首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ambient CO2 concentration, air temperature and relative humidity were measured intermittently for a 3-year period from the floor to the canopy top of a tropical rainforest in Pasoh, Peninsular Malaysia. Mean diurnal CO2 storage flux ( S c; μmol m−2 s−1) and sensible and latent heat storage fluxes ( Q a and Q w; W m−2) ranged from −12.7 to 3.2 μmol m−2 s−1, −15 to 27 W m−2 and −10 to 20 W m−2, respectively. Small differences in diurnal changes were observed in S c and Q a between the driest and wettest periods. Compared with the ranges of mean diurnal CO2 eddy flux (−14.7 to 4.9 μmol m−2 s−1), sensible eddy flux (−12 to 169 W m−2) and latent eddy flux (0 to 250 W m−2), the contribution of CO2 storage flux was especially large. Comparison with summertime data from a temperate Japanese cypress forest suggested a higher contribution of S c in the tropical rainforest, probably mainly due to the difference in nighttime friction velocity at the sites. On the other hand, differences in Q a and Q w were smaller than the difference in S c, probably because of the smaller nighttime sinks/sources of heat and water vapour.  相似文献   

2.
The dominant sink of atmospheric molecular hydrogen (H2) is its enzymatic destruction in soils. Quantitative estimates of the global sink strength, as derived from bottom-up process studies, are, however, still associated to large uncertainties. Here we present an alternative way to estimate atmosphere-to-soil flux densities, respectively deposition velocities of H2, based on atmospheric H2 and 222Rn observations in the boundary layer. Two and a half years of continuous measurements from a polluted site in the Rhine-Neckar area have been evaluated and night-time flux densities were calculated for situations of strong nocturnal boundary layer inversions using the Radon-Tracer Method. The influences from local anthropogenic combustion sources could be detected and successfully separated by parallel measurements of carbon monoxide. Inferred daily uptake fluxes in the Heidelberg catchment area range from 0.5 to 3 × 10−8 g H2 m−2 s−1 with a mean value of (1.28 ± 0.31) × 10−8 g H2 m−2 s−1. Uptake rates are about 25% larger during summer than during winter, when soil moisture is high, and diffusive transport of H2 into the soil is inhibited. The mean deposition velocity is 3.0 ± 0.7 × 10−2 cm s−1, which is very well in line with direct measurements on similar soil types in Europe and elsewhere.  相似文献   

3.
Latitudinal distribution of radon-222 flux from continents   总被引:1,自引:0,他引:1  
Global atmospheric transport models are frequently tested by using 222Rn as a tracer. Generally this tracer is assumed to be emitted at a uniform rate (1 atom cm−2 s−1) from all ice-free land surfaces. The analysis of published data suggests a strong decrease from 30°N northwards to 0.2 atom cm−2 s−1 at 70°N. This could be a result of increasing water tables and proportions of organic soils as indicated by larger proportions of wetlands in northern latitudes.  相似文献   

4.
Using 5 yr (December 2000–November 2005) of satellite data from the clouds and the earths radiant energy system (CERES) and moderate resolution imaging spectroradiometer (MODIS), we examine the instantaneous short-wave radiative efficiency ( Eτ ) of aerosols during the morning Terra satellite overpass time over the global oceans (60°N–60°S). We calculate Eτ using two commonly used methods. The first method uses the MODIS aerosol optical thickness (AOT) at 0.55 μm with radiative transfer calculations, whereas the second method utilizes the same AOT values along with a new generation of aerosol angular distribution models to convert the CERES-measured broad-band radiances to fluxes. Over the 5 yr, the global mean instantaneous Eτ between the methods is remarkably consistent and within 5 W m−2τ−1 with a mean value of –70 W m−2τ−1. The largest differences between the methods occur in high-latitude regions, primarily in the Southern Hemisphere, where AOT is low. In dust dominated regions, there is an excellent agreement between the methods with differences of <3 W m−2τ−1. These differences are largely due to assumptions in aerosol models and definition of clear sky backgrounds. Independent assessments of aerosol radiative effects from different satellite sensors and methods are extremely valuable and should be used to verify numerical modelling simulations.  相似文献   

