首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Jervois region of the Arunta Inlier, central Australia, contains para- and orthogneisses that underwent low-pressure amphibolite facies metamorphism (P = 200–300 MPa, T = 520–600 °C). Marble layers cut by metre-wide quartz + garnet ± epidote veins comprise calcite, quartz, epidote, clinopyroxene, grandite garnet, and locally wollastonite. The marbles also contain locally discordant decimetre-thick garnet and epidote skarn layers. The mineral assemblages imply that the rocks were infiltrated by water-rich fluids (XCO2 = 0.1–0.3) at ∼600 °C. The fluids were probably derived from the quartz-garnet vein systems that represent conduits for fluids exsolved from crystallizing pegmatites emplaced close to the metamorphic peak. At one locality, the marble has calcite (Cc) δ18O values of 9–18‰ and garnet (Gnt) δ18O values of 10–14‰. The δ18O(Gnt) values are only poorly correlated with δ18O(Cc), and the δ18O values of some garnet cores are higher than the rims. The isotopic disequilibrium indicates that garnet grew before the δ18O values of the rock were reset. The marbles contain  ≤15% garnet and, for water-rich fluids, garnet-forming reactions are predicted to propagate faster than O-isotopes are reset. The Sm-Nd and Pb-Pb ages of garnets imply that fluid flow occurred at 1750–1720 Ma. There are no significant age differences between garnet cores and rims, suggesting that fluid flow was relatively rapid. Texturally late epidote has δ18O values of 1.5–6.2‰ implying δ18O(H2O) values of 2–7‰. Waters with such low-δ18O values are probably at least partly meteoric in origin, and the epidote may be recording the late influx of meteoric water into a cooling hydrothermal system. Received: 29 April 1996 / Accepted: 12 March 1997  相似文献   

2.
Summary The intrusion of the Lower Permian Los Santos-Valdelacasa granitoids in the Los Santos area caused contact metamorphism of Later Vendian-Lower Cambrian metasediments. High grade mineral assemblages are confined to a 7 km wide contact aureole. Contact metamorphism was accompanied by intense metasomatism and development of skarns, and it generated the following mineral assemblages: diopside, forsterite, phlogopite (±clintonite) and humites and spinel-bearing assemblages or diopside, grossular, vesuvianite ± wollastonite in the marbles, depending on the bulk rock composition. Cordierite, K-feldspar, andalusite and, locally, sillimanite appear in the metapelitic rocks. Mineral assemblages of marbles and hornfelses indicate pressure conditions ranging from 0.2 to 0.25 GPa and maximum temperatures between 630 and 640 °C. 13C and 18O depletions in calcite marbles are consistent with hydrothermal fluid–rock interaction during metamorphism. Calcites are depleted in both 18O (δ18O = 12.74‰) and 13C (δ13C = −5.47‰) relative to dolomite of unmetamorphosed dolostone (δ18O = 20.79‰ and δ13C = −1.52‰). The δ13C variation can be interpreted in terms of Rayleigh distillation during continuous CO2 fluid removal from the carbonates. The δ18O values reflect hydrothermal exchange with an externally derived fluid. Microthermometric analyses of fluid inclusions from vesuvianite indicate that the fluid was water dominated with minor contents of CO2 (±CH4 ± N2) suggesting a metamorphic origin. Fluorine-bearing minerals such as chondrodite, norbergite and F-rich phlogopite indicate that contact metamorphism was accompanied by fluorine metasomatism. Metasomatism was more intense in the inner-central portion of the contact aureole, where access to fluids was extensive. The irregular geometry of the contact with small aplitic intrusives between the metasediments and the Variscan granitoids probably served as pathways for fluid circulation.  相似文献   

3.
Summary The eastern Pyrenees host a large number of talc-chlorite mineralizations of Albian age (112–97 Ma), the largest of which occur in the St. Barthelemy massif. There talc develops by hydrothermal replacement of dolostones, which were formed by alteration of calcite marbles. This alteration is progressive. Unaltered calcite marbles have oxygen isotope composition of about 25‰ (V-SMOW). The δ18O values decrease down to values of 12‰ towards the contact with dolostones. This 18O depletion is accompanied by Mg enrichment, LREE fractionation and systematic shifts in the Sr isotope compositions, which vary from 87Sr/86Sr = 0.7087–0.7092 in unaltered calcite marbles to slightly more radiogenic compositions with 87Sr/86Sr = 0.7094 near dolomitization fronts. Dolostones have δ18O values (about 9‰) lower than calcitic marbles, higher REE content and more radiogenic Sr isotope composition (87Sr/86Sr = 0.7109 to 0.7130). Hydrothermal calcites have δ18O values close to dolostones but substantially lower δ13C values, down to −6.5‰, which is indicative of the contribution of organic matter. The REE content of hydrothermal calcite is one order of magnitude higher than that of calcitic marbles. Its highly radiogenic Sr composition with 87Sr/86Sr = 0.7091 to 0.7132 suggests that these elements were derived from silicate rocks, which experienced intense chlorite alteration during mineralization. The chemical and isotopic compositions of the calcite marbles, the dolostones and the hydrothermal calcites are interpreted as products of successive stages of fluid-rock interaction with increasing fluid-rock ratios. The hydrothermal quartz, calcite, talc and chlorite are in global mutual isotopic equilibrium. This allows the calculation of the O isotope composition of the infiltrating water at 300 °C, which is in the δ18O = 2–4.5‰ range. Hydrogen isotope compositions of talc and chlorite indicate a δD = 0 to −20‰. This water probably derived from seawater, with minor contribution of evolved continental water.  相似文献   

