首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
西昆仑山大红柳滩断裂一线的新生代熔岩被及其地质意义   总被引:1,自引:0,他引:1  
沿西昆仑山大红柳滩断裂有三处新生代溶岩被,其岩性主要为中—基性喷出岩,形成时代分别为上新世及晚更新世.火山机体呈串珠状沿断裂展布,属陆相中心式喷发类型.各处的喷发次数、喷发强度、喷发性质、岩石化学特征既有共同的特点,也有明显的差异.这些特征与康西瓦深断裂东段的乌鲁克库勒地区及东昆仑南缘深断裂的黑石湖、鲸鱼湖地区的新生代火山活动特征完全可以对比.新生代以来,由于印度板块与欧亚板块强烈碰撞,使青藏高原急剧抬升,高原内部构造进一步复杂化,同时,使大红柳滩断裂产生了近50km的水平位移,形成当今的状况.  相似文献   

2.
中国大陆火山活动对气候与环境影响的研究进展   总被引:1,自引:0,他引:1  
本文简要回顾了我国中、新生代典型中酸性火山活动的气候环境效应的研究进展,重点讨论了新生代长白山天池火山喷发和中生代辽西火山活动对气候环境造成的影响。天池火山气体含量呈现两个相同趋势的旋回式变化,从早到晚,卤化物和H2O呈降低趋势,而硫化物气体呈增加趋势。火山旋回早期富含HF气体导致动物窒息、甚至大批集群死亡;晚期喷出的大量硫化物气体可以形成大规模酸雨和剧毒火山灰云幕,对周围的动植物生长有严重影响。辽西火山气体可分为三种组合,形成酸雨,导致地表温度下降,加速臭氧浓度降低,甚至破坏臭氧层,从而对生物的生存环境造成严重危害。  相似文献   

3.
长白山天池火山——多成因中央式火山   总被引:2,自引:0,他引:2  
长白山天池火山属新生代多成因中央式火山,也是我国最大的一座具潜在危险的活火山。火山主体由早期玄武岩盾、中期粗面岩锥和晚期伊格尼姆岩席组成。天池火山布里尼喷发柱高度最高达25 km,柱体最大宽度为半径12~13 km。天池破火山口塌陷过程可以分为四期,分别位于造锥喷发阶段和造伊格尼姆岩喷发阶段。本文对天池火山未来可能的火山灾害类型及范围也作了初步预测。  相似文献   

4.
基于TM遥感图像解译和野外调研,分析了攀西地区大渡河、安宁河深切河谷地貌特征和断裂带构造变形特征,建立了安宁河断裂带晚新生代5阶段变形历史。研究表明,中新世晚期—上新世早期,安宁河断裂以挤压走滑活动为主;上新世晚期至早更新世时期,断裂以斜张走滑活动为主,活动强度较弱;早中更新世之间发生的元谋运动使昔格达组湖相地层褶皱变形;中晚更新世时期发生断陷作用,形成安宁河两堑夹—垒的构造格局;晚更新世—全新世时期又以左旋走滑活动为主。综合安宁河、大渡河河谷地貌和晚新生代地层记录和变形特征,提出了攀西高原晚新生代4阶段隆升模式:中新世早中期(12Ma之前)以缓慢隆升与区域夷平化作用为主,中新世晚期—上新世早期(12~3.4Ma)是高原快速隆升与河流强烈下切的时期,上新世晚期—早更新世(3.4~1.1Ma)为昔格达湖盆发育时期,中晚更新世—全新世(1.1Ma以来)是高原快速隆升与河谷阶地发育时期。最后指出,至上新世晚期(3.4Ma以前),攀西高原海拔高度可能超过了3000m。  相似文献   

5.
长白山天池老虎洞期火山活动地质特征及成因意义   总被引:6,自引:0,他引:6       下载免费PDF全文
郑祥身  许湘希 《地质科学》1998,33(4):426-434
长白山天池火山老虎洞期火山活动发生在更新世晚期白头山组碱性粗面岩喷发之后,火山活动的产物主要为玄武岩质火山碎屑岩和少量玄武岩质或粗面岩质熔岩;老虎洞组火山岩的稀土元素地球化学特征介于早期玄武岩和气象站组碱流岩两者之间,将二者有机地联系在一起,使整个天池火山岩的演化趋势更加清晰。老虎洞组火山岩的存在充分证明了天池火山的粗面岩类与该区早期的大量玄武岩具有成因联系。长白山天池火山活动的成因并非简单地用西太平洋板块的俯冲作用所能解释的。  相似文献   