5.
The amounts of microbial and root‐respired CO2 in a maize/winter wheat agricultural system in south western Germany were investigated by measurements of the CO2 mixing ratio and the 13C/12C ratio in soil air. CO2 fluxes at the soil surface for the period of investigation (1993–1995) were also determined. Root respired CO2 shows a strong correlation with the plant mass above ground surface of the respective vegetation (R2≥0.88); the maximum CO2 release from roots was in August for the maize (2.0±0.5 mmol m−2 h−1) and in June for winter wheat (1.5±0.5 mmol m−2 h−1). Maximum CO2 production by roots correlate well with the maximum amount of plant root matter. Integrating the CO2 production over the whole growing season and normalizing to the dry root matter yields, the CO2 production per gram dry organic root matter (DORM) of maize was found to be 0.14±0.03 gC (g DORM)−1. At the sites investigated, root‐produced CO2 contributed (16±4)% for maize, and (24±4)% for winter wheat, respectively, to the total annual CO2 production in the soil (450±50 gC m−2 for maize, 210±30 gC m−2 for winter wheat).  相似文献   

6.
Enclosure measurements have been performed on a bare mineral soil at an experimental field site near Heidelberg, Germany. From observed molecular hydrogen (H2) mixing ratio changes in the enclosure, deposition velocities were calculated ranging from  8.4 × 10−3  to  8.2 × 10−2 cm s−1  and with an annual mean value of  3.1 × 10−2 cm s−1  . In the studied range of  2– 27 °C  , the uptake showed a significant temperature dependence. However, this turned out not to be the primary driving mechanism of the uptake flux. Soil moisture content, co-varying with temperature, was identified as the major parameter being responsible for the diffusive permeability of H2 in the soil and the final rate of H2 uptake. A simple Millington–Quirk diffusion model approach could largely explain this behaviour and yielded a diffusion path length of H2 in the studied soil of only 0.2–1.8 cm, suggesting that total H2 consumption occurs within the first few centimetres of the soil. The diffusion model, when applied to continuous measurements of soil moisture content, atmospheric pressure, temperature and the mixing ratio of H2 in the atmosphere, could largely reproduce the measured deposition flux densities, assuming a mean thickness of the diffusion path length of 0.7 cm.  相似文献   

7.
Aerosol properties of mineral particles in the far field of an African desert dust outbreak were investigated that brought Saharan dust over the Mediterranean in different layers to Portugal. The measurements were performed inside the project Desert Aerosols over Portugal (DARPO) which was linked to the Saharan Mineral Dust Experiment (SAMUM). The maximum particle mass concentration was about 150 μg m−3 and the corresponding scattering coefficient was 130 M m−1 which results in a mass scattering efficiency of 0.87 m2 g−1. The aerosol optical depth reached values up to 0.53 and the lidar ratio was between 45 and 50 in the whole dust loaded column. A comparison between particle size distributions and refractive indices derived from different instruments and models showed a general good agreement but some minor differences could also be observed. Measurements as well as calculations with a particle transport model suggest that there is a relatively higher concentration of very large particles in the upper region of the dust layer than on the surface which is likely connected with meteorological conditions at the observational site (Évora, Portugal).  相似文献   

8.
Concentrations of organic carbon (OC), elemental carbon (EC), selected trace elements and water-soluble (WS) ions were determined for samples collected from August 2004 to February 2005 to assess the aerosol background at two remote sites in China. The OC and EC concentrations in PM10 from near the Tibetan Plateau at Zhuzhang (ZUZ) were comparable with other background sites, averaging 3.1 and 0.34 μg m−3, respectively, with no pronounced seasonality. At Akdala (AKD) on northern margin of the Zhungaer Basin, the average concentrations were similar (mean OC = 2.9 μg m−3 and EC = 0.35 μg m−3), but the concentrations were higher in winter. The aerosol mass at both sites was dominated by OC and SO42−, but a stronger contribution from soil dust was observed at AKD. At ZUZ, NO3 showed a unique weather-related fluctuation in PM10 with a periodicity of ∼1 week. Anthropogenic sources in the Sichuan Basin and southeastern Yunnan Province evidently influence ZUZ in summer and autumn while pollutants from Russia and the China–Mongolia border affect AKD nearly all year. The identification of these upwind sources demonstrates that transboundary transport needs to be taken into account when assessing air quality in remote parts of China.  相似文献   

9.
Abstract The spatial and temporal variations of atmospheric CO2 at 8–13 km from April 1993 to April 1999 were observed by measuring CO2 mixing ratios in samples collected biweekly from a commercial airliner between Australia and Japan. The CO2 growth rate showed a considerable interannual variation, with a maximum of about 3 ppm yr−1 during late 1997. This variation is related to the El Niño/Southern Oscillation (ENSO) events. A year-to-year change related to the ENSO events was also found in the latitudinal distribution pattern of the CO2 annual mean between 30°N and 30°S. The averaged CO2 seasonal cycle in the Northern Hemisphere gradually decayed toward the equator, and a relatively complicated variation with a double seasonal maximum appeared in the Southern Hemisphere. A significant yearly change of the seasonal cycle pattern was observed in the Southern Hemisphere. The impact of a tropical biomass-burning injection on the upper tropospheric CO2 was estimated on the basis of the CO data from the same airliner observation.  相似文献   

