蒸发与观测值之间存在季节偏差, 但是季节偏差在年尺度上相互抵消, 再分析资料可用于年际尺度太湖蒸发变化的模拟; 1958—2017年间太湖蒸发量以1977年为界, 先下降(-3.6 mm/a), 后增加(2.3 mm/a); 多元逐步回归结果表明, 向下的短波辐射是太湖1958—2017年间太湖蒸发变化的主控因子, 向下的长波辐射、气温、比湿也对湖泊蒸发年际变化有一定影响, 但是风速对蒸发量的年际变化影响不大.  相似文献   

4.
The aim of this study was to validate evaporation models that can be used for palaeo‐reconstructions of large lake water levels. Lake Titicaca, located in a high‐altitude semi‐arid tropical area in the northern Andean Altiplano, was the object of this case study. As annual evaporation is about 90% of lake output, the lake water balance depends heavily on the yearly and monthly evaporation flux. At the interannual scale, evaporation estimation presents great variability, ranging from 1350 to 1900 mm year?1. It has been found that evaporation is closely related to lake rainfall by a decreasing relationship integrating the implicit effect of nebulosity and humidity. At the seasonal scale, two monthly evaporation data sets were used: pan observations and estimations derived from the lake energy budget. Comparison between these data sets shows that (i) there is one maximum per year for pan evaporation and two maxima per year for lake evaporation, and (ii) pan evaporation is greater than lake evaporation by about 100 mm year?1. These differences, mainly due to a water depth scale factor, have been simulated with a simple thermal model θw(h, t) of a free‐surface water column. This shows that pan evaporation (h = 0·20 m) is strongly correlated with direct solar radiation, whereas the additional maximum of lake evaporation (h = 40 m) is related to the heat restitution towards the atmosphere from the water body at the end of summer. Finally, five monthly evaporation models were tested in order to obtain the optimal efficiency/complexity ratio. When the forcing variables are limited to those that are most readily available in the past, i.e. air temperature and solar radiation, the best results are obtained with the radiative Abtew model (r = 0·70) and with the Makkink radiative/air temperature model (r = 0·67). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Lake E?irdir is located in the Lakes District in southwestern Turkey and it is the second largest freshwater resource lake. Evaporation is an important parameter in hydrological and meteorological practical studies. This study has three objectives: (1) to develop models for the estimation of daily evaporation using measured data from the automated GroWeather meteorological station located near Lake E?irdir; (2) to compare the evaporation models with the classical Penman approach; (3) to evaluate the potential of each model. The comparisons are based on daily and monthly available data from 2001 and 2002. The evaporation estimation models (EEMs) developed in this paper have lower mean absolute errors and higher coefficient of determination R2 values than the Penman method. In order to evaluate the potential of the EEMs, daily evaporation values are calculated by the Priestley–Taylor, Brutsaert–Stricker, de Bruin, Makkink and Hamon methods. The EEMs are statistically indistinguishable from the classical methods on the basis of the parameters of mean, standard deviation, etc. In the evaluation of daily and monthly values, the relative error percentage for daily evaporation has lower values than for monthly evaporation. It can be seen that the EEMs help in calculating daily evaporation rather than monthly. Final evaluation and comparison indicate that there is a good agreement between the results of EEMs and the Penman approach than