首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
弹塑性地震反应谱的长周期特性研究   总被引:3,自引:1,他引:3  
在基于性能抗震设计中弹塑性反应谱在计算结构地震位移反应方面越来越受到重视。利用统计分析方法研究了等强度的延性需求谱和等延性的强度折减系数谱的长周期(至5 s)区段的特性,关注的重点是等位移准则和场地条件影响。给出了若干具有工程价值的结论:一是周期介于1.5Tg(地震动特征周期)和2.5 s之间的结构可近似认为等位移准则成立且与场地条件关系不大,这样确定的强度折减系数当位移延性系数小于等于4时结果将是偏于安全的;二是结构周期大于2.5 s后以硬土场地等延性强度折减系数谱或等强度延性需求谱代替软土场地谱求解系统强度需求或延性需求,将会得到偏于安全的结果。  相似文献   

2.
The inelastic seismic response behaviour for a range of simplified single-degree-of-freedom models has been analysed using 180 random phase angle synthetic accelerograms with different frequency contents and different durations and 105 real accelerograms collected from different regions worldwide. Results from the analyses have identified that the frequency content of the excitation can greatly influence the ductility demand ratio due to inelastic amplification effects. Consequently, results derived from intraplate earthquake records (typically of higher frequency content) were generally different to those from interplate records. However, the commonly used El Centro accelerogram has significantly lower ductility demand in the low period range than the average of records with similar elastic response spectral shape. Apart from this, there was little evidence to suggest any inherent differences in the inelastic response behaviour of buildings from intraplate and interplate earthquakes which possessed similar frequency content. Thus, the average ductility demand ratios from future earthquakes in an area can be predicted by interpolation of the results presented in this paper assuming the elastic response spectrum has been defined. Ductility demand ratios derived from the synthetic accelerograms and the real accelerograms with similar frequency content have been shown to be consistent. However, results from synthetic records derived for the idealised code design spectra (such as the Uniform Building Code and the Australian Standard AS1170.4) indicate a significantly higher ductility demand in the long period range.  相似文献   

3.
In displacement-based seismic design, inelastic displacement ratio spectra (IDRS) are particularly useful for estimating the maximum lateral inelastic displacement demand of a nonlinear SDOF system from the maximum elastic displacement demand of its counterpart linear elastic SDOF system. In this study, the characteristics of IDRS for near-fault pulse-type ground motions are investigated based on a great number of earthquake ground motions. The in? uence of site conditions, ratio of peak ground velocity (PGV) to peak ground acceleration (PGA), the PGV, and the maximum incremental velocity (MIV) on IDRS are also evaluated. The results indicate that the effect of near-fault ground motions on IDRS are signifi cant only at periods between 0.2 s - 1.5 s, where the amplifi cation can approach 20%. The PGV/PGA ratio has the most signifi cant in? uence on IDRS among the parameters considered. It is also found that site conditions only slightly affect the IDRS.  相似文献   

4.
The objective of this paper is to present ground-motion prediction equations for ductility demand and inelastic spectral displacement of constant-strength perfectly elasto-plastic single-degree-of-freedom (SDOF) oscillators. Empirical equations have been developed to compute the ductility demand as a function of two earthquake parameters; moment magnitude, and source-to-site distance; one site parameter, the ground type; and three oscillator parameters, an undamped natural period, critical damping ratio, and the mass-normalized yield strength. In addition, a comparative study of the proposed model with selected previous studies and recommendations of Eurocode 8 is presented. Proposed equations can easily be incorporated in existing probabilistic seismic hazard analysis (PSHA) software packages with the introduction of an additional parameter. This leads to hazard curves for inelastic spectral displacement, which can provide better estimates of target displacement for nonlinear static procedures and an efficient intensity measure for probabilistic seismic demand analysis (PSDA). Proposed equations will be useful in performance evaluation of existing structures.  相似文献   