10.
An atmospheric transport model, NIRE-CTM-96, was evaluated by using measured radon-222 concentrations. The model has 2.5×2.5 degree horizontal resolution and 15 vertical levels. Assimilated global meteorological data for 1990–1996 from the European Centre for Medium Range Weather Forecasts were used to drive the model. We used an emanation rate of radon-222 of 1 atom cm−2 s−1 over mostly ice-free land. Simulated concentrations were compared with measured concentrations for 22 sites worldwide including 10 stations in China. Simulated annual mean concentrations for Freiburg, Germany, and Socorro, New Mexico, and for four stations in northern China were consistent with the measured concentrations. Simulated daily concentrations for Ogasawara-Hahajima, Japan, correlated well with the measured concentrations. Simulated upper tropospheric concentrations for Moffet Field, California, demonstrated the cross-Pacific transport from central Eurasia and India-Indochina area. Simulated concentrations for two stations in southern China were almost half of the measured concentrations. Mixing layer depth in the model was consistent with other estimates which indicates higher emanation rate there. Simulated concentrations for the South Indian Ocean and the Antarctic during summer were significantly lower than the measured concentrations; this difference was accounted for when emanation from the ocean at a rate of 0.01 atom cm−2 s−1 was included in the model. The model failed to simulate amplitudes of high-concentration events at Mauna Loa. These high-concentration events were possibly a result of filament-like horizontal structure or laminated vertical structure. The vertical as well as horizontal resolution of the model were supposed to be insufficient to reproduce these fine structures.  相似文献   

11.
Global warming simulations are performed with a coupled climate model of reduced complexity to investigate global warming–marine carbon cycle feedbacks. The model is forced by emissions of CO2 and other greenhouse agents from scenarios recently developed by the Intergovernmental Panel on Climate Change and by CO2 stabilization profiles. The uptake of atmospheric CO2 by the ocean is reduced between 7 to 10% by year 2100 compared to simulations without global warming. The reduction is of similar size in the Southern Ocean and in low‐latitude regions (32.5°S‐32.5°N) until 2100, whereas low‐latitude regions dominate on longer time scales. In the North Atlantic the CO2 uptake is enhanced, unless the Atlantic thermohaline circulation completely collapses. At high latitudes, biologically mediated changes enhance ocean CO2 uptake, whereas in low‐latitude regions the situation is reversed. Different implementations of the marine biosphere yield a range of 5 to 16% for the total reduction in oceanic CO2 uptake until year 2100. Modeled oceanic O2 inventories are significantly reduced in global warming simulations. This suggests that the terrestrial carbon sink deduced from atmospheric O2/N2 observations is potentially overestimated if the oceanic loss of O2 to the atmosphere is not considered.  相似文献   

12.
Many researchers have reported the widespread occurrence of excess 210 Po in the global atmosphere and suggested probable sources such as resuspension of top soils, stratospheric aerosols, sea spray of the surface micro‐layer, volcanic emission, and bio‐volatile 210Po species from the productive ocean. We have observed excess 210Po on aerosols in the coastal atmosphere of the Chesapeake and Delaware Bays. On‐board measurements in the Chesapeake Bay atmosphere show that the increase of this excess 210Po is dependent upon wind speed. Simultaneously measured activity ratios of 7Be/210Pb and 210Pb/222Rn argue against either higher altitude air or continental soils as the source of this excess. We hypothesize that the excess 210Po originates mainly from surface waters either by the sea‐spray of the surface microlayer, or more likely, by gas exchange. We conclude gas exchange as the mechanism since the polonium excess increases linearly with wind speed over a threshold of 3 m s−1(mean) similar to other gases (i.e., CO2, SF6 , and DMS). In addition, higher 210Po excess with lower 222Rn is observed in on‐shore marine air at Lewes, DE. This suggests sea‐air exchange of volatile Po along with other bio‐volatile species (i.e., DMS, DMSe, and MMHg) in the coastal productive ocean during high wind speeds.  相似文献   

