首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 144 毫秒
1.
多层偏心结构非线性地震反应分析   总被引:1,自引:1,他引:1  
本文利用层单元模型,建立了基于层剪力-扭矩等效屈服EYST面概念的求解多层偏心结构体系双水平向地震动作用下平扭耦联非线性地震反应的简化算法,并讨论了控制偏心结构非线性扭转反应的相关结构参数;通过数值分析,初步验证了该简化方法的实用性和可靠性。  相似文献   

2.
偏心形式对偏心结构扭转耦联地震响应的影响   总被引:2,自引:0,他引:2  
质量偏心和刚度偏心是结构偏心的两种重要形式,从单层无阻尼结构体系地震作用下的一般振动方程出发,推导得到了不同偏心形式的结构考虑地震动扭转分量时的振动方程。在此基础上,编制相应程序对典型算例进行了数值计算,分析了结构的偏心形式、偏心率、侧扭周期比、结构周期、结构尺寸以及地震动扭转分量对偏心结构扭转耦联地震响应的影响规律。分析结果表明:结构的偏心形式对结构扭转耦联响应影响较大,不可忽视,同时地震动转动分量对结构平扭耦联响应也存在一定的影响。  相似文献   

3.
偏心结构在地震作用下的扭转效应过大会导致结构抗震性能的退化,加速结构的破坏。为有效控制偏心结构在地震作用下的平扭耦联反应,根据粘弹性阻尼结构的性能与特点,采用3种不同的控制函数对偏心结构进行了阻尼器的优化布置,并以一个6层的偏心结构为例,比较了不同控制函数下结构的减震效果。结果表明,3种不同的目标控制函数均可有效控制偏心结构的平扭耦联效应,减小结构的扭转反应,所得结果可为实际工程粘弹性阻尼器的优化布置提供有益参考。  相似文献   

4.
为了了解在强震作用下偏心结构平扭耦联效应,对土-偏心结构相互作用体系进行了平扭耦联弹塑性反应参数弹塑性分析。本文建立考虑SSI的单层单向偏心结构模型,将地基土假定为弹簧,通过拉格朗日能量法推导了结构体系的动力特性方程,采用静力弹塑性(Pushover)分析方法,利用MATLAB软件编程,分析了土体和结构均由弹性到弹塑性的变化对相互作用体系和上部结构的影响,以及体系由弹性到弹塑性平扭耦联效应的变化过程,发现土体由弹性进入塑性对体系的动力特性影响很大,并且得到了相互作用体系相对振型频率随扭平频率比和偏心率的变化规律。  相似文献   

5.
多维地震作用下偏心结构的磁流变阻尼器半主动控制   总被引:9,自引:1,他引:8  
理论研究与震害经验表明,地震时结构会产生不可忽略的平动与扭转耦合的空间振动。本文提出了基于线性最优控制理论的部分状态反馈次优控制策略和基于遗传算法的控制策略,以Marlab和Simulink为平台,采用磁流变阻尼器对双向水平地震作用下的偏心结构平.扭耦联反应进行半主动控制。对-6层双向偏心框架结构进行控制效果仿真分析的结果证明,本文提出的2种控制策略是有效的。  相似文献   

6.
一类多层偏心结构的地震反应研究   总被引:6,自引:0,他引:6  
本文用空间的两向抗侧力体系振动模型对五层结构分别分析了首层偏心,中间层偏心,顶层偏心和均匀偏心等不同偏心情况下的弹性地震反应规律,研究了静力偏心距,结构的基本平动周期,平扭频率比,非激励方向的平动频率等对结构的名义基底剪力和偏心层构件的最大剪力系数的影响。  相似文献   

7.
层间隔震偏心结构双向地震耦合响应研究   总被引:1,自引:1,他引:0       下载免费PDF全文
建立双向地震作用下层间隔震双向偏心结构侧扭耦联分析模型;考虑上部结构及下部结构的弹塑性模型,隔震支座采用双向耦合非线性Bouc-wen模型模拟;分析偏心参数对层间隔震双向偏心结构的影响规律;评价双向地震作用下我国抗震规范给出的扭转影响系数静力预测值的准确性。结果表明,双向地震作用下设置中间柔性隔震层可以减小上\,下部结构扭转的耦连效应;下部结构存在双向偏心会对隔震层和下部结构扭转反应带来不利影响;LRB耦合效应对层间隔震地震响应影响较小;当下部结构偏心率较大时现行规范计算扭转系数偏于不安全。  相似文献   