with the classical methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Seven temperature‐based equations, each representing a typical form, were evaluated and compared for determining evaporation at two climatological stations (Rawson Lake and Atikokan) in north‐western Ontario, Canada. The comparison was first made using the original constant values involved in each equation, and then using the recalibrated constant values. The results show that when the original constant values were used, larger biases existed for most of the equations for both stations. When recalibrated constant values were substituted for the original constant values, six of the seven equations improved for both stations. Using locally calibrated parameter values, all seven equations worked well for determining mean seasonal evaporation values. For monthly evaporation values, the modified Blaney–Criddle method produced least error for all months for both stations, followed by the Hargreaves and Thornthwaite methods. The Linacre, Kharrufa and Hamon methods showed a significant bias in September for both stations. With properly determined constant values, the modified Blaney–Criddle, the Hargreaves and Thornthwaite methods can be recommended for estimating evaporation in the study region, as far as temperature‐based methods are concerned. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Evaluating performances of four commonly used evaporation estimate methods, namely; Bowen ratio energy balance (BREB), mass transfer (MT), Priestley–Taylor (PT) and pan evaporation (PE), based on 4 years experimental data, the most effective and the reliable evaporation estimates model for the semi‐arid region of India has been derived. The various goodness‐of‐fit measures, such as; coefficient of determination (R2), index of agreement (D), root mean square error (RMSE), and relative bias (RB) have been chosen for the performance evaluation. Of these models, the PT model has been found most promising when the Bowen ratio, β is known a priori, and based on its limited data requirement. The responses of the BREB, the PT, and the PE models were found comparable to each other, while the response of the MT model differed to match with the responses of the other three models. The coefficients, β of the BREB, µ of the MT, α of the PT and KP of the PE model were estimated as 0·07, 2·35, 1·31 and 0·65, respectively. The PT model can successfully be extended for free water surface evaporation estimates in semi‐arid India. A linear regression model depicting relationship between daily air and water temperature has been developed using the observed water temperatures and the corresponding air temperatures. The model helped to generate unrecorded water temperatures for the corresponding ambient air temperatures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
东太湖水温变化与水-沉积物界面热通量初探   总被引:1,自引:0,他引:1  
曾野  朱金格  王艳平  胡维平 《湖泊科学》2018,30(6):1599-1609
水温对沉水植被的生长和分布具有重要作用,水-沉积物界面热通量对浅水湖泊水温变化的影响值得关注.东太湖是我国东部典型的草型浅水湖区,采用自2013年11月至2015年10月对东太湖湖心进行的不同深度水体及沉积物温度高频观测数据,结合东太湖表层沉积物的热力学性质计算了水-沉积物界面热通量,分析了东太湖水温和水-沉积物界面热通量的变化特征并探讨了其影响因素.结果表明:东太湖各深度水体日升温过程随水深增加后延,升温过程夏季延长,冬季缩短;表层水温日变幅最大,底层水温日变幅次之,沉积物温度日变幅最小,各深度温度日变幅夏季最小、冬季最大;春季和夏季升温过程中各深度日均温变化沿水深存在约1天的延迟,秋季和冬季无此现象;2015年与2014年东太湖温度变化趋势相同,同比月均温差与气温差呈线性相关.沉积物8:00-19:00向水体放热增加或从水体吸热减少,19:00至次日8:00放热减少或吸热增加;3-9月从水体吸热,为热汇,10月至次年2月向水体放热,为热源,沉积物全年为湖泊热源;逐日水-沉积物界面热通量每月6至15日存在相对年变幅较小幅度的正弦式波动.水温和水-沉积物界面热通量的变化主要受太阳辐射和气温的影响,二者对气象参数的响应具有迟滞现象;水-沉积物界面热通量与水温呈负相关,其变化相对水温迟滞,水-沉积物界面热交换的主要作用为缓冲湖泊水体的热量变化;夏季,沉水植物能降低湖泊各层水温和垂向水温差.  相似文献   

