首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potential hydrological impacts of climate change on long‐term water balances were analysed for Harp Lake and its catchment. Harp Lake is located in the boreal ecozone of Ontario, Canada. Two climate change scenarios were used. One was based on extrapolation of long‐term trends of monthly temperature and precipitation from a 129‐year data record, and another was based on a Canadian general circulation model (GCM) predictions. A monthly water balance model was calibrated using 26 years of hydrological and meteorological data, and the model was used to calculate hydrological impact under two climate change scenarios. The first scenario with a warmer and wetter climate predicted a smaller magnitude of change than the second scenario. The first scenario showed an increase in evaporation each month, an increase in catchment runoff in summer, fall and winter, but a decrease in spring, resulting in a slight increase in lake level. Annual runoff and lake level would increase because the precipitation change overrides evaporation change. The second scenario with a warmer, drier climate predicted a greater change, and indicated that evaporation would increase each month, runoff would increase in many months, but would decrease in spring, causing the lake level to decrease slightly. Annual runoff and lake level would decrease because evaporation change overrides precipitation change. In both scenarios, the water balance changes in winter and spring are pronounced. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Hydrological models are recognized as valid scientific tools to study water quantity and quality and provide support for the integrated management and planning of water resources at different scales. In common with many catchments in the Mediterranean, the study catchment has many problems such as the increasing gap between water demand and supply, water quality deterioration, scarcity of available data, lack of measurements and specific information. The application of hydrological models to investigate hydrological processes in this type of catchments is of particular relevance for water planning strategies to address the possible impact of climate and land use changes on water resources. The distributed catchment scale model (DiCaSM) was selected to study the impact of climate and land use changes on the hydrological cycle and the water balance components in the Apulia region, southern Italy, specifically in the Candelaro catchment (1780 km2). The results obtained from this investigation proved the ability of DiCaSM to quantify the different components of the catchment water balance and to successfully simulate the stream flows. In addition, the model was run with the climate change scenarios for southern Italy, i.e. reduced winter rainfall by 5–10%, reduced summer rainfall by 15–20%, winter temperature rise by 1·25–1·5 °C and summer temperature rise by 1·5–1·75 °C. The results indicated that by 2050, groundwater recharge in the Candelaro catchment would decrease by 21–31% and stream flows by 16–23%. The model results also showed that the projected durum wheat yield up to 2050 is likely to decrease between 2·2% and 10·4% due to the future reduction in rainfall and increase in temperature. In the current study, the reliability of the DiCaSM was assessed when applied to the Candelaro catchment; those parameters that may cause uncertainty in model output were investigated using a generalized likelihood uncertainty estimation (GLUE) methodology. The results showed that DiCaSM provided a small level of uncertainty and subsequently, a higher confidence level. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Continuous temperature measurements at 11 stream sites in small lowland streams of North Zealand, Denmark over a year showed much higher summer temperatures and lower winter temperatures along the course of the stream with artificial lakes than in the stream without lakes. The influence of lakes was even more prominent in the comparisons of colder lake inlets and warmer outlets and led to the decline of cold‐water and oxygen‐demanding brown trout. Seasonal and daily temperature variations were, as anticipated, dampened by forest cover, groundwater input, input from sewage plants and high downstream discharges. Seasonal variations in daily water temperature could be predicted with high accuracy at all sites by a linear air‐water regression model (r2: 0·903–0·947). The predictions improved in all instances (r2: 0·927–0·964) by a non‐linear logistic regression according to which water temperatures do not fall below freezing and they increase less steeply than air temperatures at high temperatures because of enhanced heat loss from the stream by evaporation and back radiation. The predictions improved slightly (r2: 0·933–0·969) by a multiple regression model which, in addition to air temperature as the main predictor, included solar radiation at un‐shaded sites, relative humidity, precipitation and discharge. Application of the non‐linear logistic model for a warming scenario of 4–5 °C higher air temperatures in Denmark in 2070‐2100 yielded predictions of temperatures rising 1·6–3·0 °C during winter and summer and 4·4–6·0 °C during spring in un‐shaded streams with low groundwater input. Groundwater‐fed springs are expected to follow the increase of mean air temperatures for the region. Great caution should be exercised in these temperature projections because global and regional climate scenarios remain open to discussion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Robert L. Wilby 《水文研究》2005,19(16):3201-3219