8.
为了研究铅芯橡胶隔震支座的阻尼分布对平扭耦联隔震体系隔震效果的影响,本文对一个三层两跨钢框架,通过调整上部结构负重块位置及下部铅芯橡胶隔震支座的分布位置,进行不同偏心工况下平扭耦联隔震体系地震模拟振动台试验,获得了不同偏心工况、不同阻尼分布情况下结构位移和加速度的时程曲线。试验和分析表明:隔震层阻尼中心与上部结构的质心位置接近,或者增大隔震层的阻尼半径,可显著地降低上部结构的扭转反应。  相似文献   

9.
偏心隔震结构在地震动作用下,除发生平动外,还将发生平-扭耦联的反应,从而使震害加重,尤其是隔震层较易发生破坏。本文利用自行编制的分析程序,对偏心多塔隔震结构进行了数值分析,在此基础上,提出偏心多塔结构同基础隔震的设计方案。数值模拟计算结果表明,对偏心单塔隔震结构,在地震作用下采用多塔同基础隔震的方案,能大幅度降低结构隔震层的扭转反应,其中最大扭转加速度最少降低55%,最大扭转角最少降低84%。可见,在条件许可时,将相邻偏心单塔结构采用同基础隔震的方案,对提高隔震效果是有利的。  相似文献   

10.
摩擦摆基础隔震上部偏心结构地震反应影响因素分析   总被引:1,自引:0,他引:1  
对上部结构存在偏心的摩擦摆基础隔震结构进行了水平双向地震作用下的地震反应分析,研究了上部结构偏心距和抗扭刚度对结构地震反应的影响。分析表明:上部结构偏心距对上部结构和隔震层的位移反应和加速度反应均有较大影响,即使在上部结构偏心距较小时,其对结构地震反应仍有一定程度的影响;上部结构的抗扭刚度对上部结构的加速度反应影响较小,而对上部结构的位移反应影响较大;上部结构的抗扭刚度对隔震层的加速度反应和位移反应影响较小。因而,对于上部结构存在偏心的摩擦摆基础隔震结构,应减小上部结构偏心距并增大其抗扭刚度以减小摩擦摆基础隔震结构的扭转反应。  相似文献   

11.
This study investigates the effect of nonlinear inertia on the dynamic response of an asymmetric building equipped with Tuned Mass Dampers (TMDs). In the field of structural engineering, many researchers have developed models to study the behavior of nonlinear TMDs, but the effect of nonlinear inertia has not received as much attention for asymmetric buildings. To consider nonlinear inertia, the equations of motion are derived in a local rotary coordinates system. The displacements and rotations of the modeled building and TMDs are defined by five-degree-of-freedom (5-DOFs). The equations of motion are derived by using the Lagrangian method. Also in the proposed nonlinear model, the equations of motion are different from a conventional linear model. In order to compare the response of the proposed nonlinear model and a conventional linear model, numerical examples are presented and the response of the modeled buildings are derived under harmonic and earthquake excitations. It is shown that if the nonlinear inertia is considered, the response of the modeled structures changes and the conventional linear approach cannot adequately model the dynamic behavior of the asymmetric buildings which are equipped with TMDs.  相似文献   

