首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-six basalt samples from near East Pacific Rise 13°N are analyzed for major and trace elements. Different types of zoned plagioclase phenocrysts in basalts are also backscatter imaged, and major element profiles scanned and analyzed for microprobe. Basalts dredged from a restricted area have evolved to different extents (MgO=9.38wt%—6.76wt%). High MgO basalts are modeled for crystalliza-tion to MgO of about 7wt%, and resulted in the Ni contents (≈28 ppm) that are generally lower than that in observed basalts (>60 ppm). It suggests that low MgO basalts may have experienced more intensive magma mixing. High MgO (9.38wt%) basalt is modeled for self-"mixing-crystallization", and the high Ni contents in low MgO basalts can be generated in small scale and periodical self-mixing of new magma (high MgO). "Mixing-crystallization" processes that low MgO magmas experienced accord with recent 226Ra/230Th disequilibria studies for magma residence time, in which low MgO magmas have experi-enced more circles of "mixing-crystallization" in relatively longer residence time. Magma mixing is not homogeneous in magma chamber, however, low MgO magmas are closer to stable composition pro-duced by periodical "mixing-crystallization", which is also an important reason for magma diversity in East Pacific Rise. Zoned plagioclase phenocrysts can be divided into two types: with and without high An# cores, both of which have multiple reversed An# zones, suggesting periodical mixing of their host magmas. Cores of zoned plagioclase in low MgO (7.45wt%) basalt differ significantly with their mantle in An#, but are similar in An# with microlite cores (products of equilibrium crystallization) in high MgO (9.38wt%) basalt, which further shows that plagioclase phenocryst cores in low MgO basalts may have formed in their parental magmas before entering into the magma chamber.  相似文献   

2.
In this paper, we show that supercritical fluids have a greater significance in the generation of pegmatites,and for ore-forming processes related to granites than is usually assumed. We show that the supercritical melt or fluid is a silicate phase in which volatiles; principally H_2O are completely miscible in all proportions at magmatic temperatures and pressures. This phase evolves from felsic melts and changes into hydrothermal fluids, and its unique properties are particularly important in sequestering and concentrating low abundance elements, such as metals. In our past research, we have focused on processes observed at upper crustal levels, however extensive work by us and other researchers have demonstrated that supercritical melt/fluids should be abundant in melting zones at deep-crustal levels too. We propose that these fluids may provide a connecting link between lower and upper crustal magmas,and a highly efficient transport mechanism for usually melt incompatible elements. In this paper, we explore the unique features of this fluid which allow the partitioning of variouselements and compounds, potentially up to extreme levels,and may explain various features both of mineralization and the magmas that produced them.  相似文献   

3.
Although rare earth elements(REEs)in magmatic zircons have been widely used to identify the type and compositional evolution of host rocks,REE distribution patterns during the chemical alteration of zircons need clarification.We investigated REE characteristics in zircons with different degrees of chemical weathering through systematic observation of a granodiorite-weathering profile in southeast China.Despite the relatively stable provenance of the studied profile(zircon U–Pb ages are95.2±4.8 Ma),the zircon REEs exhibited systematic differences in abundance and fractionation patterns from the bedrock to upper layers,e.g.∑PREE,(LREE/HREE)_(CN),and Ce/Ce*.This evidence suggests chemical alteration of zircons during intensive chemical weathering and an expected influence on REE variability in the weathered products due to the presence of REE-bearing minerals.  相似文献   

4.
Petrography and geochemistry(major, trace and rare earth elements) of clastic rocks from the Late Palaeozoic Madzaringwe Formation, in the Tshipise-Pafuri Basin, Northern South Africa, have been investigated to understand their provenance. Sandstone petrography and detrital modes indicates that the Late Palaeozoic succession was derived from craton interior and recycled orogen provenance. Sandstones in the Madzaringwe Formation are sub-arkosic to sub-litharenite. The sediments may represent a recycled to craton interior provenance. The geochemical data of major elements show that sandstone and shales have the same source. The study of paleoweathering conditions based on modal composition, chemical index of alteration(CIA) and A-CN-K(Al2O3-Ca O+Na2O-K2O) relationships indicate that probably chemical weathering in the source area and recycling processes have been more important in shale and sandstone rocks. The relatively high CIA values(70–90%) indicates moderate to high weathering conditions of the samples and the paleoclimate of the source area was warm. K2O/Na2 O versus Si O2 and Na2O-Ca O-K2 O tectonic setting discrimination plots, suggest a passive continental margin. In the study of trace elements, triangular Th-Sc-Zr/10 and La-Th-Sc plots both suggest a passive margin setting of the basin. Petrographic and geochemical results of the samples suggest uplifted basement source areas dominated by sedimentary rocks and/or granite-gneiss rocks. The source rocks might have been the recycled pre-Soutpansberg Karoo Supergroup rocks and the metasedimentary rocks of the Soutpansberg Group. Other source rocks may have been the pre-Beit-Bridge basement rocks(granites and gneisses).  相似文献   