5.
Our previous studies show that site effects (amplification of rock motions), source and path effects are coupled when response spectra are used to characterize the amplification ratios for a soil site modelled as nonlinear or elastic. The coupling is referred to as a “side effect” of using response spectral amplification ratios. In the present study we use a suite of rock site records, well distributed with respect to magnitude and source distance, from crustal, subduction interface and slab earthquakes to evaluate the response spectral amplification ratio for soft soil sites. We compare these side-effects for ground motions generated by three types of earthquakes, and we find that, at periods much shorter or much longer than the natural period of a soil site modelled as elastic, the average amplification ratios with respect to rock site ground motions from three types of earthquakes are moderately different and are very similar for other spectral periods. These differences are not statistically significant because of the moderately large scatter of the amplification ratios. However, the extent of magnitude- and source-distance-dependence of amplification ratios differs significantly. After the effects of magnitude and source distance on the amplification ratios are accounted for, the differences in amplification ratios between crustal and subduction earthquake records are very large in some particular combinations of source distance and magnitude range. These findings may have potential impact in establishing design spectra for soft soil sites using strong motion attenuation models or numerical modelling.  相似文献   

6.
A procedure for incorporating record‐to‐record variability into the simplified seismic assessment of RC wall buildings is presented. The procedure relies on the use of the conditional spectrum to randomly sample spectral ordinates at relevant periods of vibration. For inelastic response, displacement reduction factors are then used to relate inelastic displacement demand to the spectral displacement at the effective period for single‐degree‐of‐freedom systems. Simple equations are used to convert back and forth between multi‐degree‐of‐freedom RC wall buildings and equivalent single‐degree‐of‐systems so that relevant engineering demand parameters can be obtained. Consideration is also given to higher‐mode effects by adapting existing modal combination rules. The proposed method is applied to several case study buildings, showing promising results in the examination of inter‐storey drift ratio and shear forces. The proposed method captures the variation in the distribution of structural response parameters that occurs with variations in structural configuration, intensity, engineering demand parameter of interest and site characteristics. Discussion is provided on possible ways to improve the accuracy of the procedure and suggestions for additional future work. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
当前,合理确定地震动峰值加速度与反应谱特征周期是工程场地地震动参数确定工作的主要内容。本文以北京地区典型中硬场地为研究对象,分析场地条件对不同周期地震动反应谱值的影响。首先,计算不同震级、震中距条件下的基岩地震动加速度反应谱,合成基岩输入地震动时程;再利用110个工程场地的钻孔资料进行土层地震反应计算,分析中硬场地条件对不同输入环境下的地震动加速度反应谱值的放大效应。结果表明,中硬场地对高、中频震动放大效应明显,尤其是对0.2-0.5s周期段地震动加速度反应谱值的放大倍数大多在1.3以上;场地覆盖层厚度变化对不同频段地震动加速度反应谱值的放大倍数所产生的影响是不同的,与场地自振周期的相关性很强;在不同的地震动输入环境下,中硬场地对不同频段地震动加速度反应谱的影响是不同的,这一结论对实际的抗震设防工作具有一定参考价值。  相似文献   

8.
工程结构等延性地震抗力谱研究   总被引:28,自引:7,他引:21  
研究结构的非弹性反应谱对改进现有的结构抗震设计、发展基于性态的抗震设计以及了解复杂地面运动特性与结构动力特性之间的关系具有重要的意义。利用大量的单自由度在强震记录作用下的弹塑性动力时程分析,对等延性地震抗力谱这一重要的非弹性反应谱进行了较为详尽的研究,给出了四类场地条件(基岩、硬土、一般土和软土)下的平均等延性地震抗力谱,总结了对工程结构的抗震设计和研究具有实际意义的规律和特征,并分析了场地条件、结构的延性系数以及周期等对等延性地震抗力谱的影响,提出了新的拟合公式,其成果可供抗震研究和设计直接应用。  相似文献   

