首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ocean Modelling》2008,20(3):252-269
The effects of wave–current interactions on the storm surge and inundation induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal regions are examined by using a three-dimensional (3-D) wave–current coupled modeling system. The 3-D storm surge and inundation modeling component of the coupled system is based on the Princeton ocean model (POM), whereas the wave modeling component is based on the third-generation wave model, simulating waves nearshore (SWAN). The results indicate that the effects of wave-induced surface, bottom, and radiation stresses can separately or in combination produce significant changes in storm surge and inundation. The effects of waves vary spatially. In some areas, the contribution of waves to peak storm surge during Hurricane Hugo reached as high as 0.76 m which led to substantial changes in the inundation and drying areas simulated by the storm surge model.  相似文献   

2.
为提高厦门防御台风风暴潮灾害风险的能力,辅助政府部门开展海洋防灾减灾工作,文章基于风暴潮数值模型开发厦门风暴潮淹没风险预警系统,并以1521号台风为例模拟其淹没风险。研究结果表明:风暴潮数值模型能较好地刻画影响厦门的台风风暴潮过程,满足风暴潮淹没风险分析需求;厦门风暴潮淹没风险预警系统采用按警戒潮位预警和按高程预警2种方法分析风暴潮淹没风险,可对影响程度不同的岸段采取不同的预警和防御措施;基于数值模型的风暴潮淹没范围与实地调查区域的淹没范围基本一致,可对未开展实地调查区域的淹没范围进行补充;今后须进一步完善厦门风暴潮淹没风险预警系统,同时建立厦门风暴潮风险评价体系。  相似文献   

3.
利用-套基于非结构网格且能计算海水漫堤溢流的超高分辨率风暴潮漫滩数值模式模拟由9417号台风特大风暴潮引起的漫滩,结果与实测吻合良好。此外,选取超强台风强度并以9417台风路径为南路径,往北每间隔30 km为中路径和北路径设计了3条台风路径,进行了-系列数值模拟得出:近岸围堤加大了风暴潮、漫滩淹没对温州的威胁,而且由南路径引起的漫滩深度和中路径引起的漫滩面积影响最大。究其原因,近岸围堤对外海风暴潮在温州近海及瓯江口传播的阻隔和分流作用,两者综合变相加大了风暴潮往瓯江口北侧海域、瓯江北口、瓯江中上游的输送量。  相似文献   

4.
天津近岸台风暴潮漫滩数值模式研究   总被引:2,自引:0,他引:2  
基于对POM(Princeton Ocean Model)模式的改进,采用Flather-Heaps干湿网格法和两重网格嵌套的数值计算格式,针对天津近岸海域的地形和易受风暴潮漫滩灾害侵袭的特点,建立了天津近岸海域三维动边界风暴潮漫滩模型,对天津近岸区域台风影响下的风暴潮漫滩进行了数值模拟研究。选取7203,8509,9216,9711号典型台风过程,计算了风暴潮漫滩水位变化,通过与塘沽站点实测数据的比较,计算的增水曲线过程与实测结果吻合较好,基本能够真实反映天津近岸的风暴潮水位变化情况及漫滩范围。研究结果验证了改进POM模式为动边界数值模型并应用于浅海区域是可行性的。  相似文献   

5.
The Hangzhou Bay faces frequent threats from typhoon-induced storm surge and has attracted considerable attentions of coastal researchers and environmental workers. A three-dimensional storm surge model system based on Finite-Volume Coastal Ocean Model (FVCOM) and analytical cyclone model is applied to investigate the hydrodynamic response in the Hangzhou Bay to tropical typhoon. This model has been used to reproduce the storm surge generated by Typhoon Agnes (No. 8114) and the simulated wind field and water elevations have been compared with the available field observations. A series of numerical experimental cases have been conducted to study the effects of land reclamation project (shoreline relocation and seabed deformation) and cyclonic parameters (minimal central pressure (MCP), radius to maximal wind (RMW) and translation speed (TS)) on the hydrodynamics in the Hangzhou Bay. The results show that the shoreline relocation and seabed deformation could generate much higher storm surge in the vicinity of reclamation project with the shoreline relocation making main contribution (about 70%) to this increase. It is found that among the cyclonic parameters, RMW is the most important factor affecting the peak surge in the Hangzhou Bay.  相似文献   