5.
Miocene(16―10 Ma) basalts,together with significantly well-preserved fossils(including animal and plant fossils) in the contemporaneously tephra-rich Maar sediments,are located in Shanwang volcanic region,Shandong Province,China.Distribution area of the basaltic eruption products is about 240 km2.Detailed field observations indicate that most of basaltic rocks are fissure eruptive products and some are central eruptives constrained by linear faults.The well-preserved fossils in the lacustrine deposits have been considered to be a result of mass mortalities.Based on physically volcanologic modeling results,eruption column of the basaltic fissure activities in the Shanwang volcanic region is estimated to have entered the stratosphere.Petrographic observations indicate that the basalts have porphyritic textures with phenocrysts of olivine,pyroxene,plagioclase feldspar and alkali feldspar setting in groundmass of plagioclase feldspar,alkali feldspar,quartz,apatite and glass.Based on observations of tephra,tuff and tuffites collected in the Maar sediments of the Shanwang area,we determined major element oxide concentrations and volatile composition of melt inclusions in phenocrysts and matrix glasses by electron microprobe analysis.Volatile(including S,Cl,F and H2O) concentrations erupted into the stratosphere were estimated by comparing pre-and post-eruptive volatile concentrations.Our determination results show that contents of S,Cl,F and H2O emitted into the stratosphere were 0.18%― 0.24%,0.03%―0.05%,0.03%―0.05% and 0.4%―0.6%,respectively,which was characterized by high-S contents erupted.Amounts of volatiles emitted in the Shanwang volcanic region are much higher than those in eruptions which had a substantial effect on climate and environment.According to the com-positions and amounts of the volatiles erupted from the Miocene basaltic volcanism in Shanwang,we propose a hypothesis that volatile-rich basaltic volcanism could result in the mass mortalities by in-jecting volatiles(e.g.,SO2,H2S,HCl,HF and H2O) into the stratosphere that would have triggered abrupt environmental changes(including formation of acid rain,temperature decline,ozone depletion,etc.) and altered lake chemistry,and subsequently volcanic ash fall buried and covered the dead animals and plants,forming well-preserved fossils in Shanwang Maar sediments.  相似文献   

6.
Porphyry copper systems, which provide most of the world's copper resource, are commonly associated with characteristic concentric zonation of alteration and mineralization. In-depth knowledge of the distribution and transport mechanism of elements in the alteration zones is essential for understanding the ore-forming processes. We employed flow-reaction apparatus to simulate the fluid-rock interactions during porphyry ore formation so as to investigate the mechanisms that govern the transport of elements and the development of zonation. The results indicate more heterogeneous distribution of elements in the experimental products at 450°C compared to those at lower temperatures, which implies a crucial role of temperature in controlling elements redistribution in hydrothermal systems. Heating advances potassic alteration and Ca leaching of wall rocks.To achieve the same degree of sodic alteration, it requires a higher concentration of Na+in the fluid toward higher temperature.Temperature also facilitates the incorporation of Ti, Sr and Pb into silicate minerals through cation substitution. We infer from experimental results that from the center of intermediate to mafic volcanic wall rocks toward periphery, the contents of K and Ti should decrease and the contents of Ca, Zn and Mn should increase, whereas the trend for Si and Na could be non-monotonic.This study provides experimental and theoretical insights into a variety of vital geological observations, including anhydrite formation and the widespread development of potassic rather than sodic alteration in porphyry copper deposits.  相似文献   