12.
An approximation approach of seismic analysis of two‐way asymmetric building systems under bi‐directional seismic ground motions is proposed. The procedures of uncoupled modal response history analysis (UMRHA) are extended to two‐way asymmetric buildings simultaneously excited by two horizontal components of ground motion. Constructing the relationships of two‐way base shears versus two‐way roof translations and base torque versus roof rotation in ADRS format for a two‐way asymmetric building, each modal pushover curve bifurcates into three curves in an inelastic state. A three‐degree‐of‐freedom (3DOF) modal stick is developed to simulate the modal pushover curve with the stated bifurcating characteristic. It requires the calculation of the synthetic earthquake and angle β. It is confirmed that the 3DOF modal stick is consistent with single‐degree‐of‐freedom modal stick in an elastic state. A two‐way asymmetric three‐story building was analyzed by UMRHA procedure incorporating the proposed 3DOF modal sticks. The analytical results are compared with those obtained from nonlinear response history analysis. It is shown that the 3DOF modal sticks are more rational and effective in dealing with the assessment of two‐way asymmetric building systems under two‐directional seismic ground motions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
An innovative approximate method is presented to consider the plan asymmetry, nonlinear structural behaviour and soil-structure interaction (SSI) effects simultaneously. The proposed method so-called Flexible base 2DMPA (F2MPA) is an extension of 2 degrees of freedom modal pushover analysis (2DMPA) approach to consider foundation flexibility in seismic response analysis of plan asymmetric structures which itself were developed based on Uncoupled Modal Response History Analysis method for inelastic fixed-base asymmetric structures. In F2MPA for each mode shape using 2DMPA procedure, the elastic and inelastic properties of 2DOF modal systems corresponding to the fixed-base structure are initially derived. Then in each time step, displacements and inelastic restoring forces of the superstructure are computed from modal equations of the flexibly-supported structure. In each time step, the nonlinear secant stiffness matrix corresponding to the n-th MDOF modal equations of soil-structure system is updated using the corresponding modal 2DOF system of fixed-base structure. To update the transformed modal stiffness matrix of the SSI system, this matrix is partitioned and it is assumed that the non-linear variation of the superstructure can be estimated from the variation of modal stiffness matrix of the fixed-base structure. Accuracy of the proposed method was verified on an 8-story asymmetric-plan building under different seismic excitations. The results obtained from F2MPA method were compared with those obtained by nonlinear response history analysis of the asymmetric soil-structure system as a reference response. It was shown that the proposed approach could predict the results of the nonlinear time history analysis with a good accuracy. The main advantage of F2MPA is that this method is much less time-consuming and useful for the practical aims such as massive analysis of a nonlinear structure under different records with multiple intensity levels.  相似文献   

14.
Performance based design becomes an effective method for estimating seismic demands of buildings. In asymmetric plan tall building the effects of higher modes and torsion are crucial. The consecutive modal pushover (CMP) procedure is one of the procedures that consider these effects. Also in previous studies the influence of soil-structure interaction (SSI) in pushover analysis is ignored. In this paper the CMP procedure is modified for one-way asymmetric plan mid and high-rise buildings considering SSI. The extended CMP (ECMP) procedure is proposed in order to overcome some limitations of the CMP procedure. In this regard, 10, 15 and 20 story buildings with asymmetric plan are studied considering SSI assuming three different soil conditions. Using nonlinear response history analysis under a set of bidirectional ground motion; the exact responses of these buildings are calculated. Then the ECMP procedure is evaluated by comparing the results of this procedure with nonlinear time history results as an exact solution as well as the modal pushover analysis procedure and FEMA 356 load patterns. The results demonstrate the accuracy of the ECMP procedure.  相似文献   