4.
Marbles from western part of the Krkonoše-Jizera Terrane (northern part of the Bohemian Massif) have been studied to obtain mineropetrographic and chemical reference data for provenance studies. Samples from six different quarries were analysed by mineralogical-petrographic and geochemical methods (optical microscopy, X-ray diffraction, stable isotope ratio analysis, cathodoluminescence, bulk magnetic susceptibility). Petrographic characteristics permit a distinction between fine-grained to medium-grained marbles from the Jizera Mts (amphibolite metamorphic facies) and fine-grained marbles from the Ještěd Mts (low-grade greenschist facies). The samples studied are mainly calcitic, with the exception of those from Raspenava in which dolomite is abundant in two types. The mineralogical composition of the insoluble residues is clinochlore ± serpentine ± tremolite ± diopside ± pyrite + magnetite in case of the locality Raspenava and clinochlore + muscovite ± quartz ± pyrite ± rutile ± haematite in case of the localities from the Ještěd Mts. δ13C and δ18O variations in primary and secondary carbonate phases allow to distinguish genetically different carbonate veins and permit quarry separation in one case (Raspenava, Jizera Mts). The δ13C and δ18O values of the groundmass range from −1 to +3‰ and from −8 to −20‰ (PDB), respectively. The δ13C and δ18O values of secondary carbonate veins decrease to −3‰ and reach more negative values up to −26‰ in case of δ18O. The fabric of cathodomicrofacies allows the distinction between calcite and dolomite, except three localities (Pilínkov, Horní Hanychov, Jitrava—rose type) with majority of quenchers (high content of iron in carbonate). The genetically different calcite is characterised by a pale and dark orange luminescence distribution. Serpentine, tremolite, forsterite, opaque minerals and quartz have no luminescence and very dull luminescence, respectively. The majority of studied marbles exhibits low values of the bulk magnetic susceptibility, with the exception of those from Raspenava rich in magnetite.  相似文献   

5.
Fourteen cogenetic quartz-biotite pairs from gneissic wall rocks, and 22 quartz, 16 calcite, and 8 biotite samples and 1 sample of albite from fissure-filling veins in the Western Tauern Window were analyzed for their oxygen isotope composition. The δ18O values show the following ranges: (a) quartz, +6.0 in fissure in amphibolite to +10.3 in fissures in granite gneisses; (b) biotite, +2.5 to +6.7; and (c) calcite, +7.0 to +8.9. The δ18O value of albite is +7.1. Only a small variation in the hydrogen isotope composition of biotite was detected. δD values of 7 biotites from gneisses and fissure fillings varied from −54 to −59. There is no significant difference in the hydrogen isotope composition of fissure biotite and biotite from the host rock. This indicates that a common water source of probably deep-seated origin existed, with no detectable contribution from isotopically light meteoric water. Oxygen isotope fractionations between coexisting quartz and biotite of 3.5 to 7.0‰ indicate equilibrium temperatures of 640 ° to 450 ° C, respectively, using the fractionation curve of Hoernes and Friedrichsen (1978). The highest temperatures of equilibration are for the rocks at the Alpenhauptkamm, i.e., the central part of the Tauern Window. Successively lower temperatures are found to the north and to the south of the Alpenhauptkamm along a traverse through Penninic units of the Tauern Window. The metamorphism of the host rocks and the filling of fissures has occurred at the same temperature in a given sample locality.  相似文献   

6.
 Hydrogen and oxygen isotope analyses have been made of hydrous minerals in gabbros and basaltic xenoliths from the Eocene Kap Edvard Holm intrusive complex of East Greenland. The analyzed samples are of three types: (1) primary igneous hornblendes and phlogopites that crystallized from partial melts of hydrothermally altered basaltic xenoliths, (2) primary igneous hornblendes that formed during late–magmatic recrystallization of layered gabbroic cumulates, and (3) secondary actinolite, epidote and chlorite that formed during subsolidus alteration of both xenoliths and gabbros. Secondary actinolite has a δ18O value of −5.8‰ and a δD value of −158‰. These low values reflect subsolidus alteration by low–δ18O, low–δD hydrothermal fluids of meteoric origin. The δD value is lower than the −146 to −112‰ values previously reported for amphiboles from other early Tertiary meteoric–hydrothermal systems in East Greenland and Scotland, indicating that the meteoric waters at Kap Edvard Holm were isotopically lighter than typical early Tertiary meteoric waters in the North Atlantic region. This probably reflects local climatic variations caused by formation of a major topographic dome at about the time of plutonism and hydrothermal activity. The calculated isotopic composition of the meteoric water is δD=−110 ± 10‰, δ18O ≈−15‰. Igneous hornblendes and phlogopites from pegmatitic pods in hornfelsed basaltic xenoliths have δ18O values between −6.0 and −3.8‰ and δD values between −155 and −140‰. These are both much lower than typical values of fresh basalts. The oxygen isotope fractionations between pegmatitic hornblendes and surrounding hornfelsic minerals are close to equilibrium fractionations for magmatic temperatures, indicating that the pegmatites crystallized from low–δ18O partial melts of xenoliths that had been hydrothermally altered and depleted in 18O prior to stoping. The pegmatitic minerals may have crystallized with low primary δD values inherited from the altered country rocks, but these values were probably overprinted extensively by subsolidus isotopic exchange with low–δD meteoric–hydrothermal fluids. This exchange was facilitated by rapid self–diffusion of hydrogen through the crystal structures. Primary igneous hornblendes from the plutonic rocks have δ18O values between +2.0 and +3.2‰ and δD values between −166 and −146‰. The 18O fractionations between hornblendes and coexisting augites are close to equilibrium fractionations for magmatic temperatures, indicating that the hornblendes crystallized directly from the magma and subsequently underwent little or no oxygen exchange. The hornblendes may have crystallized with low primary δD values, due to contamination of the magma with altered xenolithic material, but the final δD values were probably controlled largely by subsolidus isotopic exchange. This inference is based partly on the observation that coexisting plagioclase has been extensively depleted in 18O via a mineral–fluid exchange reaction that is much slower than the hydrogen exchange reaction in hornblende. It is concluded that all hydrous minerals in the study area, whether igneous or secondary, have δD values that reflect extensive subsolidus isotopic equilibration with meteoric–hydrothermal fluids. Received: 22 March 1994 / Accepted: 26 January 1995  相似文献   

