首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Although the terrane concept emerged from the study of northern hemisphere active continental margins and orogenic belts, it is largely in the Southern Hemisphere, in particular in relation to the Gondwana supercontinent, where it has seen its fullest flowering. New data continue to emerge, and new models and techniques are being actively developed. For these reasons, “Terrane Processes at the Pacific-margin of Gondwana”  相似文献   

2.
In an attempt to elucidate their ages, the often incomplete and poorly known early Permian marine faunas and sequences of India, Tibet, Pakistan, Afghanistan, Iran and Oman are compared with those of the Perth, Carnarvon and Canning Basins of Western Australia, where faunas are documented and in sequence, and stratigraphic relationships between units are clear. This comparison indicates that the faunas discussed are Latest Asselian or younger in age, and that most of the underlying glacial beds are probably Early Permian (Asselian) in age. By implication, the Permo‐Carboniferous boundary for Gondwana is considered to lie at or near the base of Unit II/Stage 2 and equivalent palynomorph zones throughout Gondwana.  相似文献   

3.
Different hypotheses have been proposed to account for the geologic evolution of the southwestern margin of Gondwana in the Early Paleozoic, involving accretion and displacement of different terranes in a protracted convergent margin. In order to constrain and understand the kinematic and paleogeographic evolution of the Pampia terrane a paleomagnetic study was carried out in different Cambrian to Devonian units of the Eastern Cordillera (Cordillera Oriental) and the Interandean Zone (Interandino) of NW Argentina. Paleomagnetic poles from the Campanario Formation (Middle to Upper Cambrian): 1.5°N 1.9°E A95 = 9.2° K = 37.46 N = 8; and Santa Rosita Formation (Lower Ordovician): 8.6°N 355.3°E A95 = 10.1° K = 26.78 n = 9, representative of the Pampia terrane, are interpreted to indicate a Late Cambrian significant displacement with respect to the Río de la Plata and other Gondwana cratons. A model, compatible with several geological evidences that explains this displacement in the framework of the final stages of Gondwana assembly is presented. We propose a simple dextral strike-slip kinematic model in which Pampia and Antofalla (? Arequipa?) blocks moved during Late Cambrian times from a position at the present southern border of the Kalahari craton into its final position next to the Rio de la Plata craton by the Early Ordovician.  相似文献   

4.
正Introduction The rectangular block of Proterozoic formation lying between north of the Singhbhum Mobile Belt(SMB,2.3-2.4 Ga,Saha 1994),Neogene sediments of the Bengal basin and the Quaternary-Recent alluvium of the Ganga  相似文献   

5.
《International Geology Review》2012,54(16):2046-2064
ABSTRACT

The Jebel Ja’alan and Qalhat inliers of Oman represent the easternmost exposures in the Arabian peninsula of the Neoproterozoic basement associated with the East African Orogen (EAO) and the assembly of East and West Gondwana. These inliers expose tonalitic gneisses and metasediments intruded by granodiorites and granites of the Ja’alan batholith. Zircons from the gneisses yield U–Pb SIMS ages of ca. 900–880 Ma, which are interpreted as crystallization ages. These represent the oldest magmatic events associated with the closure of the Mozambique Ocean reported to date. Zircon of this age is also the dominant component in the metasediments. The Ja’alan batholith yields ages of ca. 840–825 Ma. Nd isotopes indicate that both the gneisses and the batholith range from juvenile to slightly more evolved, with εNd(t) of +6 to +1.5 interpreted to reflect variable contamination by older, evolved continental material; this is also indicated by >900 Ma detrital zircon from the metasediments. The Nd data also contrast with the uniformly juvenile signature of younger, ca. 840 Ma, rocks of the Marbat region of southern Oman that lie structurally to the west. The Ja’alan and Qalhat inliers thus document eastward increasing age and continental influence, consistent with the progressive development of arc rocks onto the western margin of East Gondwana, although the location and nature of the eastern continental block remain elusive.  相似文献   