13.
This paper reports on the analysis of 24-h aerosol data measured during 2006, at 14 monitoring sites in China. Measurements included seven-wavelength Aethalometers, thermal/optical reflectance analyses of filter samples and determination of dust aerosols. Black (elemental) carbon (BC, EC) is found to be the principal light-absorbing aerosol over many parts of China; however, the fraction of apparent light absorption attributed to dust varied from 14% in winter, to 11% in spring, to 5% in summer to 9% in autumn. Aerosol light absorption in urban areas was larger than in rural areas by factors of 2.4 in winter, 3.1 in spring and 2.5 in both summer and autumn. These differences may lead to contrasts in radiative, thermal and cloud modification effects between urban and rural areas. Absorption 'hotspots' were located in the Sichuan Basin, the provinces south of Beijing, the Pearl Delta River regions and the Guanzhong Plain. The mass absorption coefficient for aerosol BC (σBC) based on Aethalometer data is estimated to be 11.7 m2 g−1 at 880 nm wavelength (λ) with inverse (λ−1) wavelength scaling, whereas the mass absorption coefficient for dust (σdust) is 1.3 m2 g−1 on average without significant wavelength dependence.  相似文献   

14.
An aerosol dynamics model, AEROFOR2, is developed in the context of the BIOFOR project focussing on boreal forest aerosol. It is the second version of a Lagrangian type box model AEROFOR for investigating the formation and growth of particles under clear sky atmospheric conditions. Particles can consist of soluble and insoluble material and the particle population can be externally or internally mixed. AEROFOR2 includes gas phase chemistry and aerosol dynamics, and calculates the number and composition distributions of particles as functions of time. Observed growth rates of the nucleation mode particles after a typical nucleation event are 2–3 nm/h. The model simulations predict that 3·107 molecules cm−3 of insoluble organic vapour and less than 6·106 molecules cm−3 of soluble vapour condensing onto particles are enough to make them grow in good agreement with the observed growth rates. Then the source rate of the organic vapour must be an order of 105 molecules cm−3 s−1, and its saturation vapour density should be below 106 molecules cm−3. If the aerosol was initially an internal mixture of soluble (70%) and insoluble (30%) constituents it transformed to an externally mixed aerosol during the simulation. By applying the externally‐mixed aerosol based on measured soluble volume fractions, it was concluded that the modelled soluble fraction of the nucleation mode was too low in comparison with the measurements, and thus, a part of the condensable organic vapour must be water soluble.  相似文献   

15.
During the 1st Lagrangian experiment of the North Atlantic Regional Aerosol Characterisation Experiment (ACE‐2), a parcel of air was tagged by releasing a smart, constant level balloon into it from the Research Vessel Vodyanitskiy . The Meteorological Research Flight's C‐130 aircraft then followed this parcel over a period of 30 h characterising the marine boundary layer (MBL), the cloud and the physical and chemical aerosol evolution. The air mass had originated over the northern North Atlantic and thus was clean and had low aerosol concentrations. At the beginning of the experiment the MBL was over 1500 m deep and made up of a surface mixed layer (SML) underlying a layer containing cloud beneath a subsidence inversion. Subsidence in the free troposphere caused the depth of the MBL to almost halve during the experiment and, after 26 h, the MBL became well mixed throughout its whole depth. Salt particle mass in the MBL increased as the surface wind speed increased from 8 m s−1 to 16 m s−1 and the accumulation mode (0.1μm to 3.0 μm) aerosol concentrations quadrupled from 50 cm−3 to 200 cm−3. However, at the same time the total condensation nuclei (>3 nm) decreased from over 1000 cm−3 to 750 cm−3. The changes in the accumulation mode aerosol concentrations had a significant effect on the observed cloud microphysics. Observational evidence suggests that the important processes in controlling the Aitken mode concentration which, dominated the total CN concentration, included, scavenging of interstitial aerosol by cloud droplets, enhanced coagulation of Aitken mode aerosol and accumulation mode aerosol due to the increased sea salt aerosol surface area, and dilution of the MBL by free tropospheric air.  相似文献   

16.
Concurrent observations of particle number densities and size distributions observed at two different heights (near ocean level and 475 m above sea level) in Ny-Ålesund, Svalbard were studied with respect to the diurnal variation during a summer period in June 2004. The results show that observed variation in particle number density in the Arctic boundary layer may be strongly modulated by vertical mixing and dilution. The particles appeared to be formed in the early morning when solar intensity reached about 30% of the mid-day intensity. Based on differences in the observed number densities at the two heights it appears as if particles are formed in the lower part of the boundary layer. The formation rate of 10 nm diameter particles is estimated to be 0.11 cm−3 s−1 and the growth rate is in a range between 1 and 2 nm h−1.  相似文献   