7.
Fluid inclusions in granite quartz and three generations of veins indicate that three fluids have affected the Caledonian Galway Granite. These fluids were examined by petrography, microthermometry, chlorite thermometry, fluid chemistry and stable isotope studies. The earliest fluid was a H2O-CO2-NaCl fluid of moderate salinity (4–10 wt% NaCl eq.) that deposited late-magmatic molybdenite mineralised quartz veins (V1) and formed the earliest secondary inclusions in granite quartz. This fluid is more abundant in the west of the batholith, corresponding to a decrease in emplacement depth. Within veins, and to the east, this fluid was trapped homogeneously, but in granite quartz in the west it unmixed at 305–390 °C and 0.7–1.8 kbar. Homogeneous quartz δ18O across the batholith (9.5 ± 0.4‰n = 12) suggests V1 precipitation at high temperatures (perhaps 600 °C) and pressures (1–3 kbar) from magmatic fluids. Microthermometric data for V1 indicate lower temperatures, suggesting inclusion volumes re-equilibrated during cooling. The second fluid was a H2O-NaCl-KCl, low-moderate salinity (0–10 wt% NaCl eq.), moderate temperature (270–340 °C), high δD (−18 ± 2‰), low δ18O (0.5–2.0‰) fluid of meteoric origin. This fluid penetrated the batholith via quartz veins (V2) which infill faults active during post-consolidation uplift of the batholith. It forms the most common inclusion type in granite quartz throughout the batholith and is responsible for widespread retrograde alteration involving chloritization of biotite and hornblende, sericitization and saussuritization of plagioclase, and reddening of K-feldspar. The salinity was generated by fluid-rock interactions within the granite. Within granite quartz this fluid was trapped at 0.5–2.3 kbar, having become overpressured. This fluid probably infiltrated the Granite in a meteoric-convection system during cooling after intrusion, but a later age cannot be ruled out. The final fluid to enter the Granite and its host rocks was a H2O-NaCl-CaCl2-KCl fluid with variable salinity (8–28 wt% NaCl eq.), temperature (125–205 °C), δD (−17 to −45‰), δ18O (−3 to + 1.2‰), δ13CCO2 (−19 to 0‰) and δ34Ssulphate (13–23‰) that deposited veins containing quartz, fluorite, calcite, barite, galena, chalcopyrite sphalerite and pyrite (V3). Correlations of salinity, temperature, δD and δ18O are interpreted as the result of mixing of two fluid end-members, one a high-δD (−17 to −8‰), moderate-δ18O (1.2–2.5‰), high-δ13CCO2 (> −4‰), low-δ34Ssulphate (13‰), high-temperature (205–230 °C), moderate-salinity (8–12 wt% NaCl eq.) fluid, the other a low-δD (−61 to −45‰), low-δ18O (−5.4 to −3‰), low-δ13C (<−10‰), high-δ34Ssulphate (20–23‰) low-temperature (80–125 °C), high-salinity (21–28 wt% NaCl eq.) fluid. Geochronological evidence suggests V3 veins are late Triassic; the high-δD end-member is interpreted as a contemporaneous surface fluid, probably mixed meteoric water and evaporated seawater and/or dissolved evaporites, whereas the low-δD end-member is interpreted as a basinal brine derived from the adjacent Carboniferous sequence. This study demonstrates that the Galway Granite was a locus for repeated fluid events for a variety of reasons; from expulsion of magmatic fluids during the final stages of crystallisation, through a meteoric convection system, probably driven by waning magmatic heat, to much later mineralisation, concentrated in its vicinity due to thermal, tectonic and compositional properties of granite batholiths which encourage mineralisation long after magmatic heat has abated. Received: 3 April 1996 / Accepted: 5 May 1997  相似文献   

8.
The Rubian magnesite deposit (West Asturian—Leonese Zone, Iberian Variscan belt) is hosted by a 100-m-thick folded and metamorphosed Lower Cambrian carbonate/siliciclastic metasedimentary sequence—the Cándana Limestone Formation. It comprises upper (20-m thickness) and lower (17-m thickness) lens-shaped ore bodies separated by 55 m of slates and micaceous schists. The main (lower) magnesite ore body comprises a package of magnesite beds with dolomite-rich intercalations, sandwiched between slates and micaceous schists. In the upper ore body, the magnesite beds are thinner (centimetre scale mainly) and occur between slate beds. Mafic dolerite dykes intrude the mineralisation. The mineralisation passes eastwards into sequence of bedded dolostone (Buxan) and laminated to banded calcitic marble (Mao). These show significant Variscan extensional shearing or fold-related deformation, whereas neither Rubian dolomite nor magnesite show evidence of tectonic disturbance. This suggests that the dolomitisation and magnesite formation postdate the main Variscan deformation. In addition, the morphology of magnesite crystals and primary fluid inclusions indicate that magnesite is a neoformed hydrothermal mineral. Magnesite contains irregularly distributed dolomite inclusions (<50 μm) and these are interpreted as relics of a metasomatically replaced dolostone precursor. The total rare earth element (REE) contents of magnesite are very similar to those of Buxan dolostone but are depleted in light rare earth elements (LREE); heavy rare earth element concentrations are comparable. However, magnesite REE chondrite normalised profiles lack any characteristic anomaly indicative of marine environment. Compared with Mao calcite, magnesite is distinct in terms of both REE concentrations and patterns. Fluid inclusion studies show that the mineralising fluids were MgCl2–NaCl–CaCl2–H2O aqueous brines exhibiting highly variable salinities (3.3 to 29.5 wt.% salts). This may be the result of a combination of fluid mixing, migration of pulses of variable-salinity brines and/or local dissolution and replacement processes of the host dolostone. Fluid inclusion data and comparison with other N Iberian dolostone-hosted metasomatic deposits suggest that Rubian magnesite probably formed at temperatures between 160 and 200°C. This corresponds, at hydrostatic pressure (500 bar), to a depth of formation of ~~5 km. Mineralisation-related Rubian dolomite yields δ 18O values (δ 18O: 12.0–15.4‰, mean: 14.4±1.1‰) depleted by around 5‰ compared with barren Buxan dolomite (δ 18O: 17.1–20.2‰, mean: 19.4±1.0‰). This was interpreted to reflect an influx of 18O-depleted waters accompanied by a temperature increase in a fluid-dominated system. Overlapping calculated δ 18Ofluid values (~+5‰ at 200°C) for fluids in equilibrium with Rubian dolomite and magnesite show that they were formed by the same hydrothermal system at different temperatures. In terms of δ 13C values, Rubian dolomite (δ 13C: −1.4 to 1.9‰, mean: 0.4±1.3‰) and magnesite (δ 13C: −2.3 to 2.4‰, mean: 0.60±1.0‰) generally exhibit more negative δ 13C values compared with Buxan dolomite (δ 13C: −0.2 to 1.9‰, mean: 0.8±0.6‰) and Mao calcite (δ 13C: −0.3 to 1.5‰, mean: 0.6±0.6‰), indicating progressive modification to lower δ 13C values through interaction with hydrothermal fluids. 87Sr/86Sr ratios, calculated at 290 Ma, vary from 0.70849 to 0.70976 for the Mao calcite and from 0.70538 to 0.70880 for the Buxan dolostone. The 87Sr/86Sr ratios in Rubian magnesite are more radiogenic and range from 0.71123 to 0.71494. The combined δ 18O–δ 13C and 87Sr/86Sr data indicate that the magnesite-related fluids were modified basinal brines that have reacted and equilibrated with intercalated siliciclastic rocks. Magnesite formation is genetically linked to regional hydrothermal dolomitisation associated with lithospheric delamination, late-Variscan high heat flow and extensional tectonics in the NW Iberian Belt. A comparison with genetic models for the Puebla de Lillo talc deposits suggests that the formation of hydrothermal replacive magnesite at Rubian resulted from a metasomatic column with magnesite forming at higher fluid/rock ratios than dolomite. In this study, magnesite generation took place via the local reaction of hydrothermal dolostone with the same hydrothermal fluids in very high permeability zones at high fluid/rock ratios (e.g. faults). It was also possibly aided by additional heat from intrusive dykes or sub-cropping igneous bodies. This would locally raise isotherms enabling a transition from the dolomite stability field to that of magnesite.Editorial handling: F. Tornos  相似文献   