6.
Carbon isotope compositions of both sedimentary carbonate and organic matter can be used as key proxies of the global carbon cycle and of its evolution through time,as long as they are acquired from waters where the dissolved inorganic carbon(DIC)is in isotope equilibrium with the atmospheric CO2.However,in shallow water platforms and epeiric settings,the influence of local to regional parameters on carbon cycling may lead to DIG isotope variations unrelated to the global carbon cycle.This may be especially true for the terminal Neoproterozoic,when Gondwana assembly isolated waters masses from the global ocean,and extreme positive and negative carbon isotope excursions are recorded,potentially decoupled from global signals.To improve our understanding on the type of information recorded by these excursions,we investigate the pairedδ^13Ccarb andδ^13Corg evolution for an increasingly restricted late Ediacaran-Cambrian foreland system in the West Gondwana interior:the basal Bambui Group.This succession represents a 1~(st)-order sedimentary sequence and records two majorδ^13Ccarb excursions in its two lowermost lower-rank sequences.The basal cap carbonate interval at the base of the first sequence,deposited when the basin was connected to the ocean,hosts antithetical negative and positive excursions forδ^13Ccarb andδ^13Corg,respectively,resulting inΔ^13C values lower than 25‰.From the top of the basal sequence upwards,an extremely positiveδ^13Ccarb excursion is coupled toδ^13Corg,reaching values of+14‰and-14‰,respectively.This positive excursion represents a remarkable basin-wide carbon isotope feature of the Bambui Group that occurs with only minor changes inΔ^13C values,suggesting change in the DIC isotope composition.We argue that this regional isotopic excursion is related to a disconnection between the intrabasinal and the global carbon cycles.This extreme carbon isotope excursion may have been a product of a disequilibria between the basin DIC and atmospheric CO2 induced by an active methanogenesis,favored by the basin restriction.The drawdown of sulfate reservoir by microbial sulfate reduction in a poorly ventilated and dominantly anoxic basin would have triggered methanogenesis and ultimately methane escape to the atmosphere,resulting in a^13C-enriched DIC influenced by methanogenic CO2.Isolated basins in the interior of the Gondwana supercontinent may have represented a significant source of methane inputs to the atmosphere,potentially affecting both the global carbon cycle and the climate.  相似文献   

7.
Elemental and organic geochemical studies have been carried out on the Gondwana sediments, collected from the outcrops of Permian and Jurassic–Cretaceous rocks in the Krishna–Godavari basin on the eastern coast of India, to understand their paleo and depositional environment and its implications for hydrocarbon generation in the basin. Amongst the studied formations, the Raghavapuram, Gollapalli and Tirupati form a dominant Cretaceous Petroleum System in the west of the basin. Raghavapuram shales and its stratigraphic equivalents are the source rock and Gollapalli and Tirupati sandstones form the reservoirs, along with basaltic Razole formation as the caprock. Major element systematics and X-ray diffraction study of the sandstones indicate them to be variably enriched with SiO2 relative to Al2O3 and CaO, which is associated, inherently with the deposition and diagenesis of the Gondwana sediments. Post-Archean Average Shale normalized rare earth elements in shales show enrichment in most of the samples due to the increasing clay mineral and organic matter assemblage. A negative europium and cerium anomaly is exhibited by the REE's in majority of rocks. Composed primarily of quartz grains and silica cement, the Gollapalli and Tirupati sandstones have characteristics of high quality reservoirs. The shales show a significant increase in the concentration of redox sensitive trace elements, Ni, V, Cr, Ba and Zn. The total organic carbon content of the shales ranges between 0.1 and 0.5 wt%. Programmed pyrolysis of selected samples show the Tmax values to range between 352–497 °C and that of hydrogen index to be between 57–460 mgHC/gTOC. The organic matter is characterized by, mainly, gas prone Type III kerogen. The n-alkane composition is dominated by n-C11–C18 and acyclic isoprenoid, phytane. The aromatic fraction shows the presence of naphthalene, anthracene, phenanthrene, chrysene and their derivatives, resulting largely from the diagenetic alteration of precursor terpenoids. The organic geochemical proxies indicate the input of organic matter from near-shore terrestrial sources and its deposition in strongly reducing, low oxygen conditions. The organic matter richness and maturity derived from a favorable depositional setting has its bearing upon the Gondwana sediments globally, and also provides promising exploration opportunities, particularly in the Raghavapuram sequence of the KG basin.  相似文献   