9.
A probabilistic approach to estimate maximum inelastic displacement demands of single‐degree‐of‐freedom (SDOF) systems is presented. By making use of the probability of exceedance of maximum inelastic displacement demands for given maximum elastic spectral displacement and the mean annual frequency of exceedance of elastic spectral ordinates, a simplified procedure is proposed to estimate mean annual frequencies of exceedance of maximum inelastic displacement demands. Simplifying assumptions are thoroughly examined and discussed. Using readily available elastic seismic hazard curves the procedure can be used to compute maximum inelastic displacement seismic hazard curves and uniform hazard spectra of maximum inelastic displacement demands. The resulting maximum inelastic displacement demand spectra provide a more rational way of establishing seismic demands for new and existing structures when performance‐based approaches are used. The proposed procedure is illustrated for elastoplastic SDOF systems having known‐lateral strength located in a region of high seismicity in California. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Attenuations of the vertical and horizontal response spectra of the 17 October 1989 Loma Prieta, California, earthquake are developed through analyses of the ground motion at 53 sites within a 100 km radius of the source. The analyses are performed on the spectral ordinates for 16 incremental periods ranging from 0.05 to 2.0 sec. The response spectra are modelled empirically for two different site conditions characterized by rock and stiff-soil geologies. Data analysis is performed by the application of a non-linear multivariate regression procedure allowing for distance and site factor as independent variables. Variation of the vertical-to-horizontal (V/H) spectral ratios with wave frequency and distance shows the same behaviour as observed previously in the widely separated geographic regions of northeastern Taiwan and east-central Iran. The predicted ratios at sites underlain by stiff soil are generally higher than the commonly used value of 2/3 at high frequencies ( > 5 Hz) in the near-source region (R < 30 km), but reduce to 1/2 or less at longer periods and farther distances. This behaviour is also observed at rock sites; however, it is somewhat less pronounced. With a faster attenuation of spectral ordinates at higher frequencies, the shape of the response spectrum is found to change with distance. As expected, the spectral attenuation with distance is generally higher for the vertical spectrum than for the horizontal spectrum. The difference is particularly significant at the higher-frequency end of spectrum. Site amplification factors for stiff soil with respect to rock geology varies between 1.17 and 1.72 for horizontal spectrum and 1.01 and 1.81 for vertical spectrum. Spectral amplifications at four sites underlain by soft soil and artificial fill, are also evaluated. This is done by a comparison of the observed spectra with those predicted for rock geology at corresponding distances. As expected, the resulting amplification factors at soft-soil sites show significant increase relative to those at sites underlain by rock.  相似文献   

11.
An investigation on the validity of the conventional design approach known as constant displacement ductility is carried out. The hysteretic behaviour described by the Modified Takeda model is taken to represent the characteristics of reinforced concrete structural systems. The results presented in the form of seismic damage spectra indicate that the conventional design approach may not be valid because cumulative damage is excessively high. The inelastic design spectra based on the constant‐damage concept are proposed in terms of simplified expressions. The expressions are derived from constant‐damage design spectra computed by non‐linear response analysis for SDOF systems subjected to ground motions recorded on rock sites, alluvium deposits, and soft‐soil sites. The proposed expressions, which are dependent on the local soil conditions, are functions of target seismic damage, displacement ductility ratio and period of vibration. The seismic damage of structures that have been designed based on this new design approach is also checked by a design‐and‐evaluation approach. The results are found to be satisfactory. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
A method is presented to quantify the inelastic seismic resistance of reinforced concrete stack-like structures by non-linear earthquake analysis. The deformed configuration of stack is idealized as an assemblage of beam elements and actual stress–strain relationships of concrete and reinforcing steel are used to evaluate element matrices. Repeated non-linear analyses are performed by gradually increasing the intensity of acceleration time histories to a level where collapse of the stack is observed in primary stresses. The set of time histories thus obtained are then used to define the ultimate intensity of ground motion that the stack can sustain if inelastic deformations are permitted. A procedure is presented to quantify the difference between inelastic seismic resistance and elastic seismic resistance in terms of displacement ductility capacity factors. For seismic design using available inelastic resistance, values of curvature ductility factor demand for the cross-sections of stacks are also presented. © 1997 by John Wiley & Sons, Ltd.  相似文献   