9.
Two kinds of mylonite series rocks, felsic and mafic, have been recognized in the NW-striking shear zone of the Jiapigou gold belt. During ductile deformation, a large amount of fluid interacted intensively with the mylonite series rocks: plagioclases were sericitized and theAn values declined rapidly, finally all of them were transformed to albites; dark minerals were gradually replaced by chlorites (mostly ripidolite). Meanwhile, large-scale and extensive carbonation also took place, and the carbonatization minerals varied from calcite to dolomite and ankerite with the development of deformation. The δ13C values of the carbonates are −3.0‰ – −5.6‰ suggesting a deep source of carbon. The ductile deformation is nearly an iso-volume one (f v≈1). With the enhancement of shear deformation, SiO2 in the two mylonite series rocks was depleted, while volatile components suchs as CO2 and H2O, and some ore-forming elements such as Au and S were obviously enriched. But it is noted that the enrichment of Au in both the mylonite series rocks did not reach the paygrade of gold. The released SiO2 from water-rock interactions occurred in the form of colloids and absorbed gold in the fluid. When brittle structures were formed locally in the ductile shear zone, the ore-forming fluids migrated to the structures along microfractures, and preciptated auriferous quartz because of reduction of pressure and temperature. Fluid inclusion study shows that the temperature and pressure of the ore-forming fluids are 245–292°C and 95.4–131.7 MPa respectively; the salinity is 12.88–16.33wt% NaCl; the fluid-phase is rich in Ca2+, K+, Na+, Mg2+, F and Cl, while the gaseous phases are rich in CO2 and CH4. The δD and δ18O, values of the ore-forming fluid are −84.48‰ – −91.73‰ and −0.247‰ – +2.715‰ respectively, suggesting that the fluid is composed predominantly of meteoric water. This project is financially supported by the National Natural Science Foundation of China (No. 9488010).  相似文献   

10.
The Early Devonian Gumeshevo deposit is one of the largest ore objects pertaining to the dioritic model of the porphyry copper system paragenetically related to the low-K quartz diorite island-arc complex. The (87Sr/86Sr)t and (ɛNd)t of quartz diorite calculated for t = 390 Ma are 0.7038–0.7045 and 5.0–5.1, respectively, testifying to a large contribution of the mantle component to the composition of this rock. The contents of typomorphic trace elements (ppm) are as follows: 30–48 REE sum, 5–10 Rb, 9–15 Y, and 1–2 Nb. The REE pattern is devoid of Eu anomaly. Endoskarn of low-temperature and highly oxidized amphibole-epidote-garnet facies is surrounded by the outer epidosite zone. Widespread retrograde metasomatism is expressed in replacement of exoskarn and marble with silicate (chlorite, talc, tremolite)-magnetite-quartz-carbonate mineral assemblage. The 87Sr/86Sr ratios of epidote in endoskarn and carbonate in retrograde metasomatic rocks (0.7054–0.7058 and 0.7053–0.7065, respectively) are intermediate between the Sr isotope ratios of quartz dioritic rocks and marble (87Sr/86Sr = 0.70784 ± 2). Isotopic parameters of the fluid equilibrated with silicates of skarn and retrograde metasomatic rocks replacing exoskarn at 400°C are δ18O = +7.4 to +8.5‰ and δD = −49 to −61‰ (relative to SMOW). The δ13C and δ18O of carbonates in retrograde metasomatic rocks after marble are −5.3 to +0.6 (relative to PDB) and +13.0 to +20.2% (relative to SMOW), respectively. Sulfidation completes metasomatism, nonuniformly superimposed on all metasomatic rocks and marbles with formation of orebodies, including massive sulfide ore. The δ34S of sulfides is 0 to 2‰ (relative to CDT);87Sr/86Sr of calcite from the late calcite-pyrite assemblage replacing marble is 0.704134 ± 6. The δ13C and 87Sr/86Sr of postore veined carbonates correlate positively (r = 0.98; n = 6). The regression line extends to the marble field. Its opposite end corresponds to magmatic (in terms of Bowman, 1998b) calcite with minimal δ13C, δ18O, and 87Sr/86Sr values (−6.9 ‰, +6.7‰, and 0.70378 ± 4, respectively). The aforementioned isotopic data show that magmatic fluid was supplied during all stages of mineral formation and interacted with marble and other rocks, changing its Sr, C, and O isotopic compositions. This confirms the earlier established redistribution of major elements and REE in the process of metasomatism. A contribution of meteoric and metamorphic water is often established in quartz from postore veins.  相似文献   