8.
Syn-rift deposits often provide the only means to determine the chronology of rift initiation and evolution. However, the earliest syn-rift packages deposited in Jurassic – Cretaceous rift basins that formed during the breakup of SW Gondwana are poorly understood because they are deeply buried beneath overlying passive margin sequences. The exhumed remnants of several such rift basins are exposed in the southern Cape of South Africa and contain the Suurberg and Uitenhage groups, which are predominantly continental, taphrogenic, fossiliferous strata interbedded with volcaniclastics. Here we present the first robust U–Pb chronostratigraphic framework for these groups by dating zircon in nine pyroclastic and five resedimented volcaniclastic deposits using Laser Ablation – Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). To further improve the precision and accuracy of the results, we utilize Chemical Abrasion – Thermal Ionisation Mass Spectrometry (CA-TIMS) on four selected samples minimizing the effects of Pb-loss and further constraining depositional uncertainties. We thereby show that the Suurberg Group was deposited rapidly during the emplacement of the Karoo Large Igneous Province in the Early Jurassic and likely predates the main phase of rifting, whereas the Uitenhage Group was deposited over a prolonged (>40 Ma) period beginning in the Early Jurassic and continuing into the Early Cretaceous. The Uitenhage Group records two phases of rifting: an initial Jurassic episode that roughly coincides with the separation of East and West Gondwana and is contemporaneous with widespread volcanism in SW Gondwana, and a subsequent period of renewed rifting during the Early Cretaceous opening of the South Atlantic and initiation of the Agulhas Falkland Transform. This framework illustrates the complexity of long-lived rift-basin sedimentation and highlights the importance of high-resolution chronostratigraphy when investigating and integrating the tectonic, palaeogeographic and palaeontological records from the final stages of a unified SW Gondwana.  相似文献   

9.
Lower Cretaceous volcanic lithic arenites, widely distributed in the Tethyan Himalaya, provide insights into the continental breakup of Eastern Gondwana. In southern Tibet they are represented by the Wölong Volcaniclastics. The volcanic rocks that contributed clastic material to the lower parts of this unit were predominantly alkali basalts, whereas rhyolitic/dacitic volcanism becomes the predominant source of the upper strata. Geochemical analyses of basaltic grains and of detrital Cr-spinels from the Wölong Volcaniclastics demonstrate the alkaline character of the volcanism and suggest “within-plate” tectonic setting for the volcanism. Zircon U–Pb ages confirm that this volcanism continued from ~ 140 Ma to ~ 119 Ma. Hf-isotope data on these Early Cretaceous zircons indicate that their parental magmas were mantle-derived, but in the later stage of magmatic activity mantle-derived magmas were mixed with partial melts derived from the continental crust.The Lower Cretaceous volcaniclastics occur along a broad belt paralleling the northern margin of Greater India. The onset of volcaniclastic deposition in the Himalayas appears to become progressively younger toward the west, but it ended synchronously during the Late Albian (~ 102 Ma). The low volume of volcanic rocks and their intra-plate tectonic setting suggest that they are the result of decompressional melting along extensional deep-seated fractures cross-cutting the continental crust, and reflect changes in regional intra-plate tectonic stresses when Greater India began to separate from the Australia–Antarctica supercontinent.  相似文献   

10.
U–Pb detrital zircon geochronology from Lower Devonian quartz arenites of the northwestern margin of the Yangtze block yields dominant early Neoproterozoic (0.85–1.0 Ga), Pan-African (0.5–0.65 Ga) and middle Neoproterozoic (0.68–0.8 Ga) age populations and minor Mesoproterozoic to middle Mesoarchean (1.0–3.0 Ga) ages. Middle Mesoarchean to Mesoproterozoic rocks, however, are widespread in the South China block. Although Hf isotopic compositions show both juvenile crustal growth and crustal reworking for all the age groupings, the crust growth, essentially mantle-derived, occurred mainly around 3.1 Ga, 1.9 Ga and 1.0 Ga, respectively. Zircon typology and youngest grain ages indicate that this suite of quartz arenites was the product of multiphase reworking. Abundant magmatic zircon detritus with concordant U–Pb Grenvillian and Pan-African ages, together with accompanying various εHf(t) values, indicate an exotic provenance for the quartz arenite external to the South China block. Qualitative comparisons of age spectra for the late Neoproterozoic sediments of the Cathaysian Block, early Paleozoic sediments of pre-rift Tethyan Himalaya sequence in North India and lower Paleozoic sandstone from the Perth Basin in West Australia, show that they all have two the largest age clusters representing Grenvillian and Pan-African orogenic episodes. The resemblance of these age spectra and zircon typology suggests that the most likely source for the Lower Devonian quartz arenites of the South China block was the East African Orogen and Kuunga Orogen for their early Grenvillian and Pan-African populations, whereas the Hannan–Panxi arc, Jiangnan orogen, and the Yangtze block basements might have contributed to the detrital zircon grains of the Neoproterozoic and Pre-Grenvillian ages. Hf isotopic data indicate that the crustal evolution of the drainage area matches well with the episodic crust generation of Gondwana. These results imply that the previously suggested position of the SCB in Gondwana should be re-evaluated, and the South China block should be linked with North India and West Australia as a part of East Gondwana during the assembly of Gondwana, rather than a discrete continent block in the paleo-Pacific.  相似文献   