15.
The critical parameters that influence the nonlinear seismic response of asymmetric‐plan buildings are identified by evaluating the effects of different asymmetries that may characterize the structure of a building as well as exploring the influence of the ground motion features. First, the main findings reported in the literature on both the linear and nonlinear dynamic response of asymmetric‐plan buildings are presented. The common findings and the conflicting conclusions reached in different investigations are pointed out. Then, the results of comprehensive nonlinear dynamic analyses performed for evaluating the seismic response of systems characterized by different strength and stiffness configurations, representative of a large class of asymmetric‐plan buildings, are reported. Findings from the study indicate that the building response changes when moving from the linear to the nonlinear range, so that the seismic behavior of asymmetric‐plan buildings, apart from the source of asymmetry, can be always classified as irregular. Additionally, it was observed that as the seismic demands cause amplification of system nonlinearity with increasing earthquake intensity, the maximum displacement demand in the different resisting elements tends to be reached with the same deformed configuration of the system. The resultant of the seismic forces producing such a maximum demand is located at the center of resistance and corresponds to the collapse mechanism of the system that provides the maximum lateral strength in the exciting direction of the seismic action. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
It is demonstrated that the difference in phase content between orthogonal, horizontal, accelerograms can directly influence the effective (band‐limited) torque energy applied to a plan asymmetric structure. This is not the case where a plan asymmetric structure is excited solely by a unidirectional, horizontal, accelerogram ground motion. It is shown that this effective torque energy is well correlated with building torsional (response) acceleration energy and element ductility demands for a broad class of multistorey structures. Nonlinear time‐history analyses employing a database of accelerogram abstracted from USGS are used to quantify the influence of the phase difference content on these building responses. Bias in nonlinear time‐history analyses based on a small sample of accelerograms caused by phase difference content is discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A simplified procedure is proposed to predict the largest peak seismic response of an asymmetric building to horizontal bi-directional ground motion, acting at an arbitrary angle of incidence. The main characteristics of the proposed procedure is as follows. (1) The properties of two independent equivalent single-degree-of-freedom models are determined according to the principal direction of the first modal response in each nonlinear stage, rather than according to the fixed axis based on the mode shape in the elastic stage; the principal direction of the first modal response in each nonlinear stage is determined based on pushover analysis results. (2) The bi-directional horizontal seismic input is simulated as identical spectra of the two horizontal components, and the contribution of each modal response is directly estimated based on the unidirectional response in the principal direction of each. (3) The drift demand at each frame is determined based on four pushover analyses considering the combination of bi-directional excitations. In the numerical example, nonlinear time-history analyses of six four-story torsionally stiff (TS) asymmetric buildings are carried out considering various directions of seismic inputs, and these results are compared with the predicted results. The results show that the proposed procedure satisfactorily predicts the largest peak response displacement at the flexible-side frame of a TS asymmetric building.  相似文献   

18.
A simple method for the non-linear static analysis of complex building structures subjected to monotonically increasing horizontal loading (push-over analysis) is presented. The method is designed to be a part of new methodologies for the seismic design and evaluation of structures. It is based on the extension of a pseudo-three-dimensional mathematical model of a building structure into the non-linear range. The structure consists of planar macroelements. For each planar macroelement, a simple bilinear or multilinear base shear–top displacement relationship is assumed. By a step-by-step analysis an approximate relationship between the global base shear and top displacement is computed. During the analysis the development of plastic hinges throughout the building can be monitored. The method has been implemented into a prototype computer program. In the paper the mathematical model, the base shear–top displacement relationships for different types of macroelements, and the step-by-step computational procedure are described. The method has been applied for the analysis of a symmetric and an asymmetric variant of a seven-storey reinforced concrete frame–wall building, as well as for the analysis of a complex asymmetric 21-storey reinforced concrete wall building. The influence of torsion on structural behaviour is discussed. © 1997 by John Wiley & Sons, Ltd.  相似文献   

19.
Plan asymmetric buildings are very susceptible to earthquake induced damage due to lateral torsional coupling, and the corners of these systems suffer heavy damage during earthquakes. Therefore, it is important to investigate the seismic behavior of an asymmetric plan building with MR dampers. In this study, the effectiveness of MR damper-based control systems has been investigated for seismic hazard mitigation of a plan asymmetric building. Furthermore, the infl uence of the building parameters and damper command voltage on the control performance is examined through parametric study. The building parameters chosen are eccentricity ratio and frequency ratio. The results show that the MR damper-based control systems are effective for plan asymmetric systems.  相似文献   

20.
The seismic behavior of tall buildings can be greatly affected by non-linear soil-pile interaction during strong earthquakes. In this study a 20-storey building is examined as a typical structure supported on a pile foundation for different conditions: (1) rigid base, i.e. no deformation in the foundation: (2) linear soil-pile system; and (3) nonlinear soil-pile system. The effects of pile foundation displacements on the behavior of tall building are investigated, and compared with the behavior of buildings supported on shallow foundation. With a model of non-reflective boundary between the near field and far field, Novak’s method of soil-pile interaction is improved. The computation method for vibration of pile foundations and DYNAN computer program are introduced comprehensively. A series of dynamic experiments have been done on full-scale piles, including single pile and group, linear vibration and nonlinear vibration, to verify the validity of boundary zone model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号