7.
Major elements and carbon isotopes of dissolved inorganic carbon(DIC)have been measured in the waters of Changbaishan mountain,a volcanic area in northeastern China,between June and September 2016 to decipher the origin of the CO_2 involved in chemical weathering reactions.Spatial variations of major elements ratios measured in water samples can be explained by a change of the chemical composition of the volcanic rocks between the volcanic cone(trachytes)and the basaltic shield as evidenced by the variations in the composition of these rocks.Hence,DIC results from the neutralization of CO_2 by silicate rocks.DIC concentrations vary from 0.3 to 2.5 mmol/L and carbon isotopic compositions of DIC measured in rivers vary from-14.2‰to 3.5‰.At a first order,the DIC transported by rivers is derived from the chemical weathering’s consumption of CO_2 with a magmatic origin,enriched in~(13)C(-5%)and biogenic soil CO_2 with lower isotopic compositions.The highest δ~(13)C values likely result from C isotopes fractionation during CO_2 degassing in rivers.A mass balance based on carbon isotopes suggest that the contribution of magmatic CO_2 varied from less than 20%to more than 70%.Uncertainties in this calculation associated with CO_2 degassing in rivers are difficult to quantify,and the consequence of CO_2 degassing would be an overestimation of the contribution of DIC derived from the neutralization of magmatic CO_2 by silicate rocks.  相似文献   

8.
As a relatively stable craton block in the earth system, the petroliferous basin is influenced by the evolution of the earth system from the early development environment of source rocks, hydrocarbon formation, and reservoir dissolution to hydrocarbon accumulation or destruction. As a link between the internal and external factors of the basin, deep fluids run through the whole process of hydrocarbon formation and accumulation through organic-inorganic interaction. The nutrients carried by deep fluids promote the bloom of hydrocarbon-generating organisms and extra addition of carbon and hydrogen source, which are beneficial to the development of high-quality source rock and enhancement of the hydrocarbon generation potential. The energy carried by the deep fluid promotes the early maturation of the source rock and facilitates the hydrocarbon generation by activation and hydrogenation in high-mature hydrocarbon sources. The dissolution alteration of carbonate rocks and clastic reservoirs by CO_2-rich deep fluids improves the deep reservoir space, thus extending the oil and gas reservoir space into greater depth. The extraction of deeply retained crude oil by deep supercritical CO_2 and the displacement of CH_4 in shale have both improved the hydrocarbon fluidity in deep and tight reservoirs. Simultaneously, the energy and material carried by deep fluids(C, H, and catalytic substances) not only induce inorganic CH_4 formation by Fischer-Tropsch(F-T) synthesis and "hydrothermal petroleum" generation from organic matter by thermal activity but also cause the hydrothermal alteration of crude oil from organic sources. Therefore, from the perspective of the interaction of the earth's sphere, deep fluids not only input a significant amount of exogenous C and H into sedimentary basins but also improve the reservoir space for oil and gas, as well as their enrichment and accumulation efficiencies.  相似文献   

9.
Tin deposits are often closely associated with granitic intrusions. In this study, we analyzed tin partition coefficients between different fluids and melts(D_(Sn)~(aq:fl:=melt))as well as various crystals and melts D_(Sn)~(aq:fl:=melt)(D_(Sn)~(crystal=melt))from the Furong tin deposit associated with the Qitianling A-type granite. Our experimental results indicate that tin partition behavior is affected by the chemical compositions of fluids, melts, and minerals. Tin is prone to partitioning into the residual magma in fractional crystallization or other differential magmatic processes if the magma originated from crustal sources with high alkali content, high volatile content, and low oxygen fugacity. Highly evolved residual peralkaline granitic magma enriched in tin can lead to tin mineralization in a later stage. Furthermore, the volatiles F and Cl in the magma play important roles in tin partitioning behavior. Low F contents in the melt phase and high Cl content in the aqueous fluid phase are favorable factors for tin partitioning in the aqueous fluid phase. High Cl content in the aqueous fluid catalyzes water–rock interaction and leads to the extraction of tin from tinbearing minerals. All these findings support a hydrothermal origin for the tin deposits. In light of the geotectonic setting, petrochemical characteristics, and mineralizing physicochemical conditions of the Furong tin deposit, it is inferred that the ore-forming fluid of the Furong tin ore deposit could have derived from the Qitianling peralkaline intrusion.  相似文献   