11.
The final assembly of Gondwana, known as the late Pan-African orogeny, is characterized by Ediacaran–early Cambrian ultrahigh temperature (UHT) metamorphism, which is widely identified within reconstructed East Gondwana. This distinctive feature likely provides a reliable criterion for identifying new Gondwanan terranes that lack paleo-geomagnetic data. Here we present zircon U–Pb geochronology and phase equilibria calculations for a variety of granulite types newly recognized from western Qaidam, China, which provide the first evidence that the Qaidam block, at least western Qaidam, experienced high-grade metamorphism in excess of 900 °C before/at 540–520 Ma. These UHT metamorphic rocks, similar to many well-known Pan-African UHT metamorphic terranes, is inferred to evolve along a clockwise PT path that is usually related to collisional orogens. Comparison between new metamorphic zircon U–Pb ages from western Qaidam and the published age data from the UHT metamorphic terranes within East Gondwana suggests that the UHT metamorphic rocks found in western Qaidam similarly records the final assembly of Gondwana. Although the exact paleo-geographical location of the Qaidam block during the Gondwana period is unknown yet because of lacking paleo-geomagnetic data, new Pan-African UHT metamorphic record found in western Qaidam indicates, for the first time, that the Qaidam block is a Gondwanan terrane that split from this semi-supercontinent after the Pan-African orogeny.  相似文献   

12.
Late Paleozoic or Permo-Carboniferous Gondwana successions world-wide are marked by widespread and lengthy glaciation (~ 67 Ma), and multiple transitions from Icehouse to Greenhouse state. Mineralogical and compositional changes in sandstones and mudstones of the Gondwana succession in drill hole GDH-45 from the Khalaspir basin of Bangladesh are interpreted in a climatic framework, using the proxies of the Mineralogical Index of Alteration (MIA) and the Chemical Index of Alteration (CIA). Low MIA (< 75) and CIA (< 70) values in the lowermost unit (Unit 1) of the Khalaspir Gondwana sequence indicates minimal chemical weathering of the source and imply cold and dry glacial climatic conditions. Values increase progressively in the overlying Unit 2, suggesting warming and deglaciation. Very high MIA (80–100) and CIA (90–100) values in Unit 3 indicate intense chemical weathering associated with warm and humid climatic conditions in a post-glacial setting. These changes are recorded in both sandstones and mudstones, illustrating the value of acquiring data for a variety of size grades. The stratigraphic changes are also well recorded by progressively decreasing K2O/Al2O3 and increasing Ga/Rb ratios, the combination of which may comprise a new geochemical proxy of climate and weathering. Upward increase in the modal Q / (F + L) and Qp / (F + L) ratios are also consistent with change from cool to warm and humid climate in the source region. The change in climatic conditions within the Khalaspir sequence is also well correlated with the Gondwana successions of other continental blocks, and records the climatic fluctuations and extent of climatic impact in Gondwanaland during the Permo-Carboniferous.  相似文献   