11.
The source of metasomatic fluids in iron-oxide–copper–gold districts is contentious with models for magmatic and other fluid sources having been proposed. For this study, δ 18O and δ 13C ratios were measured from carbonate mineral separates in the Proterozoic eastern Mt Isa Block of Northwest Queensland, Australia. Isotopic analyses are supported by petrography, mineral chemistry and cathodoluminescence imagery. Marine meta-carbonate rocks (ca. 20.5‰ δ 18O and 0.5‰ δ 13C calcite) and graphitic meta-sedimentary rocks (ca. 14‰ δ 18O and −18‰ δ 13C calcite) are the main supracrustal reservoirs of carbon and oxygen in the district. The isotopic ratios for calcite from the cores of Na–(Ca) alteration systems strongly cluster around 11‰ δ 18O and −7‰ δ 13C, with shifts towards higher δ 18O values and higher and lower δ 13C values, reflecting interaction with different hostrocks. Na–(Ca)-rich assemblages are out of isotopic equilibrium with their metamorphic hostrocks, and isotopic values are consistent with fluids derived from or equilibrated with igneous rocks. However, igneous rocks in the eastern Mt Isa Block contain negligible carbon and are incapable of buffering the δ 13C signatures of CO2-rich metasomatic fluids associated with Na–(Ca) alteration. In contrast, plutons in the eastern Mt Isa Block have been documented as having exsolved saline CO2-rich fluids and represent the most probable fluid source for Na–(Ca) alteration. Intrusion-proximal, skarn-like Cu–Au orebodies that lack significant K and Fe enrichment (e.g. Mt Elliott) display isotopic ratios that cluster around values of 11‰ δ 18O and −7‰ δ 13C (calcite), indicating an isotopically similar fluid source as for Na–(Ca) alteration and that significant fluid–wallrock interaction was not required in the genesis of these deposits. In contrast, K- and Fe-rich, intrusion-distal deposits (e.g. Ernest Henry) record significant shifts in δ 18O and δ 13C towards values characteristic of the broader hostrocks to the deposits, reflecting fluid–wallrock equilibration before mineralisation. Low temperature, low salinity, low δ 18O (<10‰ calcite) and CO2-poor fluids are documented in retrograde metasomatic assemblages, but these fluids are paragenetically late and have not contributed significantly to the mass budgets of Cu–Au mineralisation.  相似文献   

12.
Based on the oxygen isotopic compositions of 133 wolframite samples and 110 quartz samples collected from 30 tungsten ore deposits in south China, in conjunction withδD values and other data, these deposits can be divided into four types.
(1)  Reequilibrated magmatic water-hydrothermal tungsten ore deposits. Theδ 18O values of wolframite and quartz samples from this type of tungsten ore deposits are about +5–+12‰, respectively. The calculatedδ 18O values of ore fluids in equilibrium with quartz are about +6.5‰, and theδ values of fluid inclusions in quartz range from −40 to −70‰
(2)  Meteoric water-hydrothermal tungsten ore deposits. Theδ 18O values of wolframite in this type of tungsten deposits are around −1‰
(3)  Stratiform tungsten ore deposits. In these deposits, theδ 18O values of quartz and wolframite are about +17 and +3‰, respectively. It is considered that these stratiform tungsten ore deposits are genetically related to submarine hot-spring activities.
(4)  Complex mixed-hydrothermal tungsten ore deposits. These tungsten ore deposits are characterized by multi-staged mineralization. Theδ 18O values of early wolframite are around +5‰, but of later wolframite are lower than +4‰, indicating that the early wolframite was precipitated from reequilibrated magmatic water-hydrothermal solutions and the late one from the mixture of hydrothermal solutions with meteoric waters or mainly from meteoric waters.
Based on theδ 18O values of the coexisting quartz and wolframite and temperature data, two calibration equilibrium curves have been constructed, and the corresponding equations have been obtained:
  相似文献   

13.
The Jinshan orogenic gold deposit is a world-class deposit hosted by a ductile shear zone caused by a transpressional terrane collision during Neoproterozoic time. Ore bodies at the deposit include laminated quartz veins and disseminated pyrite-bearing mylonite. Most quartz veins in the shear zone, with and without gold mineralization, were boudinaged during progressive shear deformation with three generations of boudinage structures produced at different stages of progressive deformation. Observations of ore-controlling structures at various scales indicate syn-deformational mineralization. Fluid inclusions from pyrite intergrown with auriferous quartz have 3He/4He ratios of 0.15–0.24 Ra and 40Ar/36Ar ratios 575–3,060. δ18Ofluid values calculated from quartz are 5.5–8.4‰, and δD values of fluid inclusions contained in quartz range between −61‰ and −75‰. The δ13C values of ankerite range from −5.0‰ to −4.2‰, and ankerite δ18O values from 4.4‰ to 8.0‰. The noble gas and stable isotope data suggest a predominant crustal source of ore fluids with less than 5% mantle component. Data also show that in situ fluids were generated locally by pervasive pressure solution, and that widespread dissolution seams acted as pathways of fluid flow, migration, and precipitation. The in situ fluids and fluids derived from deeper levels of the crust were focused by deformation and deformation structures at various scales through solution-dissolution creep, crack-seal slip, and cyclic fault-valve mechanisms during progressively localized deformation and gold mineralization.  相似文献   