10.
Subduction-zone peridotites and their records of crust-mantle interaction   总被引:1,自引:0,他引:1  
Subduction is the core process of plate tectonics. The mantle wedge in subduction-zone systems represents a key tectonic unit, playing a significant role in material cycling and energy exchange between Earth's layers. This study summarizes research progresses in terms of subduction-related peridotite massifs, including supra-subduction zone(SSZ) ophiolites and mantle-wedge-type(MWT) orogenic peridotites. We also provide the relevant key scientific questions that need be solved in the future. The mantle sections of SSZ ophiolites and MWT orogenic peridotites represent the mantle fragments from oceanic and continental lithosphere in subduction zones, respectively. They are essential targets to study the crust-mantle interaction in subduction zones. The nature of this interaction is the complex chemical exchanges between the subducting slab and the mantle wedge under the major control of physical processes. The SSZ ophiolites can record melt/fluid-rock interaction, metamorphism,deformation, concentration of metallogenic elements and material exchange between crust and mantle, during the stages from the generation of oceanic lithosphere at spreading centers to the initiation, development, maturation and ending of oceanic subduction at continental margins. The MWT orogenic peridotites reveal the history of strong metamorphism and deformation during subduction, the multiple melt/fluid metasomatism(including silicatic melts, carbonatitic melts and silicate-bearing C-HO fluids/supercritical fluids), and the complex cycling of crust-mantle materials, during the subduction/collision and exhumation of continental plates. In order to further reveal the crust-mantle interaction using subduction-zone peridotites, it is necessary to utilize high-spatial-resolution and high-precision techniques to constrain the complex chemical metasomatism, metamorphism,deformation at micro scales, and to reveal their connections with spatial-temporal evolution in macro-scale tectonics.  相似文献   

11.
The geochemical characteristics of two sections—the Permian–Triassic boundary(PTB) Guryul Ravine section, Kashmir Valley, Jammu and Kashmir,India; and the Attargoo section, Spiti Valley, Himachal Pradesh, India—have been studied in the context of provenance, paleo-weathering, and plate tectonic setting.These sections represent the siliciclastic sedimentary sequence from the Tethys Himalaya. The PTB siliciclastic sedimentary sequence in these regions primarily consists of sandstones and shales with variable thickness. Present studied sandstones and shales of both sections had chemical index of alteration values between 65 and 74; such values reveal low-to-moderate degree of chemical weathering. The chemical index of weathering in studied samples ranged from 71 to 94, suggesting a minor K-metasomatism effect on these samples. Plagioclase index of alteration in studied sections ranged from 68 to 92, indicating a moderate degree of weathering of plagioclase feldspars. The provenance discriminant function diagram suggests that the detritus involved in the formation of present studied siliciclastic sedimentary rocks fall in quartzose sedimentary and felsic igneous provenances. These sediments were deposited in a passive continental margin plate tectonic setting according to their location on a Si_2 O versus K_2O/Na_2 O tectonic setting diagram.  相似文献   

12.
In this study, we performed an integrated investigation of K and Mg isotopes in hydrothermally altered rocks from the giant Dexing porphyry Cu deposit in China. Both the altered porphyry intrusion and the surrounding wall rocks exhibit large variations in K and Mg isotope compositions, with δ41K values ranging between-1.02‰ and 0.38‰, and δ26Mg values ranging between-0.49‰ and 0.32‰. The δ41K and δ26Mg values of the majority of altered samples are higher than the isotopic baseline values for upper continental crust. We attribute the general increase in δ41 K and δ26Mg in altered rocks to hydrothermal alteration,which caused preferential incorporation of heavy K and Mg isotopes in alteration products, particularly phyllosilicates. However,a few altered samples show anomalously low δ41K and δ26Mg values. The δ41K and δ26Mg values do not correlate with K and Mg concentrations, or mineralogy of altered samples. The variable K-Mg isotope data likely reflect fluids of different physicalchemical properties, or different isotopic compositions. Based on the combined K-Mg isotope data, at least three groups of hydrothermal fluids are distinguished from the Dexing porphyry deposit. Therefore, K-Mg isotopes are potentially a novel tracer for fingerprinting fluids in complex hydrothermal systems.  相似文献   