17.
In May–June 2006, airborne and ground-based solar (0.3–2.2 μm) and thermal infrared (4–42 μm) radiation measurements have been performed in Morocco within the Saharan Mineral Dust Experiment (SAMUM). Upwelling and downwelling solar irradiances have been measured using the Spectral Modular Airborne Radiation Measurement System (SMART)-Albedometer. With these data, the areal spectral surface albedo for typical surface types in southeastern Morocco was derived from airborne measurements for the first time. The results are compared to the surface albedo retrieved from collocated satellite measurements, and partly considerable deviations are observed. Using measured surface and atmospheric properties, the spectral and broad-band dust radiative forcing at top-of-atmosphere (TOA) and at the surface has been estimated. The impact of the surface albedo on the solar radiative forcing of Saharan dust is quantified. In the SAMUM case of 19 May 2006, TOA solar radiative forcing varies by 12 W m−2 per 0.1 surface-albedo change. For the thermal infrared component, values of up to +22 W m−2 were derived. The net (solar plus thermal infrared) TOA radiative forcing varies between −19 and +24 W m−2 for a broad-band solar surface albedo of 0.0 and 0.32, respectively. Over the bright surface of southeastern Morocco, the Saharan dust always has a net warming effect.  相似文献   

18.
The major finding of this study is that aerosols over the tropical Indian Ocean enhance clear sky atmospheric solar heating significantly and decrease the surface solar heating by even a larger amount. The results presented here are based on aerosol chemical, microphysical, and optical and radiometric data collected at the island of Kaashidhoo (4.97°N, 73.47°E) during February and March of 1998, as part of the first field phase of the Indian Ocean experiment (INDOEX). The aerosol optical properties were integrated with a multiple scattering Monte Carlo radiative transfer model which was validated at the surface with broadband flux measurements and at the top of the atmosphere (TOA) with the clouds and earth's radiant energy system (CERES) radiation budget measurements. We consider both externally and internally mixed aerosol models with very little difference between the two models in the estimated forcing. For the February–March period, the aerosols increase the monthly mean clear sky atmospheric solar heating by about 12 W/m2(about 15% of the total atmospheric solar heating) and decrease the sea surface clear sky solar heating by about 16 W/m2 with a daily range from 5 to 23 W/m2. The net aerosol forcing at the top of the atmosphere is about −4 W/m2 with a daily range from −2 to −6 W/m2. Although the soot contributes only about 10% to the aerosol optical thickness, it contributes more than 50% to the aerosol induced atmospheric solar heating. The fundamental conclusion of this study is that anthropogenic aerosols over the tropical Indian Ocean are altering the clear sky radiation budget of the atmosphere and surface in a major manner.  相似文献   

19.
The effect of anthropogenic emissions from China on global burdens of ozone, sulphate, organic carbon (OC) and black carbon (BC) aerosols is examined, using the three-dimensional chemistry transport model Oslo CTM2. Two model simulations were performed, the first with global present-day emissions and the second with the anthropogenic emissions from China set to their pre-industrial levels. The global radiative forcing for these species is then calculated. Industrial emissions from China are found to account for a 4–5% increase in the global burden of OC aerosol, the change in secondary organic aerosol being slightly less than that of primary organic aerosol. A 10% increase in the global sulphate aerosol burden is calculated, and the increase in BC is 23%. The global radiative forcing of aerosols from China was calculated to be −62, −3.7, −13 and 89 mW m−2, for sulphate, secondary organic, primary organic and BC aerosols, respectively. The increase in ozone causes a forcing of 77 mW m−2.  相似文献   

20.
Atmospheric N2O concentration was observed in the Pacific for the period 1991–2006, using commercial container ships sailing between Japan and North America and between Japan and Australia or New Zealand. The N2O concentration showed a secular increase and interannual variations at all sampling locations, but a seasonal cycle was detectable only at northern high latitudes. The annual mean N2O concentration showed little longitudinal variations (within ± 0.3 ppb) in the northern Pacific, but showed a clear north-south gradient of about 0.8 ppb, with higher values in the Northern Hemisphere. The annual mean N2O was also characterized by especially high values at 30°N due to strong local N2O emissions and by a steep latitudinal decrease from the equator to 20°S due to the suppression of interhemispheric exchange of air by the South Pacific Convergence Zone. The N2O growth rate showed an interannual variation with a period of about 3 yr (high-values in 1999 and 2000), with a delayed eastward and poleward phase propagation in the northern and western Pacific, respectively. The interannual variations of the N2O growth rate and soil water showed a good correlation, suggesting that the N2O emission from soils have an important causative role in the atmospheric N2O variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号