Despite their acknowledged limitations, lumped conceptual models continue to be used widely for climate‐change impact assessments. Therefore, it is important to understand the relative magnitude of uncertainties in water resource projections arising from the choice of model calibration period, model structure, and non‐uniqueness of model parameter sets. In addition, external sources of uncertainty linked to choice of emission scenario, climate model ensemble member, downscaling technique(s), and so on, should be acknowledged. To this end, the CATCHMOD conceptual water balance model was used to project changes in daily flows for the River Thames at Kingston using parameter sets derived from different subsets of training data, including the full record. Monte Carlo sampling was also used to explore parameter stability and identifiability in the context of historic climate variability. Parameters reflecting rainfall acceptance at the soil surface in simpler model structures were found to be highly sensitive to the training period, implying that climatic variability does lead to variability in the hydrologic behaviour of the Thames basin. Non‐uniqueness of parameters for more complex model structures results in relatively small variations in projected annual mean flow quantiles for different training periods compared with the choice of emission scenario. However, this was not the case for subannual flow statistics, where uncertainty in flow changes due to equifinality was higher in winter than summer, and comparable in magnitude to the uncertainty of the emission scenario. Therefore, it is recommended that climate‐change impact assessments using conceptual water balance models should routinely undertake sensitivity analyses to quantify uncertainties due to parameter instability, identifiability and non‐uniqueness. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The HIRHAM regional climate model suggests an increase in temperature in Denmark of about 3 °C and an increase in mean annual precipitation of 6–7%, with a larger increase during winter and a decrease during summer between a control period 1961–1990 and scenario period 2071–2100. This change of climate will affect the suspended sediment transport in rivers, directly through erosion processes and increased river discharges and indirectly through changes in land use and land cover. Climate‐change‐induced changes in suspended sediment transport are modelled for five scenarios on the basis of modelled changes in land use/land cover for two Danish river catchments: the alluvial River Ansager and the non‐alluvial River Odense. Mean annual suspended sediment transport is modelled to increase by 17% in the alluvial river and by 27% in the non‐alluvial for steady‐state scenarios. Increases by about 9% in the alluvial river and 24% in the non‐alluvial river were determined for scenarios incorporating a prolonged growing season for catchment vegetation. Shortening of the growing season is found to have little influence on mean annual sediment transport. Mean monthly changes in suspended sediment transport between ? 26% and + 68% are found for comparable suspended sediment transport scenarios between the control and the scenario periods. The suspended sediment transport increases during winter months as a result of the increase in river discharge caused by the increase in precipitation, and decreases during summer and early autumn months. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
This paper explores the predicted hydrologic responses associated with the compounded error of cascading global circulation model (GCM) uncertainty through hydrologic model uncertainty due to climate change. A coupled groundwater and surface water flow model (GSFLOW) was used within the differential evolution adaptive metropolis (DREAM) uncertainty approach and combined with eight GCMs to investigate uncertainties in hydrologic predictions for three subbasins of varying hydrogeology within the Santiam River basin in Oregon, USA. Predictions of future hydrology in the Santiam River include increases in runoff in the fall and winter months and decreases in runoff for the spring and summer months. One‐year peak flows were predicted to increase whereas 100‐year peak flows were predicted to slightly decrease. The predicted 10‐year 7‐day low flow decreased in two subbasins with little groundwater influences but increased in another subbasin with substantial groundwater influences. Uncertainty in GCMs represented the majority of uncertainty in the analysis, accounting for an average deviation from the median of 66%. The uncertainty associated with use of GSFLOW produced only an 8% increase in the overall uncertainty of predicted responses compared to GCM uncertainty. This analysis demonstrates the value and limitations of cascading uncertainty from GCM use through uncertainty in the hydrologic model, offers insight into the interpretation and use of uncertainty estimates in water resources analysis, and illustrates the need for a fully