13.
In this paper,according to the relationship of observation spectrum with source spectrum,travel-path attenuationfactor and site effect,we use the digital seismic data of moderate-small earthquakes to invert the soft rock site ef-fect and S wave inelastic attenuation under the constraint of site effect,and determine the parameters of path andsite.The parameters obtained by this method exclude the topographic effect of seismic stations,and truly reflectthe seismic effect of free soft rock sites and the S wave inelastic attenuation in the studied region.The average softrock site effect is about 1.5 times in the frequency domain of 2~4 Hz and the S wave quality factor is obtained asQS=278 f0.346,which can be directly applied to the stochastic modeling of ground motions in the studied region.  相似文献   

14.
北天山地区S波非弹性衰减和场地效应研究/   总被引:2,自引:0,他引:2       下载免费PDF全文
采用中小地震的数字观测资料,依据地震观测谱和震源谱、传播路径衰减因子及场地效应的关系式,在对场地效应约束的条件下,反演S波非弹性衰减和软基岩场地效应,确定研究区路径、 场地参数. 该方法确定的参数, 避免了台站地形效应的影响,真实地反映了研究区自由软基岩场地的地震效应和传播路径非弹性衰减的影响. 研究区的平均软基岩场地效应, 在2~4 Hz频率范围为1.5倍左右; S波品质因子为QS=278 f 0.346.这些参数可以直接用于研究区的地面运动随机模拟.   相似文献   

15.
延性需求谱在基于性能的抗震设计中的应用   总被引:23,自引:4,他引:19  
基于性能的抗震设计理论涉及如何简便而合理地确定结构在指定强度地震下的弹塑性位移需求。本文给出了利用延性需求谱求解结构位移需求的一般步骤:借助模态Pushover分析将多自由度体系分解为几个非线性单自由度体系,以考虑各阶振型的影响;利用延性需求谱计算对应模态的等效单自由度体系的延性及位移需求,并以一定方式组合转化为多自由度体系位移需求。最后,通过算例分析表明:利用延性需求谱求解结构位移需求是一种具有一定精度可为工程接受的简便方法,在基于性能的抗震设计中具有较好的应用前景。  相似文献   

16.
江苏地区介质非弹性衰减和场地响应研究   总被引:1,自引:0,他引:1  
选取江苏数字地震台网在2001年1月-2010年7月记录到43次高质量数字地震波形,采用Atkinson(1992)和Moya(2000)的方法,反演得到江苏地区的介质非弹性衰减特性和场地响应.  相似文献   

17.
In order to determine the effect of geometry on the ground response of 2-dimensional (2-D) basins filled with soils that can develop nonlinear response, we use three basin models with width/depth ratios 3, 6 and 10. The three basins are subjected to a suite of rock site records with various magnitudes and source distances. We compute response spectral amplification ratios at four locations on the surface of the 2-D basins, and determine the average variation of the amplification ratios with respect to excitation spectra, for peak ground acceleration (PGA) and 3 spectral periods of 0.2, 0.5, 1 s. Similarly, we compute the average response spectral amplification ratios for two 1-dimensional (1-D) nonlinear models, one having the soil profile at the basin centre and the other having a soil profile at half the depth of the basin. From the relationship between the average amplification ratios and excitation spectra, we determine the cross-over point in terms of excitation spectral values that separate the amplification range from the deamplification range. Our results show that the cross-over point varies significantly from one location to another on the ground surface and from one basin to another, in a range of 0.3–1.1g for PGA. The effects of basin geometry are very strong at weak and moderate excitation, but decrease with increasing excitation spectra in a significant portion around the basin centre. Our results provide some justification for using 1-D models for 2-D basins with a width/depth ratio ?6 if the soil site is subjected to strong ground shaking.  相似文献   