6.
Aeromagnetic signatures over the Edward VII Peninsula (E7) provide new insight into the largely ice-covered and unexplored eastern flank of the Ross Sea Rift (RSR). Positive anomalies, 10–40 km in wavelength and with amplitudes ranging from 50 to 500 nT could reveal buried Late Devonian(?)–Early Carboniferous Ford Granodiorite plutons. This is suggested by similar magnetic signature over exposed, coeval Admiralty Intrusives of the Transantarctic Mountains (TAM). Geochemical data from mid-Cretaceous Byrd Coast Granite, contact metamorphic effects on Swanson Formation and hornblende-bearing granitoid dredge samples strengthen this magnetic interpretation, making alternative explanations less probable. These magnetic anomalies over formerly adjacent TAM and western Marie Byrd Land (wMBL) terranes resemble signatures typically observed over magnetite-rich magmatic arc plutons. Shorter wavelength (5 km) 150 nT anomalies could speculatively mark mid-Cretaceous mafic dikes of the E7, similar to those exposed over the adjacent Ford Ranges. Anomalies with amplitudes of 100–360 nT over the Sulzberger Bay and at the margin of the Sulzberger Ice Shelf likely reveal mafic Late Cenozoic(?) volcanic rocks emplaced along linear rift fabric trends. Buried volcanic rock at the margin of the interpreted half-graben-like “Sulzberger Ice Shelf Block” is modelled in the Kizer Island area. The volcanic rock is marked by a coincident positive Bouguer gravity anomaly. Late Cenozoic volcanic rocks over the TAM, in the RSR, and beneath the West Antarctic Ice Sheet exhibit comparable magnetic anomaly signature reflecting regional West Antarctic Rift fabric. Interpreted mafic magmatism of the E7 is likely related to mid-Cretaceous and Late Cenozoic regional crustal extension and possible mantle plume activity over wMBL. Magnetic lineaments of the E7 are enhanced in maximum horizontal gradient of pseudo-gravity, vertical derivative and 3D Euler Deconvolution maps. Apparent vertical offsets in magnetic basement at the location of the lineaments and spatially associated mafic dikes and volcanic rocks result from 2.5D magnetic modelling. A rift-related fault origin for the magnetic lineaments, segmenting the E7 region into horst and graben blocks, is proposed by comparison with offshore seismic reflection, marine gravity, on-land gravity, radio-echo sounding, apatite fission track data and structural geology. The NNW magnetic lineament, which we interpret to mark the eastern RSR shoulder, forms the western margin of the “Alexandra Mountains horst”. This fundamental aeromagnetic feature lies on strike with the Colbeck Trough, a prominent NNW half-graben linked to Late Cretaceous(?) and Cenozoic(?) faulting in the eastern RSR. East–west and north–north–east to NE magnetic trends are also imaged. Magnetic trends, if interpreted as reflecting the signature of rift-related normal faults, would imply N–S to NE crustal extension followed by later northwest–southeast directed extension. NW–SE extension would be compatible with Cenozoic(?) oblique RSR rifting. Previous structural data from the Ford Ranges have, however, been interpreted to indicate that both Cretaceous and Cenozoic extensions were N–S to NE–SW directed.  相似文献   

7.
南天山库车秋里塔格褶皱带三维构造分析   总被引:17,自引:3,他引:17  
笔者利用库车秋里塔格地区3000km的二维地震反射资料,结合地表构造测量成果,分段叙述秋里塔格褶皱带的构造几何学和运动学性质,说明构造交汇部位断层和褶皱的叠加过渡关系,并通过二维构造剖面的组合,建立秋里塔格褶皱带的三维构造几何模型。研究发现秋里塔格褶皱带为浅部断层传播褶皱与深部断层转折褶皱叠加形成的复合型背斜带,深部台阶状逆断层的叠加作用、叠加断层位移量的转换、断层断坡高度的变化造成地表背斜沿走向发生变化,笔者通过测量断层叠加方式、断层位移量转换、断层断坡高度,说明秋里塔格褶皱带背斜叠加、扭曲、分叉现象的构造机理,并且给出了秋里塔格褶皱带断层的滑移量。  相似文献   