14.
The El Cobre deposit is located in eastern Cuba within the volcanosedimentary sequence of the Sierra Maestra Paleogene arc. The deposit is hosted by tholeiitic basalts, andesites and tuffs and comprises thick stratiform barite and anhydrite bodies, three stratabound disseminated up to massive sulphide bodies produced by silicification and sulphidation of limestones or sulphates, an anhydrite stockwork and a siliceous stockwork, grading downwards to quartz veins. Sulphides are mainly pyrite, chalcopyrite and sphalerite; gold occurs in the stratabound ores. Fluid inclusions measured in sphalerite, quartz, anhydrite and calcite show salinities between 2.3 and 5.7 wt% NaCl eq. and homogenisation temperatures between 177 and 300°C. Sulphides from the stratabound mineralisation display δ 34S values of 0‰ to +6.0‰, whilst those from the feeder zone lie between −1.4‰ and +7.3‰. Sulphides show an intra-grain sulphur isotope zonation of about 2‰; usually, δ 34S values increase towards the rims. Sulphate sulphur has δ 34S in the range of +17‰ to +21‰, except two samples with values of +5.9‰ and +7.7‰. Sulphur isotope data indicate that the thermochemical reduction of sulphate from a hydrothermal fluid of seawater origin was the main source of sulphide sulphur and that most of the sulphates precipitated by heating of seawater. The structure of the deposit, mineralogy, fluid inclusion and isotope data suggest that the deposit formed from seawater-derived fluids with probably minor supply of magmatic fluids.  相似文献   

15.
The oxygen isotope ratios (δ18O) of most igneous zircons range from 5 to 8‰, with 99% of published values from 1345 rocks below 10‰. Metamorphic zircons from quartzite, metapelite, metabasite, and eclogite record δ18O values from 5 to 17‰, with 99% below 15‰. However, zircons with anomalously high δ18O, up to 23‰, have been reported in detrital suites; source rocks for these unusual zircons have not been identified. We report data for zircons from Sri Lanka and Myanmar that constrain a metamorphic petrogenesis for anomalously high δ18O in zircon. A suite of 28 large detrital zircon megacrysts from Mogok (Myanmar) analyzed by laser fluorination yields δ18O from 9.4 to 25.5‰. The U–Pb standard, CZ3, a large detrital zircon megacryst from Sri Lanka, yields δ18O = 15.4 ± 0.1‰ (2 SE) by ion microprobe. A euhedral unzoned zircon in a thin section of Sri Lanka granulite facies calcite marble yields δ18O = 19.4‰ by ion microprobe and confirms a metamorphic petrogenesis of zircon in marble. Small oxygen isotope fractionations between zircon and most minerals require a high δ18O source for the high δ18O zircons. Predicted equilibrium values of Δ18O(calcite-zircon) = 2–3‰ from 800 to 600°C show that metamorphic zircon crystallizing in a high δ18O marble will have high δ18O. The high δ18O zircons (>15‰) from both Sri Lanka and Mogok overlap the values of primary marine carbonates, and marbles are known detrital gemstone sources in both localities. The high δ18O zircons are thus metamorphic; the 15–25‰ zircon values are consistent with a marble origin in a rock-dominated system (i.e., low fluid(external)/rock); the lower δ18O zircon values (9–15‰) are consistent with an origin in an external fluid-dominated system, such as skarn derived from marble, although many non-metasomatized marbles also fall in this range of δ18O. High δ18O (>15‰) and the absence of zoning can thus be used as a tracer to identify a marble source for high δ18O detrital zircons; this recognition can aid provenance studies in complex metamorphic terranes where age determinations alone may not allow discrimination of coeval source rocks. Metamorphic zircon megacrysts have not been reported previously and appear to be associated with high-grade marble. Identification of high δ18O zircons can also aid geochronology studies that seek to date high-grade metamorphic events due to the ability to distinguish metamorphic from detrital zircons in marble.  相似文献   

16.
The Pering deposit is the prime example of Zn–Pb mineralisation hosted by stromatolitic dolostones of the Neoarchean to Paleoproterozoic Transvaal Supergroup. The hydrothermal deposit centers on subvertical breccia pipes that crosscut stromatolitic dolostones of the Reivilo Formation, the lowermost portion of the Campbellrand Subgroup. Four distinct stages of hydrothermal mineralisation are recognised. Early pyritic rock matrix brecciation is followed by collomorphous sphalerite mineralisation with replacive character, which, in turn, is succeeded by coarse grained open-space-infill of sphalerite, galena, sparry dolomite, and quartz. Together, the latter two stages account for ore-grade Zn–Pb mineralisation. The fourth and final paragenetic stage is characterised by open-space-infill by coarse sparry calcite. The present study documents the results of a detailed geochemical study of the Pering deposit, including fluid inclusion microthermometry, fluid chemistry and stable isotope geochemistry of sulphides (δ34S) and carbonate gangue (δ13C and δ18O). Microthermometric fluid inclusion studies carried out on a series of coarsely grained crystalline quartz and sphalerite samples of the latter, open-space-infill stage of the main mineralisation event reveal the presence of three major fluid types: (1) a halite–saturated aqueous fluid H2O–NaCl–CaCl2 (>33 wt% NaCl equivalent) brine, (2) low-salinity meteoric fluid (<7 wt% NaCl) and (3) a carbonic CH4–CO2–HS fluid that may be derived from organic material present within the host dolostone. Mixing of these fluids have given rise to variable mixtures (H2O–CaCl2–NaCl ±(CH4–CO2–HS), 2 to 25 wt% NaCl+CaCl2). Heterogeneous trapping of the aqueous and carbonic fluids occurred under conditions of immiscibility. Fluid temperature and pressure conditions during mineralisation are determined to be 200–210°C and 1.1–1.4 kbar, corresponding to a depth of mineralisation of 4.1–5.2 km. Chemical analyses of the brine inclusions show them to be dominated by Na and Cl with lesser amounts of Ca, K and SO4. Fluid ratios of Cl/Br indicate that they originated as halite saturated seawater brines that mixed with lower salinity fluids. Analyses of individual brine inclusions document high concentrations of Zn and Pb (∼1,500 and ∼200 ppm respectively) and identify the brine as responsible for the introduction of base metals. Stable isotope data were acquired for host rock and hydrothermal carbonates (dolomite, calcite) and sulphides (pyrite, sphalerite, galena and chalcopyrite). The ore-forming sulphides show a trend to 34S enrichment from pyrite nodules in the pyritic rock matrix breccia (δ34S = −9.9 to +3.7‰) to paragenetically late chalcopyrite of the main mineralisation event (δ34S = +30.0‰). The observed trend is attributed to Rayleigh fractionation during the complete reduction of sulphate in a restricted reservoir by thermochemical sulphate reduction, and incremental precipitation of the generated sulphide. The initial sulphate reservoir is expected to have had an isotopic signature around 0‰, and may well represent magmatic sulphur, oxidised and leached by the metal-bearing brine. The δ18O values of successive generations of dolomite, from host dolostone to paragenetically late saddle dolomite follow a consistent trend that yields convincing evidence for extensive water rock interaction at variable fluid–rock ratios. Values of δ13C remain virtually unchanged and similar to the host dolostone, thus suggesting insignificant influx of CO2 during the early and main stages of mineralisation. On the other hand, δ13C and δ18O of post-ore calcite define two distinct clusters that may be attributed to changes in the relative abundance in CH4 and CO2 during waning stages of hydrothermal fluid flow.  相似文献   