9.
鄱阳湖水面蒸发量的计算与变化趋势分析(1955-2004年)   总被引:2,自引:0,他引:2  
闵骞  刘影 《湖泊科学》2006,18(5):452-457
利用器测折算法与气候模式法,分别计算鄱阳湖周围康山、棠荫、都昌、星子、湖口5站的单站水面蒸发量,以5站两种方法计算值的平均值代表鄱阳湖大湖面的水面蒸发量,求得鄱阳湖1955-2004年各月的水面蒸发量和蒸发水量,结果为:多年平均年蒸发量1081.2 mm.年蒸发水量27.06×10~8 m~3.对年、月水面蒸发量在近50年来的变化趋势进行了分析,表明除5月份外,其他各月蒸发量和年蒸发量均呈逐渐减少趋势,年蒸发量平均每年减小2.79 mm,年蒸发水量平均减少0.05×10~8 m~3,对湖区水资源持续利用和湖泊环境将产生明显影响.对水面蒸发量递减原因进行了初步探讨.  相似文献   

10.
The level of Lake Tana, Ethiopia, fluctuates annually and seasonally following the patterns of changes in precipitation. In this study, a mass balance approach is used to estimate the hydrological balance of the lake. Water influx from four major rivers, subsurface inflow from the floodplains, precipitation, outflow from the lake constituting river discharge and evapotranspiration from the lake are analysed on monthly and annual bases. Spatial interpolation of precipitation using rain gauge data was conducted using kriging. Outflow from the lake was identified as the evaporation from the lake's surface as well as discharge at the outlet where the Blue Nile commences. Groundwater inflow is estimated using MODular three‐dimensional finite‐difference ground‐water FLOW model software that showed an aligned flow pattern to the river channels. The groundwater outflow is considered negligible based on the secondary sources that confirmed the absence of lake water geochemical mixing outside of the basin. Evaporation is estimated using Penman's, Meyer's and Thornwaite's methods to compare the mass balance and energy balance approaches. Meteorological data, satellite images and temperature perturbation simulations from Global Historical Climate Network of National Oceanographic and Atmospheric Administration are employed for estimation of evaporation input parameters. The difference of the inflow and outflow was taken as storage in depth and compared with the measured water level fluctuations. The study has shown that the monthly and annually calculated lake level replicates the observed values with root mean square error value of 0·17 and 0·15 m, respectively. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Historical changes in the level of Lake Bosumtwi, Ghana, have been simulated using a catchment‐scale hydrological model in order to assess the importance of changes in climate and land use on lake water balance on a monthly basis for the period 1939–2004. Several commonly used models for computing evaporation in data‐sparse regions are compared, including the Penman, the energy budget, and the Priestley–Taylor methods. Based on a comparison with recorded lake level variations, the model with the energy‐budget evaporation model subcomponent is most effective at reproducing observed lake level variations using regional climate records. A sensitivity analysis using this model indicates that Lake Bosumtwi is highly sensitive to changes in precipitation, cloudiness and temperature. However, the model is also sensitive to changes in runoff related to vegetation, and this factor needs to be considered in simulating lake level variations. Both interannual and longer‐term changes in lake level over the last 65 years appear to have been caused primarily by changes in precipitation, though the model also suggests that the drop in lake level over the last few decades has been moderated by changes in cloudiness and temperature over that time. Based on its effectiveness at simulating the magnitude and rate of lake level response to changing climate over the historical record, this model offers a potential future opportunity to examine the palaeoclimatic factors causing past lake level fluctuations preserved in the geological record at Lake Bosumtwi. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Y. Chebud  A. Melesse 《水文研究》2013,27(10):1475-1483
Lake Tana is the largest fresh water body situated in the north‐western highlands of Ethiopia. In addition to its ecological services, it serves for local transport, electric power generation, fishing, recreational purposes, and source of dry season irrigation water supply. Evidence shows that the lake has dried at least once at about 15,000–17,000 before present owing to a combination of high evaporation and low precipitation events. Past attempts to understand and simulate historical fluctuation of Lake Tana based on simplistic water balance approach of inflow, outflow, and storage have failed to capture well‐known events of drawdown and rise of the lake that have happened in the last 44 years. This study tested different stochastic methods of lake level and volume simulation for supporting Lake Tana operational planning decision support. Three stochastic methods (perturbations approach, Monte Carlo methods, and wavelet analysis) were employed for lake level