6.
Abstract

This article examines whether Digital Elevation Model (DEM) resolution affects the accuracy of predicted coastal inundation extent using LISFLOOD-FP, with application to a sandy coastline in New Jersey. DEMs with resolution ranging from 10 to 100 m were created using coastal elevation data from NOAA, using the North American Vertical Datum of 1988. A two-dimensional hydrodynamic flood model was developed in LISFLOOD-FP using each DEM, all of which were calibrated and validated against an observed 24-h tidal cycle and used to simulate a 1.5 m storm surge. While differences in predicted inundated area from all models were within 1.0%, model performance and computational time worsened and decreased with coarser DEM resolution, respectively. This implied that using a structured grid model for modeling coastal flood vulnerability is based on two trade-offs: high DEM resolution coupled with computational intensity, but higher precision in model predictions, and vice versa. Furthermore, water depth predictions from all DEMs were consistent. Using an integrated numerical modeling and GIS approach, a two-scale modeling strategy, where a coarse DEM is used to predict water levels for projection onto a fine DEM was found to be an effective, and computationally efficient approach for obtaining reliable estimates of coastal inundation extent.  相似文献   

7.
The current study area is coastal zone of Cuddalore, Pondicherry and Villupuram districts of the Tamil Nadu along the southeast coast of India. This area is experiencing threat from many disasters such as storm, cyclone, flood, tsunami and erosion. This was one of the worst affected area during 2004 Indian Ocean tsunami and during 2008 Nisha cyclone. The multi-hazard vulnerability maps prepared here are a blended and combined overlay of multiple hazards those affecting the coastal zone. The present study aims to develop a methodology for coastal multi-hazard vulnerability assessment. This study was carried out using parameters probability of maximum storm surge height during the return period (mean recurrence interval), future sea level rise, coastal erosion and high resolution coastal topography with the aid of the Remote Sensing and GIS tools. The assessment results were threatening 3.46 million inhabitants from 129 villages covering a coastal area 360 km2 under the multi-hazard zone. In general river systems act as the flooding corridors which carrying larger and longer hinterland inundation. Multi-hazard Vulnerability maps were further reproduced as risk maps with the land use information. These risk caused due to multi-hazards were assessed up to building levels. The decision-making tools presented here can aid as critical information during a disaster for the evacuation process and to evolve a management strategy. These Multi-hazard vulnerability maps can also be used as a tool in planning a new facility and for insurance purpose.  相似文献   

8.
覆盖中国沿海地区的精细化台风风暴潮模型的研究及适用   总被引:1,自引:1,他引:0  
精细化风暴潮预报是目前风暴潮预报重点发展方向之一,本文首次建立起了一个覆盖整个中国沿海地区的精细化台风风暴潮数值模型,克服了以往分区域数值模型的不足,该模型在中国沿海地区的分辨率达到300m左右。模型采用了并行计算,并对2012年和2013年灾害性台风风暴潮过程进行了数值检验,计算精度和计算所用时间都能够满足业务化运行的要求。本文同时还根据中国气象局、美国国家气象局等5家主要台风预报机构给出的24h台风预报,对2013年度灾害性台风风暴潮过程进行了24h数值预报检验,检验结果表明:根据中国气象局台风登陆前24h预报可以得到更准确的风暴潮预报结果,其预报结果优于其他各家预报结果。该结论可以为今后的台风风暴潮预报中台风路径的选取提供重要的参考。  相似文献   

9.
Super Cyclone Gonu is the strongest tropical cyclone on record in the Arabian Sea. Gonu caused coastal damage due to storm surge and storm wave impact as well as wadi flooding. High water marks, overland flow depths, and inundation distances were measured in the coastal flood zones along the Gulf of Oman from 1 to 4 August 2007. The high water marks peaked at Ras al-Hadd at the eastern tip of Oman exceeding 5 m. The storm surge of Gonu is modeled using the Advanced Circulation Model (ADCIRC). The multi-hazard aspect is analyzed by comparing observations from Cyclone Gonu with the 2004 Indian Ocean Tsunami.  相似文献   