17.
Spinel lherzolite and pyroxenite xenoliths from the Rio Puerco Volcanic Field, New Mexico, were analyzed for oxygen isotope ratios by laser fluorination. In lherzolites, olivine δ18O values are high (+5.5‰), whereas δ18O values for pyroxenes are low (cpx=+5.1‰; opx=+5.4‰) compared to average mantle values. Pyroxenite δ18O values (cpx=+5.0‰; opx=+5.3‰) are similar to those of the lherzolites and are also lower than typical mantle oxygen isotope compositions. Texturally and chemically primary calcite in pyroxenite xenoliths is far from isotopic equilibrium with other phases, with δ18O values of +21‰. The isotopic characteristics of the pyroxenite xenoliths are consistent with a petrogenetic origin from mixing of lherzolitic mantle with slab-derived silicate and carbonatite melts. The anomalously low δ18O in the pyroxenes reflects metasomatism by a silicate melt from subducted altered oceanic crust, and high δ18O calcite is interpreted to have crystallized from a high δ18O carbonatitic melt derived from subducted ophicarbonate. Similar isotopic signatures of metasomatism are seen throughout the Rio Puerco xenolith suite and at Kilbourne Hole in the southern Rio Grande rift. The discrete metasomatic components likely originated from the subducted Farallon slab but were not mobilized until heating associated with Rio Grande rifting occurred. Oxygen diffusion modeling requires that metasomatism leading to the isotopic disequilibrium between calcite and pyroxene in the pyroxenites occurred immediately prior to entrainment. Melt infiltration into spinel-facies mantle (xenoliths) prior to eruption was thus likely connected to garnet-facies melting that resulted in eruption of the host alkali basalt.  相似文献   

18.
Gold Bar is one of several Carlin-type gold mining districts located in the Battle Mountain–Eureka trend, Nevada. It is composed of one main deposit, Gold Bar; five satellite deposits; and four resources that contain 1.6 Moz (50 t) of gold. All of the deposits and resources occur at the intersection of north-northwest- and northeast-trending high-angle faults in slope facies limestones of the Devonian Nevada Group exposed in windows through Ordovician basin facies siliciclastic rocks of the Roberts Mountains allochthon. Igneous intrusions and magnetic anomalies are notably absent. The Gold Bar district contains a variety of discordant and stratabound jasperoid bodies, especially along the Wall Fault zone, that were mapped and studied in some detail to identify the attributes of those most closely associated with gold ore and to constrain genetic models. Four types of jasperoids, J0, J1, J2, and J3, were distinguished on the basis of their geologic and structural settings and appearance. Field relations suggest that J0 formed during an early event. Petrographic observations, geochemistry, and δ18O values of quartz suggest it was overprinted by the hydrothermal event that produced ore-related J1, J2, and J3 jasperoids and associated gold deposits. The greater amount of siliciclastic detritus present in J0 jasperoids caused them to have higher δ18O values than J1,2,3 jasperoids hosted in underlying limestones. Ore-related jasperoids are composed of main-ore-stage replacements and late-ore-stage open-space filling quartz with variable geochemistry and an enormous range of δ18O values (24.5 and −3.7‰). Jasperoids hosted in limestones with the most anomalous Au, Ag, Hg, ±(As, Sb, Tl) concentrations and the highest δ18O values are associated with the largest deposits. The 28‰ range of jasperoid δ18O values is best explained by mixing between an 18O-enriched fluid and an 18O-depleted fluid. The positive correlation between the sizes of gold deposits and the δ18O composition of jasperoids indicates that gold was introduced by the 18O-enriched fluid. The lowest calculated δ18O value for water in equilibrium with late-ore-stage quartz at 200°C (−15‰) and the measured δD value of fluid inclusion water extracted from late-ore-stage orpiment and realgar (−116‰) indicate that the 18O-depleted fluid was composed of relatively unexchanged meteoric water. The source of the 18O-enriched ore fluid is not constrained. The δ34S values of late-ore-stage realgar, orpiment, and stibnite (5.7–15.5‰) and barite (31.5–40.9‰) suggest that H2S and sulfate were derived from sedimentary sources. Likewise, the δ13C and δ18O values of late-stage calcite (−4.8 to 1.5‰ and 11.5 to 17.4‰, respectively) suggest that CO2 was derived from marine limestones. Based on these data and the apparent absence of any Eocene intrusions in the district, Gold Bar may be the product of a nonmagmatic hydrothermal system.  相似文献   