8.
The Eocene volcano-sedimentary units of Northern Anatolia are confined into a narrow zone trending parallel to the Intra Pontide and İzmir–Ankara–Erzincan sutures, along which the northern branch of the Neotethys Ocean was closed during a period between Late Maastrichtian and Paleocene. The Middle Eocene formations overlie both the imbricated and highly deformed units of the suture zone, which are Paleocene or older in age, as well as the formations of adjacent continental blocks with a regional disconformity. Therefore, they can be regarded to be post-collisional. These units are composed of subaerial to shallow marine sedimentary beds (i.e. the Örencik formation) at the base and a subaerial volcanic unit (i.e. the Hamamözü formation) in the middle and at the top. This sudden facies change from marine to subaerial environment in the Middle Eocene is a common phenomenon across northern Turkey, implying that a regional uplift event occurred possibly across the suture zone before the initiation of the volcanism during Lutetian. The Middle Eocene lavas span the whole compositional range from basalts to rhyolites and display a calc-alkaline character except for alkaline to mildly-alkaline lavas from the top of the sequence. All lavas display a distinct subduction signature. Our geochemical data indicate that calc-alkaline lavas were derived from a subduction-modified source, whereas alkaline to mildly-alkaline lavas of the late stage were possibly sourced by an enriched mantle domain. Magmas evolved in magma chambers emplaced possibly at two different crustal levels. Magmas in deeper (> 13 km) and possibly larger chambers fractionated hydrous mafic minerals (e.g. amphibole and biotite), two pyroxenes and plagioclase and assimilated a significant amount of crustal material. Intermediate to acid calc-alkaline lavas and pyroclastics were derived from these chambers. Magmas in the shallower chambers, on the other hand (~ < 12 km), crystallized anhydrous mineral assemblages, assimilated little or no crustal material and fed basic to intermediate lavas in the region. Both deep and shallow chambers were periodically replenished by mafic magmas. We argue that a slab breakoff model explains better than any alternative model (i) why the volcanism during the Middle Eocene was confined into a rather narrow belt along the suture zone, (ii) why it initiated almost contemporaneous with a regional uplift after the continental collision event, (iii) why it postdated arc volcanism along the Pontides in the north by 15–20 My, (iv) why it assimilated significant amount of crustal material, and (v) why alkalinity of lavas increased in time.  相似文献   

9.
Cenozoic, mafic alkaline volcanic rocks throughout West Antarctica (WA) occupy diverse tectonic environments. On the Antarctic Peninsula (AP), late Miocene-Pleistocene (7 to <1 Ma) alkaline basaltic rocks were erupted <1 to 45 million years after subduction ceased along the Pacific margin of the AP. In Marie Byrd Land (MBL), by contrast, alkaline basaltic volcanism has been semi-continuous from 25–30 Ma to the present, and occurs in the West Antarctic rift system. Together, these Antarctic tectono-magmatic associations are analogous to the Basin and Range, Sierran, and Coast Range batholith provinces. Unlike the western US, however, basaltic rocks throughout WA have uniform geochemical characteristics, with especially narrow ranges in initial87Sr/86Sr (0.7026–0.7035),143Nd/144Nd (0.51286–0.51299), and La/Nb (0.6–1.4) ratios, suggesting very limited liput from old subcontinental lithosphere or crustal sources during magma genesis. However, there are significant differences in the relative and absolute abundances of the LILE (large-ionlithophile elements), and these divide WA into two provinces. Basalts from the AP region have unusually high K/Ba and K/Rb ratios (50–140 and 500–1500 respectively) and marked Ba depletion (Ba/Nb=2.5–8.0; Ba ppm 66–320) relative to MBL basalts, which have LILE distributions within the range for OIB (ocean-island basalt) (K/Ba <50, Ba/Nb 5–20). This geochemical contrast is accompanied by a three-fold increase in the age range of volcanic activity and a three orders of magnitude increase in the volume of eruptive products, within MBL. The regional differences in geochemistry, and in the volume and duration of volcanic activity, are best explained by a plume-related origin for MBL basalts, whereas alkaline magmatism in the AP is causally related to slab window formation following the cessation of subduction. Plume activity has alreadybeen proposed to explain tectonic doming and associated spatial patterns of volcanism in MBL. Most MBL geochemical traits are shared by the volcanic rocks of the western Ross Sea, suggesting that a large plume head underlies the West Antarctic rift system. The uniformity of basalt compositions throughout WA and the entire rift system suggest uniformly minimal extension throughout this region during late Cenozoic time. Differences in crustal thicknesses can be explained by early Cenozoic or pre-Cenozoic extension, but restraint on extension is suggested by the size of the region and the implied size of the plume. The c. 95% encirclement of the Antarctic plate by mid-ocean ridges and transforms restrains extension on a regional scale, leading to nonadiabatic plume rise and correspondingly little decompression melting.  相似文献   