10.
滨海新区温带风暴潮灾害风险评估研究   总被引:9,自引:3,他引:6  
建立了一套基于非结构三角网、适用于滨海新区的高分辨率风暴潮漫滩数值模式,在陆地区域分辨率达到50~80 m,对两次典型的温带风暴潮进行模拟得到满意结果。计算了塘沽站19 a平均天文高潮值并根据对历史天气过程的分析,选取制定了4个强度的天气系统,而后模拟得到不同强度下滨海新区的温带风暴潮最大淹没范围。综合考虑风暴潮淹没风险与承灾体脆弱性制作出滨海新区温带风暴潮灾害风险图。结果表明:大部分地区都存在风暴潮灾害风险,沿海地区风险大于内陆,其中天津新港、临港工业区、海河北岸地区、大港地区南部的灾害风险最大。  相似文献   

11.
《Ocean Modelling》2011,36(4):314-331
Hurricane-induced storm surge, waves, and coastal inundation in the northeastern Gulf of Mexico region during Hurricane Ivan in 2004 are simulated using a fine grid coastal surge model CH3D (Curvilinear-grid Hydrodynamics in 3D) coupled to a coastal wave model SWAN, with open boundary conditions provided by a basin-scale surge model ADCIRC (Advanced CIRCulation) and a basin-scale wave model WW3 (WaveWatch-III). The H1wind, a reanalysis 10-m wind produced by the NOAA/AOML Hurricane Research Division (HRD), and a relatively simple analytical wind model are used, incorporating the effect of land dissipation on hurricane wind. Detailed comparison shows good agreement between the simulated and measured wind, waves, surge, and high water marks. Coastal storm surge along the coast is around 2–3 m, while peak surge on the order of 3.5 m is found near Pensacola, which is slightly to the east of the landfall location on Dauphin Island. Wind waves reach 20 m at the Mobile South station (National Data Buoy Center buoy 42040) on the shelf and 2 m inside the Pensacola/Escambia Bay. Model results show that wave-induced surge (total surge subtracted by the meteorologically-induced surge due to wind and pressure) accounts for 20–30% of the peak surge, while errors of the simulated surge and waves are generally within 10% of measured data. The extent of the simulated inundation region is increased when the effects of waves are included. Surge elevations simulated by the 3D model are generally up to 15% higher than that by the 2D model, and the effects of waves are more pronounced in the 3D results. The 3D model results inside the Pensacola/Escambia Bay show significant vertical variation in the horizontal currents. While the estuary has little impact on the surge elevation along the open coastal water, surge at the head of Escambia Bay is more than 50% higher than that at the open coast with 1.5 h delay.  相似文献   

12.
《Coastal Engineering》2004,51(4):277-296
A cyclone induced storm surge and flood forecasting system that has been developed for the northern Bay of Bengal is presented. The developed system includes a cyclone forecasting model that uses statistical models for forecasting of the cyclone track and maximum wind speed, and an analytical cyclone model for generation of cyclone wind and pressure fields. A data assimilation system has been developed that allows updating of the cyclone parameters based on air pressure and wind speed observations from surface meteorological stations. The forecasted air pressure and wind fields are used as input in a 2D hydrodynamic model for forecasting storm surge levels and associated flooding. An efficient uncertainty prediction procedure based on Harr's point estimation method has been implemented as part of the forecasting system for prediction of the uncertainties of the forecasted storm surge levels and inundation areas caused by the uncertainties in the cyclone track and wind speed forecasts. The developed system is applied on a severe cyclone that hit Bangladesh in April 1991. The simulated storm surge and associated flooding are highly sensitive to the cyclone data. The cyclone data assimilation system provides a more accurate cyclone track when the cyclone approaches the coastline, which results in a significant improvement of the storm surge and flood predictions. Application of the uncertainty prediction procedure shows that the large uncertainties of the cyclone track and intensity forecasts result in large uncertainties of the forecasted storm surge levels and flood extend. The forecasting system shows very good forecasting capabilities up to 24 h before the actual landfall.  相似文献   

13.
A down-scaled operational oceanographic system is developed for the coastal waters of Korea using a regional ocean modeling system(ROMS).The operational oceanographic modeling system consists of atmospheric and hydrodynamic models.The hydrodynamic model,ROMS,is coupled with wave,sediment transport,and water quality modules.The system forecasts the predicted results twice a day on a 72 h basis,including sea surface elevation,currents,temperature,salinity,storm surge height,and wave information for the coastal waters of Korea.The predicted results are exported to the web-GIS-based coastal information system for real-time dissemination to the public and validation with real-time monitoring data using visualization technologies.The ROMS is two-way coupled with a simulating waves nearshore model,SWAN,for the hydrodynamics and waves,nested with the meteorological model,WRF,for the atmospheric surface forcing,and externally nested with the eutrophication model,CE-QUAL-ICM,for the water quality.The operational model,ROMS,was calibrated with the tidal surface observed with a tide-gage and verified with current data observed by bottom-mounted ADCP or AWAC near the coastal waters of Korea.To validate the predicted results,we used real-time monitoring data derived from remote buoy system,HF-radar,and geostationary ocean color imager(GOCI).This down-scaled operational coastal forecasting system will be used as a part of the Korea operational oceanographic system(KOOS) with other operational oceanographic systems.  相似文献   