nonstationary approach with respect to calibrating hydrologic models and transferring parameters across basins and time for climate change analyses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The impact of global climate change on runoff components, especially on the type of overland flow, is of utmost significance. High‐resolution temporal rainfall plays an important role in determining the hydrological response of quick runoff components. However, hydrological climate change scenario analyses with high temporal resolution are rare. This study investigates the impact of climate change on discharge peak events generated by rainfall, snowmelt, and soil‐frost induced runoff using high‐resolution hydrological modelling. The study area is Schäfertal catchment (1.44 km2) in the lower Harz Mountains in central Germany. The WaSiM‐ETH hydrological model is used to investigate the rainfall response of runoff components under near future (2021–2050) and far‐distant future (2071–2100) climatic conditions. Disaggregated daily climate variables of WETTREG2010 SRES scenario A1B are used on a temporal resolution of 10 min. Hydrological model parameter optimization and uncertainty analysis was conducted using the Differential Evolution Adaptive Metropolis (DREAM_(ZS)) uncertainty tool. The scenario results show that total runoff and interflow will increase by 3.8% and 3.5% in the near future and decrease by 32.85% and 31% in the far‐distant future compared to the baseline scenario. In contrast, overland flow and the number and size of peak runoff will decrease moderately for the near future and drastically for the far‐distant future compared to the baseline scenario. We found the strongest decrease for soil‐frost induced discharge peaks at 79.6% in the near future and at 98.2% in the far‐distant future scenario. It can be concluded that high‐resolution hydrological modelling can provide detailed predictions of future hydrological regimes and discharge peak events of the catchment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
To set accurate critical values for the protection of lakes and coastal areas, it is crucial to know the seasonal variation of nutrient exports from rivers. This article presents an improved method for estimating export and in‐stream nutrient retention and its seasonal variation. For 13 lowland river catchments in Western Europe, inputs to surface water and exports were calculated on a monthly basis. The catchments varied in size (21 to 486 km2), while annual in‐stream retention ranged from 23 to 84% for N and 39 to 72% for P. A novel calculation method is presented that quantifies monthly exports from lowland rivers based on an annual load to the river system. Inputs in the calculation are annual emission to the surface waters, average monthly river discharge, average monthly water temperature and fraction of surface water area in the catchment. The method accounts for both seasonal variation of emission to the surface water and seasonal in‐stream retention. The agreement between calculated values and calibration data was high (N: r2 = 0·93; p < 0·001 and P: r2 = 0·81; p < 0·001). Validation of the model also showed good results with model efficiencies for the separate catchments ranging from 31 to 95% (average 76%). This indicates that exports of nitrogen and phosphorus on a monthly basis can be calculated with few input data for a range of West European lowland rivers. Further analysis showed that retention in summer is higher than that in winter, resulting in lower summer nutrient concentrations than that calculated with an average annual input. This implies that accurate evaluation of critical thresholds for eutrophication effects must account for seasonal variation in hydrology and nutrient loading. Our quantification method thus may improve the modelling of eutrophication effects in standing waters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Climate change is one of the main drivers of river warming worldwide. However, the response of river temperature to climate change differs with the hydrology and landscape properties, making it difficult to generalize the strength and the direction, of river temperature trends across large spatial scales and various river types. Additionally, there is a lack of long‐term and large‐scale trend studies in Europe as well as globally. In this study, we investigated the long‐term (25 years; 132 sites) and the short‐term (10 years; 475 sites) river temperature trends, patterns and underlying drivers within the period 1985–2010 in seven river basins of Germany. The majority of the sites underwent significant river warming during 1985–2010 (mean warming trend: 0.03 °C year?1, SE = 0.003), with a faster warming observed during individual decades (1985–1995 and 2000–2010) within this period. Seasonal analyses showed that, while rivers warmed in all seasons, the fastest warming had occurred during summer. Among all the considered hydro‐climatological variables, air temperature change, which is a response to climate forcing, was the main driver of river temperature change because it had the strongest correlation with river temperature, irrespective of the period. Hydrological variables, such as average flow and baseflow, had a considerable influence on river temperature variability rather than on the overall trend direction. However, decreasing flow probably assisted in a faster river temperature increase in summer and in rivers in NE basins (such as the Elbe basin). The North Atlantic Oscillation Index had a greater significant influence on the winter river temperature variability than on the overall variability. Landscape and basin variables, such as altitude, ecoregion and catchment area, induced spatially variable river temperature trends via affecting the thermal sensitivity of rivers, with the rivers in large catchments and in lowland areas being most sensitive. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Climate and land use changes greatly modify hydrologic regimes. In this paper, we modelled the impacts of biofuel cultivation in the US Great Plains on a 1061‐km2 watershed using the Soil and Water Assessment Tool (SWAT) hydrologic model. The model was calibrated to monthly discharges spanning 2002–2010 and for the winter, spring, and summer seasons. SWAT was then run for a climate‐change‐only scenario using downscaled precipitation and a projected temperature for 16 general circulation model (GCM) runs associated with the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios A2 scenario spanning 2040–2050. SWAT was also run on a climate change plus land use change scenario in which Alamo switchgrass (Panicum virgatum L.) replaced native range grasses, winter wheat, and rye (89% of the basin). For the climate‐change‐only scenario, the GCMs agreed on a monthly temperature increase of 1–2 °C by the 2042–2050 period, but they disagreed on the direction of change in precipitation. For this scenario, decreases in surface runoff during all three seasons and increases in spring and summer evapotranspiration (eT) were driven predominantly by precipitation. Increased summer temperatures also significantly contributed to changes in eT. With the addition of switchgrass, changes in surface runoff are amplified during the winter and summer, and changes in eT are amplified during all three seasons. Depending on the GCM utilized, either climate change or land use change (switchgrass cultivation) was the dominant driver of change in surface runoff while switchgrass cultivation was the major driver of changes in eT. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Water temperature influences most of the physical, chemical and biological properties of rivers. It plays an important role in the distribution of fish and the growth rates of many aquatic organisms. Therefore, a better understanding of the thermal regime of rivers is essential for the management of important fisheries resources. This study deals with the modelling of river water temperature using a new and simplified model based on the equilibrium temperature concept. The equilibrium temperature concept is an approach where the net heat flux at the water surface can be expressed by a simple equation with fewer meteorological parameters than required with traditional models. This new water temperature model was applied on two watercourses of different size and thermal characteristics, but within a similar meteorological region, i.e., the Little Southwest Miramichi River and Catamaran Brook (New Brunswick, Canada). A study of the long‐term thermal characteristics of these two rivers revealed that the greatest differences in water temperatures occurred during mid‐summer peak temperatures. Data from 1992 to 1994 were used for the model calibration, while data from 1995 to 1999 were used for the model validation. Results showed a slightly better agreement between observed and predicted water temperatures for Catamaran Brook during the calibration period, with a root‐mean‐square error (RMSE) of 1·10 °C (Nash coefficient, NTD = 0·95) compared to 1·45 °C for the Little Southwest Miramichi River (NTD = 0·94). During the validation period, RMSEs were calculated at 1·31 °C for Catamaran Brook and 1·55 °C for the Little Southwest Miramichi River. Poorer model performances were generally observed early in the season (e.g., spring) for both rivers due to the influence of snowmelt conditions, while late summer to autumn modelling performances showed better results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

The potential impacts of future climate change on the evolution of groundwater recharge are examined at a local scale for a 546-km2 watershed in eastern Canada. Recharge is estimated using the infiltration model Hydrologic Evaluation of Landfill Performance (HELP), with inputs derived from five climate runs generated by a regional climate model in combination with the A2 greenhouse gas emissions scenario. The model runs project an increase in annual recharge over the 2041–2070 period. On a seasonal basis, however, a marked decrease in recharge during the summer and a marked increase during the winter are observed. The results suggest that increased evapotranspiration resulting from higher temperatures does not offset the large increase in winter infiltration. In terms of individual water budget components, clear differences are obtained for the different climate change scenarios. Monthly recharge values are also found to be quite variable, even for a given climate scenario. These findings are compared with results from two regional-scale studies.
Editor D. Koutsoyiannis; Associate editor M. Besbes  相似文献   

14.