10.
We present velocity models determined by inverting refracted and reflected arrivals along two active source lines in the Changbaishan volcanic region, NE China. We resolve a prominent low-velocity zone (LVZ) in the crust, with velocities as low as 5.4 km/s. Away from the LVZ, the velocity gradients in the crust are relatively smooth, with average P-wave velocities of about 6.0–6.5 km/s. The Moho is at about 35 km depth, thickening to about 40 km under the Tianchi volcano, and thinning to about 30 km under the LVZ. The LVZ is located about 30–60 km to the north of the summit of the Tianchi volcano (the most recently active volcano in the region), is about 30–75 km in north–south extent, is at most 35 km in east–west extent, and is in the depth range of about 10–25 km below the surface. We use these results to constrain receiver function inversions, and show that the receiver functions in the region are compatible with our findings. With these data alone, the significance of the LVZ in non-unique, although we do not see any evidence to support the presence of partial melt in the crust, and favor the interpretation that the LVZ indicates a residual crustal magma chamber.  相似文献   

11.
新疆东天山康古尔金矿控矿构造特征   总被引:6,自引:1,他引:5  
作者通过构造控矿分析发现,康古尔金矿是受一韧性挤压带控制的中低温岩浆-变质热液型金矿床。成矿作用与控矿韧性挤压带从韧性向脆、韧性变形演化密切相关。本文具体分析了控矿构造类型和构造演化对矿化的控制程序以及矿体定位机制,建立了构造成矿模式指出了找矿方向。   相似文献   

12.
云南腾冲火山岩岩石学特征   总被引:5,自引:0,他引:5       下载免费PDF全文
腾冲火山岩群是我国著名的新生代火山岩群之一。岩相学特征表明,该火山群为典型的钙碱性系列玄武岩—安山岩—英安岩弧火山岩组合。它喷发于晚上新世—晚更新世,但这一时期腾冲地区已为大陆板内环境,腾冲弧火山岩的形成至少在俯冲作用停止以后60Ma,属于一种滞后型弧火山。  相似文献   

13.
The Rhine Rift System (RRS) forms part of the European Cenozoic Rift System (ECRIS) and transects the Variscan Orogen, Permo-Carboniferous troughs and Late Permian to Mesozoic thermal sag basins. Crustal and lithospheric thicknesses range in the RRS area between 24–36 km and 50–120 km, respectively. We discuss processes controlling the transformation of the orogenically destabilised Variscan lithosphere into an end-Mesozoic stabilised cratonic lithosphere, as well as its renewed destabilisation during the Cenozoic development of ECRIS. By end-Westphalian times, the major sutures of the Variscan Orogen were associated with 45–60 km deep crustal roots. During the Stephanian-Early Permian, regional exhumation of the Variscides was controlled by their wrench deformation, detachment of subducted lithospheric slabs, asthenospheric upwelling and thermal thinning of the mantle-lithosphere. By late Early Permian times, when asthenospheric temperatures returned to ambient levels, lithospheric thicknesses ranged between 40 km and 80 km, whilst the thickness of the crust was reduced to 28–35 km in response to its regional erosional and local tectonic unroofing and the interaction of mantle-derived melts with its basal parts. Re-equilibration of the lithosphere-asthenosphere system governed the subsidence of Late Permian-Mesozoic thermal sag basins that covered much of the RRS area. By end-Cretaceous times, lithospheric thicknesses had increased to 100–120 km. Paleocene mantle plumes caused renewed thermal weakening of the lithosphere. Starting in the late Eocene, ECRIS evolved in the Pyrenean and Alpine foreland by passive rifting under a collision-related north-directed compressional stress field. Following end-Oligocene consolidation of the Pyrenees, west- and northwest-directed stresses originating in the Alps controlled further development of ECRIS. The RRS remained active until the Present, whilst the southern branch of ECRIS aborted in the early Miocene. Extensional strain across ECRIS amounts to some 7 km. Plume-related thermal thinning of the lithosphere underlies uplift of the Rhenish Massif and Massif Central. Lithospheric folding controlled uplift of the Vosges-Black Forest Arch.  相似文献   