19.
The Eastern Iberian Central System has abundant ore showings hosted by a wide variety of hydrothermal rocks; they include Sn-W, Fe and Zn-(W) calcic and magnesian skarns, shear zone- and episyenite-hosted Cu-Zn-Sn-W orebodies, Cu-W-Sn greisens and W-(Sn), base metal and fluorite-barite veins. Systematic dating and fluid inclusion studies show that they can be grouped into several hydrothermal episodes related with the waning Variscan orogeny. The first event was at about 295 Ma followed by younger pulses associated with Early Alpine rifting and extension and dated near 277, 150 and 100 to 20 Ma, respectively (events II–IV). The δ18O-δD and δ34S studies of hydrothermal rocks have elucidated the hydrological evolution of these systems. The event I fluids are of mixed origin. They are metamorphic fluids (H2O-CO2-CH4-NaCl; δ18O=4.7 to 9.3‰; δD ab.−34‰) related to W-(Sn) veins and modified meteoric waters in the deep magnesian Sn-W skarns (H2O-NaCl, 4.5–6.4 wt% NaCl eq.; δ18O=7.3–7.8‰; δD=−77 to −74‰) and epizonal shallow calcic Zn-(W) and Fe skarns (H2O-NaCl, <8 wt% NaCl eq.; δ18O=−0.4 to 3.4‰; δD=−75 to −58‰). They were probably formed by local hydrothermal cells that were spatially and temporally related to the youngest Variscan granites, the metals precipitating by fluid unmixing and fluid-rock reactions. The minor influence of magmatic fluids confirms that the intrusion of these granites was essentially water-undersaturated, as most of the hydrothermal fluids were external to the igneous rocks. The fluids involved in the younger hydrothermal systems (events II–III) are very similar. The waters involved in the formation of episyenites, chlorite-rich greisens, retrograde skarns and phyllic and chlorite-rich alterations in the shear zones show no major chemical or isotopic differences. Interaction of the hydrothermal fluids with the host rocks was the main mechanism of ore formation. The composition (H2O-NaCl fluids with original salinities below 6.2 wt% NaCl eq.) and the δ18O (−4.6 to 6.3‰) and δD (−51 to −40‰) values are consistent with a meteoric origin, with a δ18O-shift caused by the interaction with the, mostly igneous, host rocks. These fluids circulated within regional-scale convective cells and were then channelled along major crustal discontinuities. In these shear zones the more easily altered minerals such as feldspars, actinolite and chlorite had their δ18O signatures overprinted by low temperature younger events while the quartz inherited the original signature. In the shallower portions of the hydrothermal systems, basement-cover fluorite-barite-base metal veins formed by mixing of these deep fluids with downwards percolating brines. These brines are also interpreted as of meteoric origin (δ18O< ≈ −4‰; δD=−65 to −36‰) that leached the solutes (salinity >14 wt% NaCl eq.) from evaporites hosted in the post-Variscan sequence. The δD values are very similar to most of those recorded by Kelly and Rye in Panasqueira and confirm that the Upper Paleozoic meteoric waters in central Iberia had very negative δD values (≤−52‰) whereas those of Early Mesozoic age ranged between −65 and −36‰. Received: 9 June 1999 / Accepted: 19 January 2000  相似文献   

20.
New mineralogical, thermobarometric, isotopic, and geochemical data provide evidence for long and complex formation history of the Sarylakh and Sentachan Au-Sb deposits conditioned by regional geodynamics and various types of ore mineralization, differing in age and source of ore matter combined in the same ore-localizing structural units. The deposits are situated in the Taryn metallogenic zone of the East Yakutian metallogenic belt in the central Verkhoyansk-Kolyma Fold Region. They are controlled by the regional Adycha-Taryn Fault Zone that separates the Kular-Nera Terrane and the western part of the Verkhoyansk Fold-Thrust Belt. The fault extends along the strike of the northwest-trending linear folds and is deep-rooted and repeatedly reactivated. The orebodies are mineralized crush zones accompanied by sulfidated (up to 100 m wide) quartz-sericite metasomatic rocks and replacing dickite-pyrophyllite alteration near stibnite veinlets. Two stages of low-sulfide gold-quartz and stibnite mineralization are distinguished. The formation conditions of the early milk white quartz in orebodies with stibnite mineralization at the Sarylakh and Sentachan deposits are similar: temperature interval 340–280°C, salt concentration in fluids 6.8–1.6 wt % NaCl equiv, fluid pressure 3430–1050 bar, and sodic bicarbonate fluid composition. The ranges of fluid salinity overlapped at both deposits. In the late regenerated quartz that attends stibnite mineralization, fluid inclusions contain an aqueous solution with salinity of 3.2 wt % NaCl equiv and are homogenized into liquid at 304–189°C. Syngenetic gas inclusions contain nitrogen 0.19 g/cm3 in density. The pressure of 300 bar is estimated at 189°C. The composition of the captured fluid is characterized as K-Ca bicarbonatesulfate. The sulfur isotopic composition has been analyzed in pyrite and arsenopyrite from ore and metasomatic zones, as well as in coarse-, medium-, and fine-grained stibnite varieties subjected to dynamometamorphism. The following δ34S values, ‰ have been established at the Sarylakh deposit: −2.0 to −0.9 in arsenopyrite, −5.5 to −1.1 in pyrite, and −5.5 to −3.6 in stibnite. At the Sentachan deposit: −0.8 to +1.0 in arsenopyrite, +0.5 to +2.6 in pyrite, and −3.9 to +0.6 in stibnite. Sulfides from the Sentachan deposit is somewhat enriched in 34S. The 18O of milk white quartz at the Sarylakh deposit varies from +14.8 to 17.0‰ and from +16.4 to + 19.3‰ at the Sentachan. The δ18O of regenerated quartz is +16.5‰ at the Sarylakh and +17.6 to +19.8‰ at the Sentachan. The δ18O of carbonates varies from +15.0 to 16.3% at the Sarylakh and from +16.7 to +18.2‰ at the Sentachan. The δ13C of carbonates ranges from −9.5 to −12.1‰ and −7.8 to −8.5‰, respectively. The calculated $ \delta ^{18} O_{H_2 O} $ \delta ^{18} O_{H_2 O} of the early fluid in equilibrium with quartz and dolomite at 300δC are +7.9 to +10.1‰ for the Sarylakh deposit and +9.5 to +12.4‰ for the Sentachan deposit (+4.9 and 6.0‰ at 200°C for the late fluid, respectively). Most estimates fall into the interval characteristic of magmatic water (°18O = +5.5 to +9.5‰).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号