and volume simulation, and the results were compared with the stage level measurements. Forty‐four years of daily, monthly, and mean annual lake level data have shown a Gaussian variation with goodness of fit at 0.01 significant levels of the Kolmogorov–Smirnov test. The stochastic simulations predicted the lake stage level of the 1972, 1984, and 2002/2003 historical droughts 99% of the time. The information content (frequency) of fluctuation of Lake Tana for various periods was resolved using Wigner's Time‐Frequency Decomposition method. The wavelet analysis agreed with the perturbations and Monte Carlo simulations resolving the time (1970s, 1980s, and 2000s) in which low frequency and high spectral power fluctuation has occurred. The Monte Carlo method has shown its superiority for risk analysis over perturbation and deterministic method whereas wavelet analysis reconstructed historical record of lake stage level at daily and monthly time scales. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Potential hydrological impacts of climate change on long‐term water balances were analysed for Harp Lake and its catchment. Harp Lake is located in the boreal ecozone of Ontario, Canada. Two climate change scenarios were used. One was based on extrapolation of long‐term trends of monthly temperature and precipitation from a 129‐year data record, and another was based on a Canadian general circulation model (GCM) predictions. A monthly water balance model was calibrated using 26 years of hydrological and meteorological data, and the model was used to calculate hydrological impact under two climate change scenarios. The first scenario with a warmer and wetter climate predicted a smaller magnitude of change than the second scenario. The first scenario showed an increase in evaporation each month, an increase in catchment runoff in summer, fall and winter, but a decrease in spring, resulting in a slight increase in lake level. Annual runoff and lake level would increase because the precipitation change overrides evaporation change. The second scenario with a warmer, drier climate predicted a greater change, and indicated that evaporation would increase each month, runoff would increase in many months, but would decrease in spring, causing the lake level to decrease slightly. Annual runoff and lake level would decrease because evaporation change overrides precipitation change. In both scenarios, the water balance changes in winter and spring are pronounced. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Accurate estimation of the resistances to water vapor movement is a major difficulty in evaluating evaporation from soil. By including the temperature of a dry soil surface (the temperature of the surface of a dry soil column buried in the field), a method for estimating evaporation from soil is proposed. The necessary input variables for the suggested method are temperature, net radiation, and soil heat flux. There are three advantages of the proposed method over the conventional methods. First, soil surface resistance and aerodynamic resistance are not required. Second, the variables included are fewer. Third, measurement and analysis of the parameters involved are relatively easy. Sensitivity analysis shows that the suggested method is sensitive to temperatures. Test experiments were conducted in a sandy field, where a weighing lysimeter was installed. Evaporation from soil, together with the variables specified above, were measured. For temperatures measured by thermocouples, experimental results showed that the mean absolute error (MAE) for the daily evaporation over 22 days was 0.17 mm day−1. The regression between calculated and measured evaporation was highly significant (r2=0.89). Moreover, the intercept and slope of the regression equation were not significantly different from zero and unity, respectively, at the 0.05 probability level. Furthermore, by using the temperatures measured by infrared thermometers, the MAE between measured evaporation and estimated evaporation was 0.15 mm day−1. The regression between them was highly significant (r2=0.94). In addition, the intercept and slope of the regression equation were not significantly different from zero and unity, respectively, at the 0.05 probability level. These results show that evaporation calculated using the proposed method is in good agreement with lysimeter measured values. By comparing with the temperature difference method, it was shown that the suggested method estimated soil evaporation more accurately than the temperature difference method. Therefore, it is concluded that the proposed method is not only a simple way for application, but also an accurate way to estimate soil evaporation.  相似文献   