13.
We report a new regional correlation for the Ediacaran succession in the Anti-Atlas belt on the northwestern margin of Gondwana, based on U-Pb LA-ICP-MS zircon geochronology of volcanic rocks in the NE edge of the Saghro inlier. The thick volcano-sedimentary succession comprises a diverse suite of rhyolitic-ignimbrite, basaltic to andesitic lava fields, rhyolitic lava, mafic hydroclastic complex, fallout and surge deposits, pyroclastic dyke, interbedded clastic sediment and subvolcanic bodies.Ten volcanic rocks yield crystallization ages ranging from 573 to 547 Ma, consistent with a lower and upper Ouarzazate Supergroup affinity respectively. Inherited zircon ages range from 623 Ma to 600 Ma, analogous to zircon peaks in the older volcano-sedimentary rocks of the Bou Salda, and Saghro groups in the Anti-Atlas, suggesting the continuity of the Saghro Group beneath the Ouarzazate Supergroup at the NE edge of the Saghro inlier.Rocks with a lower Ouarzazate Supergroup affinity include lithic-poor ignimbrites which yield ages of 573.6 ± 1.9 Ma, 571.8 ± 4.2 Ma, 571.3 ± 2.6 Ma, and 567.4 ± 2.9 Ma, two fallout deposits which yield ages of 563.5 ± 2.1 Ma and 569.2 ± 1.9 Ma, a surge deposit dated at 571.6 ± 2.8 Ma and a rhyolite lava dated at 562.5 ± 3.1 Ma. Two lithic-poor ignimbrites from the upper Ouarzazate Supergroup are dated at 557.3 ± 2.6 Ma and 547.9 ± 3.1 Ma.Volcanic activity at the NE edge of the Saghro inlier is related to West African Cadomian orogenic (WACadomian) activity between 620 and 560 Ma. During this period the Saghro and Bou Salda groups were deposited, followed by the lower Ouarzazate Supergroup. Later extension along the Gondwanan margin took place close to Ediacaran – Cambrian boundary, contemporaneous with upper Ouarzazate Supergroup deposition.  相似文献   

14.
We present new palaeomagnetic data for Cambrian and Ordovician volcanic and sedimentary rocks from the Kyrgyz North Tianshan (NTS) and review available data from the southwestern Central Asian Orogenic Belt (CAOB) to elucidate the tectonic history and evolution of this region during the early Palaeozoic. We observed a coherent evolution of the NTS and the Kazakhstan continent (or Kazakhstania) with a constant northwards movement between the Cambrian and Devonian at ~5 cm/a. After the northwards movement ceased in the Devonian, the accreted terrane assemblage of Kazakhstania occupied a stable latitudinal position at ~30°N until the final amalgamation of Eurasia occurred in the late Carboniferous to early Permian. Amalgamation of the Tarim and Turan blocks caused a counterclockwise bending within the southwestern segment of the CAOB, which occurred in an inconsistent way by a brittle-like response of the upper crust with a large variety of rotational movement. We suggest an evolution of the Kyrgyz CAOB terranes by steady migration away from Gondwana and subsequent capture in a zone of global downwelling at ~30°N, where accretion and subsequent amalgamation of Eurasia occurred with the CAOB terranes in its centre.  相似文献   

15.
Two terranes formed since the Late Palaeozoic can be distinguished in southwestern China. One is charac-terized by the Permo-Carboniferous ice-rafted marine gravel-bearing clastic formation and the cold-water faunaof the Gondwana facies, including the Gangmar Co, Lhasa, Sa' gya, Tengchong and Baoshan terranes and theother is marked by the Upper Palaeozoic of the Yangtze type with the Cathaysian flora and the Pacific-typefusulinids, comprising the Changning-Menglian, Shuangjiang-Lancang, Qamdo and Bayan Har terranes. TheLongmu Co-Shuanghu-Dengqen-North Lancang River-Kejie-Mengding suture zone between the two groups ofterranes is the boundary between Gondwana and Pacifica in southwestern China. On the grounds of thesedimentary formation and successive southwestward migration of the Asian nonmarine Jurassic-Cretaceousendemic bivalves, the ages of the suture and some terranes to the southwest of the suture zone are discussed.The Baoshan terrane and the Nyainrong-Sog terrane in the Lhasa composite terrane were firstly pieced togeth-er with the Asian continent in the early Early Jurassic. The northern Tibet-western Yunnan microplate, in-cluding the Gangmar Co, Lhasa and Tengchong terranes, collided with the Asian continent at the end of theEarly Cretaceous Neocomian.  相似文献   