18.
Structures undergoing inelastic displacements during earthquake ground motions are known to sustain some amount of residual displacements, which may make those unusable or unsafe. In this study an attempt is made to estimate residual displacements for elastic-perfectly-plastic single-degree-of-freedom oscillators with a given ductility ratio. Such oscillators belong to the class of bilinear hysteresis models applicable to steel structures, with post-yield-stiffness ratio taken as zero, and may be used for the conservative estimates of residual displacements when the post-yield-stiffness ratio is unlikely to become negative. Statistical estimation of residual displacement spectrum via normalization with respect to inelastic or elastic spectral displacements is considered and expressions are proposed for both types of normalizations. The statistical dependence of residual displacement on the seismological and site parameters and strong motion duration is also studied and a simple scaling model is proposed in terms of earthquake magnitude, epicentral distance, and geologic site condition parameter for the seismic region of western U.S.A. According to this model, the variation of residual displacement with period primarily depends on the site conditions, and the residual displacements are more sensitive to ductility ratio at low ductility ratios.  相似文献   

19.
We investigate a special type of variability in response spectral amplification ratios computed from numerical “engineering” models for a soft soil site. The engineering models are defined by shallow soil layers over “engineering” bedrock with a shear-wave velocity over 600–700 m/s and the model is subjected to vertical propagating shear waves. The variability, perhaps unique in earthquake engineering, is a result of the “perfectly accurate” computational procedure. For example, an engineering soil site model, subjected to two rock site records or the two horizontal components of a rock site record, produces different response spectral amplification ratios. We use a large number of strong-motion records from “engineering” rock sites, with a reasonably balanced distribution with respect to magnitude and source distance, generated by subduction earthquakes in Japan, to investigate the nature of the variability. In order to avoid any approximation in removing the effect of soil nonlinear response, we use a simple model, a single horizontal soil layer over a bedrock, modelled as elastic. We then demonstrate that a similar type of variability observed in the one- or two-dimensional nonlinear soil models is caused by the nature of response spectral amplification ratios, not a direct result of soil nonlinear response. Examination of variability reveals that the average of response spectral amplification ratios systematically depends on both earthquake magnitude and source distance. We find that, at periods much longer than the site natural periods of the soil sites, the scatter of the amplification ratios decreases with increasing magnitude and source distance. These findings may have a potential impact in establishing design spectra for soft soil sites using strong-motion attenuation models or dynamic numerical modelling.  相似文献   

20.
An energy-based methodology for the assessment of seismic demand   总被引:4,自引:0,他引:4  
A methodology for the assessment of the seismic energy demands imposed on structures is proposed. The research was carried out through two consecutive phases. Inelastic design input energy spectra for systems with a prescribed displacement ductility ratio were first developed. The study of the inelastic behavior of energy factors and the evaluation of the response modification in comparison with the elastic case were performed by introducing two new parameters, namely: (1) the Response Modification Factor of the earthquake input energy (RE), representing the ratio of the elastic to inelastic input energy spectral values and (2) the ratio α of the area enclosed by the inelastic input energy spectrum in the range of periods between 0.05 and 4.0 s to the corresponding elastic value. The proposed design inelastic energy spectra, resulting from the study of a large set of strong motion records, were obtained as a function of ductility, soil type, source-to-site distance and magnitude.Subsequently, with reference to single degree of freedom systems, the spectra of the hysteretic to input energy ratio were evaluated, for different soil types and target ductility ratios. These spectra, defined to evaluate the hysteretic energy demand of structures, were described by a piecewise linear idealization that allows to distinguish three distinct regions as a function of the vibration period. In this manner, once the inelastic design input energy spectra were determined, the definition of the energy dissipated by means of inelastic deformations followed directly from the knowledge of hysteretic to input energy ratio.The design spectra of both input energy and hysteretic to input energy ratio were defined considering an elasto-plastic behavior. Nevertheless, other constitutive models were taken into account for comparison purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号