首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two-dimensional nonlinear time domain free surface flow problem is analysed using potential flow theory. The problem is solved by a time marching method. At each time step two numerical approaches are used. One is based on the boundary element method in the complex plane. The complex potential is assumed to vary linearly within each element and the solution is obtained by imposing the boundary conditions at the nodes of the elements. The other approach is based on the finite element formulation. Triangular elements and linear shape functions are used. The solution is obtained by the Galerkin method. Numerical results are obtained for the wave elevation generated by a vertical wave maker. Results are also provided for a circular cylinder oscillating below the free surface. For these cases the finite element method is found to provide substantially more efficient computations than the boundary element method using equivalent discretizations.  相似文献   

2.
通过构造绕射势特解的一种新表达式,基于特征函数展开法提出了线性入射波作用下柱对称双振荡浮子波能装置散射问题的一种新的表达式,并在此基础上计算了垂向波浪激励力.从速度势的求解过程可知,绕射势和辐射势的计算量相当,但垂向波浪激励力的计算比采用Haskind关系方法简单得多,两种方法的结果一样.另外对不同工况下垂向波浪激励力的变化趋势进行了分析.  相似文献   

3.
A variational principle derived from the Kirchhoff-Helmholtz integral relation can be applied to acoustic radiation and diffraction problems. An illustrative example discussed here is that of sound radiation from a flat rigid circular disk in transverse oscillation. The variational formulation has the surface pressure as the unknown variable, with the normal velocity of the surface taken as given. The Rayleigh-Ritz method used in determining approximate solutions in terms of truncated expansions of basis functions encounters some numerical problems in the evaluation of integrals with singular integrands. The integrands are nevertheless integrable and techniques are described for handling the singularities. Another potential source of difficulty is that the tangential derivative of the surface pressure for the exact solution must be infinite at the edge of the disk. One makes use of prior knowledge of such a fact by using basis functions with the correct dependence on radial distance near the disk edge. Because basis functions in the Rayleigh-Ritz procedure have been selected with the aid of prior insight into the nature of the true solution, accurate results are obtained with a relatively small number of basis functions. The numerical solutions agree well with results calculated by Leitner in 1949.  相似文献   

4.
在有限水深下1个漂浮在水中的矩形浮子和1个淹没在水下的浮子构成双矩形波能装置模型。基于特征函数展开法求解了线性入射波作用下双矩形浮子波能装置的辐射问题,得出了双矩形浮子辐射速度势的1种新解析式,然后根据Haskind关系由入射势和辐射势来计算波浪激励力,并且采用数值方法对相同算例进行了计算,得到了完全一致的结果,从而证明这种方法是正确的。研究了在不同工况下的波浪激励力和系统的水动力学系数变化的规律。  相似文献   

5.
The application of a desingularized variational numerical method to the vertical hydrodynamic impact problem of axisymmetric bodies is addressed here within the so-called Generalized von Kármán Model (GvKM). A weak formulation is used and the velocity potential is numerically approximated in a Sobolev space. Trial functions are conveniently written as finite summations of elementary potentials. A main advantage of the proposed technique is the fact that a first-order error in the velocity potential computation implies a second-order error in the added mass value. Good agreement in added mass calculations is verified for a sphere and for an oblate spheroid in comparison with results obtained from WAMIT®.  相似文献   

6.
The scattering of waves by both floating and submerged stationary elliptical breakwaters is investigated by means of linearised shallow water wave theory. This formulation leads to solutions for the fluid velocity potential in terms of Mathieu functions of real argument. Expressions are derived for the wave-induced forces and moments on the structures and their total and differential scattering cross-sections. Numerical results are presented for a range of wave and structural parameters.The present analysis serves as a prelude to a more comprehensive study of the problem without the shallow water restriction.  相似文献   

7.
《Applied Ocean Research》1987,9(2):104-113
Recent measurements of wave kinematics, showing that the horizontal velocity under the trough is in absolute value greater than the velocity under the crest, can not be explained by the Stokes theories up to and including the fifth order theory which are normally used by the offshore industry in the design process. This has led to a reconsideration of the surface wave problem. By applying a Green function technique a solution is obtained which reflects these recent experimental results on wave kinematics. This solution and the Stokes higher order solutions represent different approximate solutions to the surface wave problem. It turns out, however, that this new approximate solution gives a better fit to the measurements than do the approximate solutions obtained from the Stokes higher order theories. In the present paper deep water waves are discussed, but the method of solution can just as well be applied to the finite water depth case.  相似文献   