14.
长白山火山活动历史、岩浆演化与喷发机制探讨   总被引:18,自引:0,他引:18  
广义的长白山火山在我国境内包括著名的天池火山、望天鹅火山、图们江火山和龙岗火山,是我国最大的第四纪火山岩分布区。图们江火山和望天鹅火山活动都始于上新世,喷发活动分别介于上新世—中更新世(5.5~0.19 Ma)和上新世—早更新世(4.77 ~2.12 Ma)。天池火山和龙岗火山属于第四纪火山,喷发活动从早更新世(~2 Ma)持续到全新世。图们江火山岩为溢流式喷发的拉斑玄武岩,望天鹅火山、天池火山和龙岗火山母岩浆都是钾质粗面玄武岩,但经历了不同的演化过程。天池火山和望天鹅火山都经历了钾质粗面玄武岩造盾、粗面岩造锥和晚期碱性酸性岩浆(碱流岩和碱性流纹岩)的喷发;龙岗火山来自地幔的钾质粗面玄武岩浆则未经演化和混染直接喷出地表。图们江火山岩以溢流式喷发的拉斑玄武岩为主,少量玄武质粗安岩等。天池火山造盾之后,地壳岩浆房和地幔岩浆房具互动式喷发特点,来自地幔的钾质粗面玄武岩浆一方面在天池火山锥体内外形成诸多小火山渣锥,另一方面持续补给地壳岩浆房发生岩浆分离结晶作用和混合作用,分别导致双峰式火山岩分布特征和触发千年大喷发。火山岩微量元素和Sr-Nd-Pb同位素示踪揭示,长白山东(图们江火山、望天鹅火山和天池火山)、西(龙岗火山)两区显示地幔非均一性,东区岩浆源区具有软流圈地幔与富集岩石圈地幔混合特征,西区岩浆源区具有相对亏损的较原始地幔特征。西太平洋板块俯冲—东北亚大陆弧后引张是长白山火山活动的动力学机制。  相似文献   

15.
Seismic multi-channel data collected during Norwegian Antarctic Research Expeditions in 1976–1977 and 1978–1979 outline aspects of the Cenozoic depositional environment in the Weddell Sea Embayment. Acoustic basement, probably representing the East Antarctic craton, is exposed in a 50–100 km wide swath along the ice barrier between 78°S–75.5°S on the eastern side of the Crary Trough. The shelf prograded westward and northward from the craton into a subsiding basin colinear with the Transantarctic Mountain Range. Measured sediment thicknesses exceed 5 km. During middle and late Tertiary times a submarine fan complex—the Crary Fan—developed on the southeastern margin of the Weddell Sea Embayment. The glacially eroded Crary Trough is located at the contact between the craton and a sedimentary basin to the west. The entire sedimentary section is undisturbed by faulting or folding, which indicates that any movements related to Cenozoic uplift of the Trans-Antarctic Mountains and/or relative motion of East Antarctica had little effect in the area north of the Filchner Ice Shelf east of 41°W.  相似文献   

16.
长白山天池火山公元1014-1019年大喷发的历史记录   总被引:2,自引:1,他引:2  
崔钟燮  刘嘉麒 《地质论评》2006,52(5):624-627,i0005
长白山火山是世界著名的火山之一,是我国规模最大、最具有潜在喷发危险的一座近代活动火山。目前,国内外许多火山学者为了研究长白山火山最近一次大喷发年代问题,做了大量工作,并取得了一些年代资料,但一直未取得有关这次大喷发历史记载的证实。笔者等通过再次收集和查阅了大量文史古籍资料,通过整理、筛选、考证、对比和分析处理,首次发现了长白山(白头山)火山,于公元1014~1019年间一次大喷发的历史记载。这对于研究长白山火山喷发历史具有重要的意义。  相似文献   