13.
The Shazi deposit is a large-scale anatase deposit in Qinglong, Guizhou Province. Zircon grains from this deposit yielded a zircon U–Pb age of *259 Ma, representing the formation age of the deposit's parent rocks.This age is identical to the eruption age of the Emeishan large igneous province, indicating a synchronous magmatic event. The rare-earth-element patterns of laterite samples were similar to those of the weathered basalt sample, and sub-parallel to those of the Emeishan high-Ti basalts,implying a genetic relationship between the laterite and the basalt. The Chemical Index of Alteration values of laterite ranged from 96 to 98, suggesting a high degree of weathering. SiO_2, MgO, and alkaline metal elements decreased with increasing degree of weathering, while Al_2O_3, Fe_2O_3,and TiO_2 increased. We found the highest TiO_2 in laterite and the lowest in pillow basalts, indicating that Ti migrated from basalt to laterite.Our U–Pb dating and whole-rock elemental geochemistry analyses suggest that the Emeishan basalt is the parent rock of the Shazi anatase ore deposit.Based on our analysis, we propose a metallogenic model to explain the ore-forming process, in which the karst terrain formed by the Emeishan mantle plume and the subsequent basaltic magma eruption were the key factors in the formation the Shazi anatase ore deposit.  相似文献   

14.
The mineralogical and geochemical characteristics of Fe-oxyhydroxide samples from one dredge station (long. 103°54.48'W, lat. 12°42.30'N, water depth 2655 m) on the East Pacific Rise near lat 13°N were analyzed by XRD, ICP-AES, and ICP-MS. Most Fe-oxyhydroxides are amorphous, with a few sphalerite microlites. In comparison with Fe-oxyhydroxides from other fields, the variable ranges in the chemical composition of Fe-oxyhydroxide samples are very narrow; their Fe, Si, and Mn contents were 39.90%, 8.92%, and 1.59%, respectively; they have high Cu (0.88%―1.85%) and Co (65×10?6―704×10?6) contents, and contain Co Cu Zn Ni> 1.01%. The trace-element (As, Co, Ni, Cu, Zn, Ba, Sr) and major-element (Fe, Ca, Al, Mg) contents of these samples are in the range of hydrothermal sulfide from the East Pacific Rise near 13°N, reflecting that this type of Fe-oxyhydroxide constitutes a secondary oxidation product of hydrothermal sulfide. The Fe-oxyhydroxide samples from one dredge station on the East Pacific Rise near 13°N are lower in ΣREE (5.44×10?6―17.01×10?6), with a distinct negative Ce anomaly (0.12 ― 0.28). The Fe-oxyhydroxide samples have similar chondrite-normalized rare-earth-element (REE) patterns to that of seawater, and they are very different from the REE composition characteristics of hydrothermal plume particles and hydrothermal fluids, showing that the REEs of Fe-oxyhydroxide are a major constituent of seawater and that the Fe-oxyhydroxides can become a sink of REE from seawater. The quick settling of hydrothermal plume particles resulted in the lower REE content and higher Mn content of these Fe-oxyhydroxides, which are captured in part of the V and P from seawater by adsorption. The Fe-oxyhydroxides from one dredge station on the East Pacific Rise near 13°N were formed by secondary oxidation in a low temperature, oxygenated environment. In comparison with the elemental (Zn, Cd, Pb, Fe, Co, Cu) average content of hydrothermal sulfide samples from the East Pacific Rise near 13°N, the Zn, Cd, and Pb contents of the Fe-oxyhydroxides are lower, and their Fe, Co, and Cu contents are higher.  相似文献   