We investigated the influence of recent and future land‐cover changes on stream flow of a watershed northeastern Puerto Rico using hydrological modeling and simulation analysis. Monthly and average annual stream flows were compared between an agricultural period (1973–1980) and an urbanized/reforested period (1988–1995) using the revised Generalized Watershed Loading Function model. Our validated results show that a smaller proportion of rainfall became stream flows in the urbanized/forested period compared with the agricultural period, apparently because of reforestation. Sensitivity analysis of the model showed that evapotranspiration, precipitation, and curve number were the most significant factors influencing stream flow. Simulations of projected land‐cover scenarios indicate that annual stream flows would increase by 9·6% in a total urbanization scenario, decrease by 3·6% in a total reforestation scenario, and decrease by 1·1% if both reforestation and urbanization continue at their current rates to 2020. An imposed hurricane event that was similar in scale to the largest recent event on the three land‐cover scenarios would increase the daily stream flow by 62·1%, 68·4% and 67·1% respectively. Owing to the environmental setting of eastern Puerto Rico, where sea breezes caused by temperature differences between land surface and the ocean dominate the local climate, we suggest that managing local land‐cover changes can have important consequences for water management. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Chen Sun  Li Ren 《水文研究》2014,28(4):2478-2498
Haihe plain is an important food production area in China, facing an increasing water shortage. The water used for agriculture accounts for about 70% of total water resources. Thus, it is critical to optimize the irrigation scheduling for saving water and increasing crop water productivity (CWP). This study first simulated crop yield and CWP for winter wheat and summer maize in historical scenario during 1961–2005 for Haihe plain using previously well‐established Soil and Water Assessment Tool model. Then, scenarios under historical irrigation (scenario 1) and sufficient irrigation (scenario 2) were, respectively, simulated both with sufficient fertilizer. The crop yield in scenario 2 was considered as the potential crop yield. The optimal irrigation scheduling with sufficient fertilizer (scenario 3) was explored by iteratively adjusting irrigation scheduling based on the scenario 1 and previous studies related to water stress on crop growth. Results showed that net irrigation amount was, respectively, reduced 23.1% and 18.8% in scenario 3 for winter wheat and summer maize when compared with scenario 1. The CWP was 12.1% and 8.2% higher with very slight change of crop yield. Using optimal irrigation scheduling could save 8.8 × 108 m3 irrigation water and reduce about 16.3% groundwater over‐exploitation in winter wheat growth period. The corresponding yield was 18.5% and 12.9% less than potential yield for winter wheat and summer maize but using less irrigation water. Therefore, it could be considered that the optimal irrigation was reasonable, which provided beneficial suggestions for increasing efficiency of agricultural water use with sustainable crop yield in Haihe plain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The observed retreat of several Himalayan glaciers and snow packs is a cause of concern for the huge population in southern Asia that is dependent on the glacial‐fed rivers emanating from Himalayas. There is considerable uncertainty about how cryospheric recession in the Himalayan region will respond to climate change, and how the water resource availability will be affected. As a first step towards quantifying the contribution of glacier‐melt water, hydrograph separation of River Ganga at Rishikesh into its constituent components, namely (i) surface runoff, (ii) glacial ice‐melt and (iii) groundwater discharge has been done in this paper. A three‐component mixing model has been employed using the values of δ18O and electrical conductivity (EC) of the river water, and its constituents, to estimate the time‐varying relative fraction of each component. The relative fraction of the surface runoff peaks (70–90%) during winter, due to the near‐zero contribution of glacial ice‐melt, essentially represents the melting of surface snow from the catchment. The contribution of glacial ice‐melt to the stream discharge peaks during summer and monsoon reaches a maximum value of ~40% with an average of 32%. The fraction of groundwater discharge varies within a narrow range (15 ± 5%) throughout the year. On the basis of the variation in the d‐excess values of river water, it is also suggested that the snow‐melt and ice‐melt component has a significant fraction derived from winter precipitation with moisture source from mid‐latitude westerlies (also known as western disturbances). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Evaporation losses from four water catchment areas under different land uses and climatic conditions were calculated using formulations developed from small plot studies. These formulations, dependent on rainfall inputs, potential evaporation and air temperature, were extrapolated to the catchment scale using land classifications based on analysing remotely sensed imagery. The approach adopted was verified by comparing the estimated annual evaporation losses with catchment water use, given by the difference between rainfall inputs and stream flow outputs, allowing for changes in soil moisture. This procedure was repeated using modified values of rainfall, potential evaporation and air temperature, as given by a climate change scenario. The computed evaporation losses were used in annual water balances to calculate stream flow losses under the climate change scenario. It was found that, in general, stream flow from areas receiving high rainfall would increase as a result of climate change. For low rainfall areas, a decrease in stream flow was predicted. The largest actual changes in stream flow were predicted to occur during the winter months, although the largest percentage changes will occur during the summer months. The implications of these changes on potable water supply are discussed. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modelling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid‐based spatially distributed model, Distributed Hydrology Soil Vegetation Model‐Water Quality (DHSVM‐WQ), is an outgrowth of DHSVM that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high‐spatial and high‐temporal resolution. DHSVM‐WQ simulates surface run‐off quality and in‐stream processes that control the transport of non‐point source pollutants into urban streams. We configure DHSVM‐WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here, we focus on total suspended solids (TSS) and total phosphorus (TP) from non‐point sources (run‐off), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely because of substantially increased streamflow and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and climate change together are predicted to significantly increase annual mean streamflow (up to 55%), water temperature (up to 1.9 °C), TSS load (up to 182%) and TP load (up to 74%). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Climate changes brought on by increasing greenhouse gases in the atmosphere are expected to have a significant effect on the Pacific Northwest hydrology during the 21st century. Many climate model simulations project higher mean annual temperatures and temporal redistribution of precipitation. This is of particular concern for highly urbanized basins where runoff changes are more vulnerable to changes in climate. The Rock Creek basin, located in the Portland metropolitan area, has been experiencing rapid urban growth throughout the last 30 years, making it an ideal study area for assessing the effect of climate and land cover changes on runoff. A combination of climate change and land cover change scenarios for 2040 with the semi‐distributed AVSWAT (ArcView Soil and Water Assessment Tool) hydrological model was used to determine changes in mean runoff depths in the 2040s (2030–2059) from the baseline period (1973–2002) at the monthly, seasonal, and annual scales. Statistically downscaled climate change simulation results from the ECHAM5 general circulation model (GCM) found that the region would experience an increase of 1·2 °C in the average annual temperature and a 2% increase in average annual precipitation from the baseline period. AVSWAT simulation shows a 2·7% increase in mean annual runoff but a 1·6% decrease in summer runoff. Projected climate change plus low‐density, sprawled urban development for 2040 produced the greatest change to mean annual runoff depth (+5·5%), while climate change plus higher‐density urban development for 2040 resulted in the smallest change (+5·2%), when compared with the climate and land cover of the baseline period. This has significant implications for water resource managers attempting to implement adaptive water resource policies to future changes resulting from climate and urbanization. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Understanding climate change impacts on hydrological regime and assessing future water supplies are essential to effective water resources management and planning, which is particularly true for the Tibetan Plateau (TP), one of the most vulnerable areas to climate change. In this study, future climate change in the TP was projected for 2041–2060 by a high‐resolution regional climate model, RegCM4, under 3 representative concentration pathways (RCPs): 2.6, 4.5, and 8.5. Response of all key hydrological elements, that is, evapotranspiration, surface run‐off, baseflow, and snowmelt, to future climate in 2 typical catchments, the source regions of Yellow and Yangtze rivers, was further investigated by the variable infiltration capacity microscale hydrological model incorporated with a 2‐layer energy balance snow model and a frozen soil/permafrost algorithm at a 0.25°×0.25° spatial scale. The results reveal that (a) spatial patterns of precipitation and temperature from RegCM4 agree fairly well with the data from China Meteorological Forcing Dataset, indicating that RegCM4 well reproduces historical climatic information and thus is reliable to support future projection; (b) precipitation increase by 0–70% and temperature rise by 1–4 °C would occur in the TP under 3 RCPs. A clear south‐eastern–north‐western spatial increasing gradient in precipitation would be seen. Besides, under RCP8.5, the peak increase in temperature would approach to 4 °C in spring and autumn in the east of the TP; (c) evapotranspiration would increase by 10–60% in 2 source regions due to the temperature rise, surface run‐off and baseflow in higher elevation region would experience larger increase dominantly due to the precipitation increase, and streamflow would display general increases by more than 3% and 5% in the source regions of Yellow and Yangtze rivers, respectively; (d) snowmelt contributes 11.1% and 16.2% to total run‐off in the source regions of Yellow and Yangtze rivers, respectively, during the baseline period. In the source region of Yangtze River, snowmelt run‐off would become more important with increase of 17.5% and 18.3%, respectively, under RCP2.6 and RCP4.5 but decrease of 15.0% under RCP8.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号