17.
Three conflicting models are currently proposed for the location and tectonic setting of the Eurasian continental margin and adjacent Tethys ocean in the Balkan region during Mesozoic–Early Tertiary time. Model 1 places the Eurasian margin within the Rhodope zone relatively close to the Moesian platform. A Tethyan oceanic basin was located to the south bordering a large “Serbo-Pelagonian” microcontinent. Model 2 correlates an integral “Serbo-Pelagonian” continental unit with the Eurasian margin and locates the Tethys further southwest. Model 3 envisages the Pelagonian zone and the Serbo-Macedonian zone as conjugate continental units separated by a Tethyan ocean that was sutured in Early Tertiary time to create the Vardar zone of northern Greece and former Yugoslavia. These published alternatives are tested in this paper based on a study of the tectono-stratigraphy of a completely exposed transect located in the Voras Mountains of northernmost Greece. The outcrop extends across the Vardar zone, from the Pelagonian zone in the west to the Serbo-Macedonian zone in the east.Within the Voras Massif, six east-dipping imbricate thrust sheets are recognised. Of these, Units 1–4 correlate with the regional Pelagonian zone in the west (and related Almopias sub-zone). By contrast, Units 5–6 show a contrasting tectono-stratigraphy and correlate with the Paikon Massif and the Serbo-Macedonian zone to the east. These units form a stack of thrust sheets, with Unit 1 at the base and Unit 6 at the top. Unstacking these thrust sheets places ophiolitic units between the Pelagonian zone and the Serbo-Macedonian zone, as in Model 3. Additional implications are, first, that the Paikon Massif cannot be seen as a window of Pelagonian basement, as in Model 1, and, secondly, Jurassic andesitic volcanics of the Paikon Massif locally preserve a gneissose continental basement, ruling out a recently suggested origin as an intra-oceanic arc.We envisage that the Almopias (Vardar) ocean rifted in Triassic time, followed by seafloor spreading. The Almopias ocean was consumed beneath the Serbo-Macedonian margin in Jurassic time, generating subduction-related arc volcanism in the Paikon Massif and related units. Ophiolites were emplaced onto the Pelagonian margin in the west and covered by Late Jurassic (pre-Kimmeridgian) conglomerates. Other ophiolitic rocks formed within the Vardar zone (Ano Garefi ophiolite, Unit 4) in latest Jurassic–Early Cretaceous time and were not deformed until Early Tertiary time. The Vardar zone finally sutured in the Early Tertiary creating the present imbricate thrust structure of the Voras Mountains.  相似文献   

18.
火山喷发过程所伴生的地震活动会诱发大量的崩塌滑坡次生灾害,其所造成的人员财产损失甚至超过火山活动本身。2002年以来长白山天池火山区地震活动的异常,表明火山深部的岩浆正在发生变化,天池火山存在喷发的危险。地震崩塌滑坡的危险性区划是降低生命财产损失的有效手段。将火山伴生地震作为崩塌滑坡灾害的诱发因素并据此设置地震参数,利用简化的Newmark累积位移模型,考虑地形因素对地震的放大效应,对长白山地区天池火山喷发下次生崩塌、滑坡灾害的危险性进行评价。通过探讨不同地震震级下的危险性分区结果,认为不同地震参数的设置对危险性分区结果没有影响。将研究区划分为极高、高、中等、低、极低等5个危险等级,其中,极高危险区主要分布在3个区域:以天池口为中心,40km为半径的范围内;沿江乡—两江镇—松江镇条带区域;长白县境内鸭绿江沿岸区域。  相似文献   