15.
The North China Craton(NCC) hosts numerous gold deposits and is known as the most gold-productive region of China. The gold deposits were mostly formed within a few million years in the Early Cretaceous(130–120 Ma), coeval with widespread occurrences of bimodal magmatism, rift basins and metamorphic core complexes that marked the peak of lithospheric thinning and destruction of the NCC. Stable isotope data and geological evidence indicate that ore-forming fluids and other components were largely exsolved from cooling magma and/or derived from mantle degassing during the period of lithospheric extension. Gold mineralization in the NCC contrasts strikingly with that of other cratons where gold ore-forming fluids were sourced mostly from metamorphic devolatization in compressional or transpressional regimes. In this paper, we present a summary and discussion on time-space distribution and ore genesis of gold deposits in the NCC in the context of the timing, spatial variation, and decratonic processes. Compared with orogenic gold deposits in other cratonic blocks, the Early Cretaceous gold deposits in the NCC are quite distinct in that they were deposited from magma-derived fluids under extensional settings and associated closely with destruction of cratonic lithosphere. We argue that Early Cretaceous gold deposits in the NCC cannot be classified as orogenic gold deposits as previously suggested, rather, they are a new type of gold deposits, termed as "decratonic gold deposits" in this study. The westward subduction of the paleo-West Pacific plate(the Izanagi plate) beneath the eastern China continent gave rise to an optimal tectonic setting for large-scale gold mineralization in the Early Cretaceous. Dehydration of the subducted and stagnant slab in the mantle transition zone led to continuous hydration and considerable metasomatism of the mantle wedge beneath the NCC. As a consequence, the refractory mantle became oxidized and highly enriched in large ion lithophile elements and chalcophile elements(e.g., Cu, Au, Ag and Te). Partial melting of such a mantle would have produced voluminous hydrous, Au- and S-bearing basaltic magma, which, together with crust-derived melts induced by underplating of basaltic magma, served as an important source for ore-forming fluids. It is suggested that the Eocene Carlin-type gold deposits in Nevada, occurring geologically in the deformed western margin of the North America Craton, are comparable with the Early Cretaceous gold deposits of the NCC because they share similar tectonic settings and auriferous fluids. The NCC gold deposits are characterized by gold-bearing quartz veins in the Archean amphibolite facies rocks, whereas the Nevada gold deposits are featured by fine-grained sulfide dissemination in Paleozoic marine sedimentary rocks. Their main differences in gold mineralization are the different host rocks, ore-controlling structures, and ore-forming depth. The similar tectonic setting and ore-forming fluid source, however, indicate that the Carlin-type gold deposits in Nevada are actually analogous to decratonic gold deposits in the NCC. Gold deposits in both the NCC and Nevada were formed in a relatively short time interval(10 Myr) and become progressively younger toward the subduction zone. Younging of gold mineralization toward subduction zone might have been attributed to retreat of subduction zone and rollback of subducted slab. According to the ages of gold deposits on inland and marginal zones, the retreat rates of the Izanagi plate in the western Pacific in the Early Cretaceous and the Farallon plate of the eastern Pacific in the Eocene are estimated at 8.8 cm/yr and 3.3 cm/yr, respectively.  相似文献   

16.
There exists an E-W trending Middle Jurassic volcanic zone in southern China. The Fankeng basalts in the Yongding basin of Fujian Province are considered to be a typical example. The Fankeng basalts have TiO2 contents in the range of 1.92%-3.21%. They are classified as high-Ti basalts. They also have higher total Fe (averaging FeO* = 11.09%). The Middle Jurassic Fankeng basalts from southwestern Fujian have obvious distinctive lithogeochemical features from early Cre- taceous basalts from southeastern coast of China. They have higher HFSE, such as Th, Nb, Ta, Zr and Ti. Their element ratios related with HFSE, such as Zr/Ba, La/Nb, La/Ta ,Zr/Y, Ti/Y, Ba/Nb, K/Ti and Rb/Zr are similar to those of OIB. The most samples have ε Nd(T) of-0.70-0.24, which are near chondrite. Some samples have higher ε Nd(T) of 1.87-3.55.Therefore, these basaltic magmas might be derived from depleted asthenospheric mantle. The lithogeochemical characteristics of the Fankeng basalts may be caused by interaction between asthenosphere and lithosphere at the time. The (Early-) Middle Jurassic basalts and gabbros from southeastern Hunan, southern Jiangxi and northern Guangdong provinces show similar geochemical features to those of the Fankeng basalts from the Yongding of Fujian. Occurrence of these OIB-type basalts in the area may be regarded as the petrological mark of upwelling of asthenosphere at the time. Upwelling of asthenosphere has led to tectonic extension and the formation of rifted basin in the area.  相似文献   

17.
Santanghu area in northeastern Xinjiang region of Northwest China is an important component of the Central Asian Orogenic Belt(CAOB), in which the dynamic mechanism of Permian magmatism is controversial. In Santanghu area is exposed a thick succession of the Middle Permian basalts, including a small amount of picritic basalts and andesites, known as the Tiaohu Formation. The picritic basalts contain cumulate olivine, and have whole-rock Mg# up to 0.68–0.77; the basalts exhibit porphyritic or doleritic textures, and have relatively low Mg# of 0.41–0.54, typical of evolved magmas. The mafic-ultramafic rocks of the Tiaohu Formation are slightly enriched in Light Rare Earth Elements(LREEs), and exhibit negative Nb and Ti anomalies. They also have high Ti O2 content, and Nb/Y and Zr/Yb ratios greater than those of island arc volcanic rocks. Relatively low initial Sr isotopic ratios and high positive εNd(t) and εHf(t) values argue against contamination by ancient continental crust, and suggest formation of the Tiaohu Formation by partial melting of relatively refractory depleted lithospheric mantle that underwent metasomatism and extraction by fluid from the subducted slab. In addition, up to 38% olivine in picritic basalts indicates high-degree partial melting of lithospheric mantle, and the underlying Lucaogou Formation contains fragments of ultra-alkaline magmatic rocks that originated in the deep mantle. These observations imply wide-spread underplating in Santanghu area, which may have been associated with a mantle plume.  相似文献   