8.
In this paper, we report on the use of a numerical wave tank (NWT), based on fully nonlinear potential flow (FNPF) equations, in driving simulations of flow and sediment transport around partially buried obstacles. The suspended sediment transport is modeled in the near-field in a Navier-Stokes (NS) model using an immersed-boundary method and an attached sediment transport simulation module. Turbulence is represented by large eddy simulation (LES). The NWT is based on a higher order boundary element method (BEM), with an explicit second-order time stepping. Hence, only the NWT boundary is discretized. The solution for the velocity potential and its derivatives along the boundary is obtained in the BEM, which subsequently provides a solution at any required internal point within the domain. At initial time, the NS-LES model domain is initialized with the 3-D velocity field provided by the NWT and driven for later time by the pressure gradient field obtained in the NWT. Incident wave fields, as specified in the NWT to drive sediment transport, can be arbitrary. Applications are presented here for single frequency waves, such as produced by a harmonic piston wavemaker in the laboratory, and modulated frequency wave groups. The feasibility of coupling the irrotational flow and NS solutions is demonstrated.  相似文献   

9.
The two-dimensional problem of wave transformation by, and motions of, moored floating objects is solved numerically as a boundary value problem by direct use of Green's identity formula for a potential function. The cross-sectional shape of the floating object, the bottom configuration and the mooring arrangements may be all arbitrary. For a given incident wave, the three modes of body motion, the wave system and mooring forces are all solved at the same time. A laboratory experiment is conducted to verify the theory. Generally good agreements between the theory and experiments are obtained as long as the viscous damping due to flow separation is small. A numerical experiment indicates that a conventional sluck mooring is to worsen the wave attenuation by a floating breakwater and that a properly arranged elastic mooring can considerably improve the wave attenuation by a floating breakwater.  相似文献   

10.
针对矩形容器内液体晃荡问题,采用了时域高阶边界元方法建立自由水面满足完全非线性边界条件的数学模型。求解中采用混合欧拉-拉格朗日方法追踪流体瞬时水面,运用四阶龙格库塔方法更新下一时间步的波面和速度势。通过将计算得到的波面结果与实验数据、解析解和已发表结果对比,吻合良好,验证了本方法的准确性。进而采用谱分析方法分析了波面时间历程,得到容器各阶固有频率对液体晃荡的影响。研究发现,基频对液体晃荡的影响最大,且非线性越强,更高阶容器固有频率的影响越大。  相似文献   

11.
The finite element method(FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions.The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions.The finite element linear system is solved by the conjugate gradient(CG) method with a symmetric successive overelaxlation(SSOR) preconditioner.The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation.Numerical examples are given by an array of floating wedgeshaped cylinders and rectangular cylinders.Results are provided for heave motions including wave elevations,profiles and hydrodynamic forces.Comparisons are made in several cases with the results obtained from the second order solution in the time domain.It is found that the wave amplitude in the middle region of the array is larger than those in other places,and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

12.
大深度分层流体中二维淹没浮体的波浪力分析   总被引:2,自引:0,他引:2  
研究了大深度分层流体中二维任意形状淹没浮体的波浪力特性。首先基于一种合适的格林函数,采用边界积分方程法研究了流体中浮体对水波散射问题,然后通过单个淹没圆柱体的透射能和反射能与解析方法结果的比较,对所提出的方法进行了验证,最后分析了在不同的几何和物理条件下几种形状的浮体对波浪力的特有影响,得到了一些有意义的结果,这对分层海洋中淹没浮体的设计具有重要的参考价值。  相似文献   

13.
A two-dimensional nonlinear random sloshing problem is analyzed by the fully nonlinear wave velocity potential theory based on the finite element method. A rectangular container filled with liquid subjected to specified horizontal random oscillations is studied. Both wave elevation and hydrodynamic force are obtained. The spectra of random waves and forces have also been investigated, and the effects of the peak frequencies and spectral width of the specified spectrum used for the generation of the random oscillations are discussed. It is found that the energy mainly concentrates at the natural frequencies of the container and is dominant at the ith order natural frequency when the peak frequency is close to the ith order natural frequency. Some results are compared between the fully nonlinear solutions, the linear solutions and the linear plus second-order solutions.  相似文献   