19.
Kyushu Island, Japan, is located at the junction of the Southwest Japan arc and the Ryukyu arc. There are two major late Cenozoic epithermal gold-silver provinces in Kyushu, which are termed the Northern and Southern provinces. The provinces are characterized by: 1) Pliocene volcanism dominated by calc-alkaline andesite, followed by Quaternary volcanism including extrusion of both calc-alkaline and tholeiitic magmas; 2) formation of extensional grabens; 3) Pliocene to Pleistocene mineralization, which was dominated by abundant low sulfidation (LS) epithermal deposits with a few high sulfidation (HS) examples. The two epithermal gold-silver provinces have evolved differently since about 5 Ma; the Northern province has exhibited diminished hydrothermal activity from the Pliocene to Pleistocene, whereas the Southern province has witnessed increased hydrothermal activity mainly in easterly and northerly directions. Changes of tectonic setting from the Pliocene to Pleistocene account for the variable trends in epithermal gold deposit formation. Westward oblique subduction of the Philippine Sea plate beneath the Southwest Japan arc caused development of the Hohi graben and arc-related volcanism at about 6 Ma. This was associated with widespread LS mineralization in and surrounding the Hohi graben, as is represented by the Bajo and Taio deposits. The subduction of the relatively buoyant Kyushu-Palau ridge during the early Pliocene strengthened the coupling between the slab and overriding Ryukyu arc, leading to polygenetic andesite volcanism with associated HS (Kasuga, Iwato, and Akeshi) and LS (Kushikino) mineral deposits forming in the Southern province. A change of the subduction direction of the Philippine Sea plate, from west to north-northwest in the early Pliocene, increased the orthogonal convergence rate between the Southwest Japan arc and the Philippine Sea plate, resulting in a decrease of volcanic and hydrothermal activity in the Hohi graben of the Northern province. The more northerly subduction of the Philippine Sea plate shifted the locus of the Kyushu-Palau ridge subduction northward, resulting in underplating of the older (85–60 Ma), negatively buoyant Amami basin oceanic slab in the Southern province, rather than continued subduction of the young (27–15 Ma), buoyant Shikoku basin slab. This replacement caused steepening of the slab angle and slab-rollback in the Southern province, which was associated with regional extension, an eastward shift of the Ryukyu volcanic front, and development of the Kagoshima and Shimabara grabens, as well as the Okinawa trough. Rhyolite and basalt volcanism, in addition to andesite volcanism, have occurred since 2 Ma in the area of the Ryukyu back arc; coincident LS mineralization at Hishikari and Ohkuchi was affiliated with the rhyolite volcanism. Another change of the subduction direction of the Philippine Sea plate to the northwest occurred at 2–1 Ma. The forearc sliver of the Southwest Japan arc shifted westward, in association with right-lateral strike-slip faulting along the Median tectonic line, due to the increase of the westward convergence rate. This shift resulted in shortening and cessation of graben development in the Hohi area, restricting the subsequent volcanism and related hydrothermal activity to the central part of the graben.  相似文献   

20.
张岳桥  杨农  陈文  马寅生  孟晖 《地学前缘》2003,10(4):599-612
中国东西部地貌边界带横跨青藏高原东部与扬子地块,成为我国大陆Ⅰ级构造地貌陡变带和地球物理变异带。根据地表构造形迹的组合特征,地貌边界带由3个主要形变系统组成,从北到南它们是:东昆仑—岷山左旋走滑-冲断系统、龙门山—龙泉山冲断-推覆系统、鲜水河—安宁河左旋走滑-冲断系统等。在综合分析各构造系统的组成、变形特征、变形年代学和演化过程等基础上,提出了青藏东缘晚新生代阶段性构造演化模式。指出,晚中新世至早上新世时期,强烈的走滑-冲断变形主要发生在地貌边界带中南段,导致鲜水河—安宁河走滑-冲断系统和龙门山—龙泉山冲断-推覆系统的形成和发展,而东昆仑—秦岭断裂系则以走滑伸展变形为主,沿西秦岭构造带发育走滑拉分盆地和幔源火山喷发活动。晚上新世—早更新世时期,构造运动性质发生了南北反转,强烈的走滑挤压活动主要集中在北段东昆仑—岷山走滑-冲断系统,岷山隆起带在此时期强烈活动而快速崛起;青藏高原东南缘鲜水河—安宁河走滑断裂系统则以走滑伸展变形为主,在深切河谷中发育了昔格达河湖相沉积。中更新世以来,构造形变系统以挤压剪切为主,兼具正向倾滑活动,局部发生断陷作用。基于攀西地区深切河谷的构造地貌分析,提出了青藏东南缘晚新生代4-阶段隆升模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号