15.
ABSTRACT

Evaporation is one of the most important components in the energy and water budgets of lakes and is a primary process of water loss from their surfaces. An artificial neural network (ANN) technique is used in this study to estimate daily evaporation from Lake Vegoritis in northern Greece and is compared with the classical empirical methods of Penman, Priestley-Taylor and the mass transfer method. Estimation of the evaporation over the lake is based on the energy budget method in combination with a mathematical model of water temperature distribution in the lake. Daily datasets of air temperature, relative humidity, wind velocity, sunshine hours and evaporation are used for training and testing of ANN models. Several input combinations and different ANN architectures are tested to detect the most suitable model for predicting lake evaporation. The best structure obtained for the ANN evaporation model is 4-4-1, with root mean square error (RMSE) from 0.69 to 1.35 mm d?1 and correlation coefficient from 0.79 to 0.92.
EDITOR M.C. Acreman

ASSOCIATE EDITOR not assigned  相似文献   

16.
C.-Y. Xu  V. P. Singh 《水文研究》1998,12(3):429-442
This paper consists of two parts. In the first part, the significance of five major factors, including solar radiation, vapour pressure deficit, relative humidity, wind speed and air temperature, that control evaporation were evaluated comparatively at different time-scales using the data from Changines station in Switzerland. The comparative evaluation was made at hourly, daily, 10-day and monthly time-scales. It was found that the role of controlling variables in evaporation varied with the time-scale. The vapour pressure deficit was best correlated with pan evaporation at all time-scales, while the wind speed was least correlated with pan evaporation, especially when the time period was longer than a day. In the second part, four equations for calculating evaporation, including temperature-based methods, humidity-based methods, mass transfer methods and radiation-based methods, were compared with pan evaporation. Of these four equations, the Penman equation, representing the mass transfer method, resulted in monthly evaporation values that agreed most closely with pan evaporation values. The Romanenko equation, representing the humidity method, also compared reasonably well with pan evaporation. The Turc equation, representing the radiation method, and the Thornthwaite equation, representing the temperature method, were found to underestimate evaporation significantly, especially for cold months. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
鄱阳湖夏季水面蒸发与蒸发皿蒸发的比较   总被引:3,自引:1,他引:2  
水面蒸发是湖泊水量平衡要素的重要组成部分.基于传统蒸发皿观测蒸发不能代表实际水面蒸发,而实际水面蒸发特征仍不清楚.本研究基于涡度相关系统观测的鄱阳湖水体实际水面蒸发过程,在小时和日尺度分析了水面蒸发的变化规律及其主要影响因子,并与蒸发皿蒸发进行比较.研究表明,实际水面蒸发日变化波动剧烈,变化范围在0~0.4 mm/h之间.水面蒸发的日变化特征主要受风速的影响.鄱阳湖8月份日水面蒸发量与蒸发皿蒸发量在总体趋势上具有很好的一致性.8月份平均日水面蒸发速率(5.90 mm/d)比蒸发皿蒸发速率(5.65 mm/d)高4.6%.水面日蒸发量与蒸发皿蒸发量的比值在8月上、中、下旬平均值分别为1.24、1.00、0.92,呈现下降的趋势.鄱阳湖夏季水面日蒸发量与风速和相对湿度相关性显著,而蒸发皿蒸发与净辐射、气温、饱和水汽压差和相对湿度均呈显著相关.这是由于蒸发皿水体容积小,与湖泊相比其水体热存储能力小,因此更容易受到环境因子的影响.  相似文献   

18.
西藏扎布耶盐湖水位Winters和ARIMA模型分析   总被引:4,自引:0,他引:4  
齐文  郑绵平 《湖泊科学》2006,18(1):21-28
由于温室效应,气温加速上升,我国西部干旱一半干旱盐湖区盐湖水位出现加速下降或上升等变化.藏北高原湖泊众多,但都缺少湖水位的人工观测记录.中国地质科学院盐湖中心自1990年始在西藏扎布耶盐湖建立了长期科学观测站,进行水位动态观测,积累了连续13年珍贵的数据.如何根据湖泊水位历史记录数据,准确的定量预测水位中短期变化,是关系着盐湖资源开发命运的大事.本文用Winters线性和季节性指数平滑法、ARIMA乘积季节模型两种时间序列分析方法,根据西藏扎布耶盐湖1991年1月-2003年12月水位变化的时间序列数据,探讨了两种时间序列数据的预测方法在盐湖水位动态变化预测中的应用.  相似文献   

19.
基于水平衡模型的呼伦湖湖泊水量变化   总被引:2,自引:2,他引:0  
针对北方寒旱区呼伦湖水位下降、水面萎缩的现象,根据气候特征,利用月水量平衡模型探究湖泊水文过程并揭示其变化规律.在此基础上,利用不同气候条件下各水平衡项对于湖泊水位的影响程度确定水位升降的直接原因.基于1963-1980年间水位的实测数据,根据水量平衡原理及其他辅助计算判断出湖泊与周边区域存在着地下水的交换,且具有一定的规律性,即历年11月至次年3月期间的累积降雪融化渗入土壤中形成浅层径流补给湖泊,而7、8月份湖泊补给周边草原.基于以上规律,根据周边坡面汇流、地下水与湖泊交换量的年内变化特征,利用水平衡方程式推算湖泊1981-2008年逐月水位变化,并与其他研究成果比较,吻合度较高.不同气候条件下,径流量对于湖泊水位的影响程度最为突出,是水位变化的主控因子.  相似文献   

20.
崔逸凡  刘元波 《湖泊科学》2023,35(5):1501-1515
湖泊蒸发是连接湖泊水分循环与能量平衡的关键纽带之一,认识湖泊蒸发过程对于理解湖-气间相互作用机制十分重要。然而,由于湖泊的形态结构、地理位置和气候背景不同,各湖泊在不同时间尺度上的蒸发特征不同。湖泊蒸发存在复杂的物理驱动过程、时间尺度相关的反馈以及空间异质性。准确地捕捉并量化湖泊蒸发过程,仍是湖沼学、水文学和气象学等学科的重要研究内容。本文首先介绍了湖泊蒸发的主要观测手段,然后概述了湖泊蒸发在日内、季节、年际、年代际四种不同时间尺度的变化特征;梳理了不同时间尺度各要素对湖泊蒸发的影响,以及湖泊蒸发与湖泊面积和深度等形态结构特性及纬度和海拔等地理因素之间的关系;对自涡度相关技术等高精度仪器应用以来的湖泊蒸发研究进展做出了总结。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号