14.
Hydroelastic analysis of fully nonlinear water waves with the floating elastic plate is a hard mission. Especially, the behavior of the wave would be more complex when water wave encounter the floating elastic plate. In this paper, the meshless numerical method is devoted to solve such a problem. Fundamental solution method is applied to approximate the velocity potential in the fluid domain. When the water wave encounters the plate, the wave function would not be enough smooth in the edge of plate compared to the other points. Hence, to analyze numerically the behavior of wave, the solution space should include the basis functions that are not enough smooth in the edge of plate. Moreover, to decrease computational cost significantly, the basis functions had better to have local compact support. The multiple knot B-spline basis functions are suitable that contain both properties. The number of repeated knots, the degree of B-spline and the spatial points are challengeable that are discussed in this paper. The results are in good agreement with those obtained from other numerical works.  相似文献   

15.
The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber’s hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisymmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.  相似文献   

16.
The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions. The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions. The finite element linear system is solved by the conjugate gradient (CG) method with a symmetric successive overelaxlation (SSOR) preconditioner. The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation. Numerical examples are given by an array of floating wedge- shaped cylinders and rectangular cylinders. Results are provided for heave motions including wave elevations, profiles and hydrodynamic forces. Comparisons are made in several cases with the results obtained from the second order solution in the time domain. It is found that the wave amplitude in the middle region of the array is larger than those in other places, and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

17.
The system with one floating rectangular body on the free surface and one submerged rectangular body has been applied to a wave energy conversion device in water of finite depth. The radiation problem by this device on a plane incident wave is solved by the use of an eigenfunction expansion method, and a new analytical expression for the radiation velocity potential is obtained. The wave excitation force is calculated via the known incident wave potential and the radiation potential with a theorem of Haskind employed. To verify the correctness of this method, an example is computed respectively through the bound element method and analytical method. Results show that two numerical methods. are in good agreement, which shows that the present method is applicable. In addition, the trends of hydrodynamic coefficients and wave force are analyzed under different conditions by use of the present analytical method.  相似文献   

18.
C.Z. Wang  G.X. Wu  K.R. Drake 《Ocean Engineering》2007,34(8-9):1182-1196
Interactions between water waves and non-wall-sided cylinders are analyzed based on velocity potential theory with fully nonlinear boundary conditions on the free surface and the body surface. The finite element method (FEM) is adopted together with a 3D mesh generated through an extension of a 2D Delaunay grid on a horizontal plane along the depth. The linear matrix equation for the velocity potential is constructed by imposing the governing equation and boundary conditions through the Galerkin method and is solved through an iterative method. By imposing the gradient of the potential equal to the velocity, the Galerkin method is used again to obtain the velocity field in the fluid domain. Simulations are made for bottom mounted and truncated cylinders with flare in a numerical tank. Periodic waves and wave groups are generated by a piston type wave maker mounted on one end of the tank. Results are obtained for forces, wave profiles and wave runups. Further simulations are made for a cylinder with flare subjected to forced motion in otherwise still open water. Results are provided for surge and heave motion in different amplitudes, and for a body moving in a circular path in the horizontal plane. Comparisons are made in several cases with the results obtained from the second order solution in the time domain.  相似文献   

19.
极限波浪运动特性的非线性数值模拟   总被引:1,自引:0,他引:1  
宁德志  滕斌  姜立明  臧军 《海洋学报》2008,30(3):126-132
利用时域高阶边界元方法建立了模拟极限波浪运动的完全非线性数值模型,其中自由水面满足完全非线性自由水面条件.采用半混合欧拉-拉格朗日方法追踪流体瞬时水面,运用四阶Runge-Kutta方法更新下一时间步的波面和速度势,同时应用镜像格林函数消除水槽两个侧面和底面上的积分.研究中利用波浪聚焦的方法产生极限波浪,并且在水槽中开展了物理模型实验,将测点试验数据与数值结果进行了对比,两者吻合得很好.对极限波浪运动的非线性和流域内速度分布进行了研究.  相似文献   

20.
Multipole expansions for wave diffraction and radiation in deep water   总被引:1,自引:0,他引:1  
A multipole expansion of the velocity potential is described for two- and three-dimensional wave diffraction and radiation problems. The velocity potential is expressed in terms of a series of multipole potentials. The wave terms and the local disturbance terms are represented by separated multipole potentials. Floating bodies and submerged bodies are treated in the same way. This approach differs from that of some other authors, who considered floating bodies and submerged bodies separately and derived entirely different multipoles. Semi-analytical solutions for a circular cylinder in two-dimensional motions are given. It is found that the local disturbance decays rapidly and steadily. The general application of the multipole expansion to arbitrary geometries is also presented, based on a method coupling multipoles to a boundary integral expression. Numerical results for several floating and submerged cylinders are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号