18.
A comparative study of the Precambrian Sonakhan(SGB)and Mahakoshal(MGB)greenstones belts of Central India has been undertaken to decipher their provenance,paleoweathering,paleogeography,and tectonics.As compared to the Upper Continental Crust(UCC),the MGB samples are enriched while the SGB samples are depleted in mafic elements indicating the presence of mafic rocks in the source of the MGB.This is complemented by the Ni–Cr diagram.The REE concentrations,LREE fractionated patterns and negative Eu anomalies of the MGB and SGB samples indicate derivation of sediments from a highly fractionated granitic source.Since MGB samples also contain the geochemical signature of mafic rocks,it is,therefore proposed that the MGB clastic load were derived from two sources(mafic+felsic)with arc character.This is attested by Cr and Zr relationships,and LILE enrichment,and HFSE depletion.These features suggest that the SGB developed as autochthonous while the MGB developed as an allochthonous belt.The chemical alteration indices such as chemical index of alteration(CIA),plagioclase index of alteration(PIA),and index of compositional variability for MGB samples indicate that they were dominantly derived as the first cycle(with minor recycled)sediments from bimodal sources(dominantly continental arcs)by intense chemical weathering as compared to the SGB samples,which were derived from felsic sources(dominantly cratonic rocks),and partly by recycling through a low chemical weathering.The CIA and PIA values of the samples reveal a change in the climatic conditions from Late Archean to Late Paleoproterozoic.Such change is interpreted in terms of migration of the Indian plate from high latitudes in the Late Archean to lower latitudes during the Late Paleoproterozoic.This is consistent with the paleomagnetic data that placed India in the configuration of 2.45 Ga Ur and 1.78 Ga Columbia supercontinents.  相似文献   

19.
Feldspar and clastic debris are the most important constituent framework grains of sedimentary clastic rocks and their chemical dissolution plays an essential role in the formation and evolution of the secondary pore in the reservoir rocks. On the basis of thermodynamic phase equilibrium, this study investigates the chemical equilibrium relationships between fluid and various plagioclase and K-feldspar in diagenesis of the sediments, particularly, the impact of temperature and fluid compositions (pH, activity of K+, Na+, Ca2+ and so on) on precipitation and dissolution equilibria of feldspars. Feldspar is extremely easily dissolved in the acid pore water with a low salinity when temperature decreases. The dissolution of anorthite end-member of plagioclase is related to the Ca content of the mineral and the fluid, higher Ca either in the mineral or in the fluid, easier dissolution of the feldspar. Moreover, the dissolution of albite end-member of plagioclase is related to Na of both the mineral and fluid,  相似文献   

20.
Systematic analyses were conducted including the petrographic features, major and trace elements, Sr and Nd isotopic compositions, and mineral structure and compositions of whole rocks. Mid-Pacific Mountain volcanic rocks are mainly phonotephrite with a porphyritic texture. Phenocrysts are mainly composed of Ca-rich plagioclase, clinopyroxene and nepheline.These volcanic rocks are significantly rich in large-ion lithophile and light rare earth elements, without obvious Eu anomalies(δEu=0.99–1.03), and with relatively enriched~(87) Sr/~(86) Sr(0.703829–0.704313) and~(143) Nd/~(144) Nd isotopic ratios(0.512857–0.512871), suggesting that they have similar but more enriched features than the OIB magmatic source. These volcanic rocks may originate from relatively deep magma source with the existence of spinel-garnet Iherzolites, and have undergone partial melting at a low degree of 1–3%. In addition, The residual Nb-Ta minerals(such as sphene, rutile, perovskite) may remain in the mantle source, and the magma components have undergone metasomatism by carbonate melt/fluid or alkali-rich fluid, causing high contents of incompatible elements and significant loss of Nb, Ta and Ti in these volcanic rocks. There are many similarities between the phonotephrites in the Mid-Pacific Mountain and the volcanic rocks in the Line Islands based on the tectonic settings and the geochemical characteristics. We thus speculate that Site 313 volcanic rocks in the Mid-Pacific Mountain is most likely to be a continuation of the Line Islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号