16.
The Paleozoic tectonic framework and paleo–plate configuration of the northern margin of Gondwana remain controversial. The South Qiangtang terrane is located along the northern margin of Gondwana and records key processes in the formation and evolution of this supercontinent. Here, we present new field, petrological, zircon U-Pb geochronological, and Lu-Hf isotopic data for granitic rocks of the Gemuri pluton, all of which provide new insights into the evolution of the northern margin of Gondwana. Zircon U-Pb dating of the Gemuri pluton yielded three concordant ages of 488.5 ± 2.1, 479.9 ± 8.9, and 438.5 ± 3.5 Ma. Combining these ages with the results of previous research indicates that the South Qiangtang terrane records two magmatic episodes at 502–471 and 453–439 Ma. These two episodes are associated with enriched zircon Hf isotopic compositions(εHf(t) =-10.1 to-3.9 and-16.6 to-6.5, respectively), suggesting the granites were formed by the partial melting of Paleoproterozoic–Mesoproterozoic metasedimentary rocks(Two–stage Hf model ages(TCDM) = 2094–1704 and 2466–1827 Ma, respectively). Combining these data with the presence of linearly distributed, contemporaneous Paleozoic igneous rocks along the northern margin of Gondwana, we suggest that all of these rocks were formed in an active continental margin setting. This manifests that the two magmatic episodes within the Gemuri area were associated with southward subduction in the Proto-(Paleo-) Tethys Ocean.  相似文献   

17.
Cambro-Ordovician palaeogeography and fragmentation of the North Gondwana margin is still not very well understood. Here we address this question using isotopic data to consider the crustal evolution and palaeogeographic position of the, North Gondwana, Iberian Massif Ossa–Morena Zone (OMZ). The OMZ preserves a complex tectonomagmatic history: late Neoproterozoic Cadomian orogenesis (ca. 650–550 Ma); Cambro-Ordovician rifting (ca. 540–450 Ma); and Variscan orogenesis (ca. 390–305 Ma). We place this evolution in the context of recent North Gondwana Cambro-Ordovician palaeogeographic reconstructions that suggest more easterly positions, adjacent to the Sahara Metacraton, for other Iberian Massif zones. To do this we compiled an extensive new database of published late Proterozoic–Palaeozoic Nd model ages and detrital and magmatic zircon age data for (i) the Iberian Massif and (ii) North Gondwana Anti-Atlas West African Craton, Tuareg Shield, and Sahara Metacraton. The Nd model ages of OMZ Cambro-Ordovician crustal-derived magmatism and Ediacaran-Ordovician sedimentary rocks range from ca. 1.9 to 1.6 Ga, with a mode ca. 1.7 Ga. They show the greatest affinity with the Tuareg Shield, with limited contribution of more juvenile material from the Anti-Atlas West African Craton. This association is supported by detrital zircons that have Archaean, Palaeoproterozic, and Neoproterozoic radiometric ages similar to the aforementioned Iberian Massif zones. However, an OMZ Mesoproterozoic gap, with no ca. 1.0 Ga cluster, is different from other zones but, once more, similar to the westerly Tuareg Shield distribution. This places the OMZ in a more easterly position than previously thought but still further west than other Iberian zones. It has been proposed that in the Cambro-Ordovician the North Gondwana margin rifted as the Rheic Ocean opened diachronously from west to east. Thus, the more extensive rift-related magmatism in the westerly OMZ than in other, more easterly, Iberian Massif zones fits our new proposed palaeogeographic reconstruction.  相似文献   

18.
19.
The Cambrian–lower Ordovician volcanic units of the South Armorican and Occitan domains are analysed in a tectonostratigraphic survey of the French Variscan Belt. The South Armorican lavas consist of continental tholeiites in middle Cambrian–Furongian sequences related to continental break-up. A significant volcanic activity occurred in the Tremadocian, dominated by crustal melted rhyolitic lavas and initial rifting tholeiites. The Occitan lavas are distributed into five volcanic phases: (1) basal Cambrian rhyolites, (2) upper lower Cambrian Mg-rich tholeiites close to N-MORBs but crustal contaminated, (3) upper lower–middle Cambrian continental tholeiites, (4) Tremadocian rhyolites, and (5) upper lower Ordovician initial rift tholeiites. A rifting event linked to asthenosphere upwelling took place in the late early Cambrian but did not evolve. It renewed in the Tremadocian with abundant crustal melting due to underplating of mixed asthenospheric and lithospheric magmas. This main tectono-magmatic continental rift is termed the “Tremadocian Tectonic Belt” underlined by a chain of rhyolitic volcanoes from Occitan and South Armorican domains to Central Iberia. It evolved with the setting of syn-rift coarse siliciclastic deposits overlain by post-rift deep water shales in a suite of sedimentary basins that forecasted the South Armorican–Medio-European Ocean as a part of the Palaeotethys Ocean.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号