14.
文章基于近岸海洋数值模式ADCIRC (a parallel advanced circulation model for oceanic, coastal and estuarine waters)和近海波浪数值模式SWAN (simulating waves nearshore), 建立雷州市高分辨率的风暴潮-海浪耦合漫滩数值模型, 并反演了对雷州市影响较为严重的1415号台风“海鸥”的风暴潮过程。经过对比分析得出, 波浪对雷州市沿海海域的风暴潮产生重要影响。然后以8007号台风路径为基础, 构造了7个不同等级共35组台风风暴潮案例, 计算分析出不同等级台风强度下雷州市风暴潮淹没范围及水深。900hPa等级下, 雷州市淹没面积达到463.2km2。文章还构造了60组可能最大风暴潮事件集, 计算得到雷州市可能最大台风风暴潮淹没范围及水深分布。在可能最大台风影响下, 大量海水将漫过海堤, 造成极其严重的淹没灾害, 雷州市总的淹没面积可达602.0km2, 其中465.8km2的淹没面积达到了危险性等级 Ⅰ 级, 淹没水深大于3m。雷州市东岸的淹没灾害大于西岸。  相似文献   

15.
This paper presents the application of the depth-integrated non-hydrostatic finite element model, CCHE2D-NHWAVE (Wei and Jia, 2014), for simulating several types of coastal wave processes. Specifically, the model is applied to (1) predict the swash zone hydrodynamics involving wave bore propagation, (2) resolve wave propagation, breaking, and overtopping in fringing reef environments, (3) study the vegetation effect on wave height reduction through both submerged and emergent vegetation zones using the drag force term technique, and (4) simulate tsunami wave breaking in the nearshore zone and inundation in the coastal area. Satisfactory agreement between numerical results and benchmark data shows that the non-hydrostatic model is capable of modeling a wide range of coastal wave processes. Furthermore, thanks to its simple numerical formulation, the non-hydrostatic model also demonstrates a better computation efficiency when comparing with other numerical models.  相似文献   

16.
Using an integrated approach including satellite imagery analysis, field measurements, and numerical modeling, we investigated the damage to mangroves caused by the 2004 Indian Ocean tsunami at Pakarang Cape in Pang Nga Province, Thailand. Comparing pre- and post-tsunami satellite imagery of the study area, we found that approximately 70% of the mangrove forest was destroyed by the tsunami. Based on field observations, we found that the survival rate of mangroves increased with increasing stem diameter. Specifically, we found that 72% of Rhizophora trees with a 25–30 cm stem diameter survived the tsunami impact, whereas only 19% with a 15–20 cm stem diameter survived. We simulated the 2004 Indian Ocean tsunami using the nonlinear shallow-water wave theory to reproduce the tsunami inundation flow and investigated the bending moment acting on the mangrove trees. Results of the numerical model showed that the tsunami inundated areas along the mangrove creeks, and its current velocity reached 5.0 m s−1. Based on the field measurements and numerical results, we proposed a fragility function for mangroves, which is the relationship between the probability of damage and the bending stress caused by the maximum bending moment. We refined the numerical model to include the damage probability of mangrove forests using the obtained fragility function to investigate the tsunami reduction effect of mangrove forest. Under simple numerical conditions related to the mangrove forest, ground level, and incident wave, the model showed that a mangrove forest of Rhizophora sp. with a density of 0.2 trees m−2 and a stem diameter of 15 cm in a 400 m wide area can reduce the tsunami inundation depth by 30% when the incident wave is assumed to have a 3.0 m inundation depth and a wave period of 30 min at the shoreline. However, 50% of the mangrove forest is destroyed by a 4.5 m tsunami inundation depth, and most of the mangrove forest is destroyed by a tsunami inundation depth greater than 6 m. The reduction effect of tsunami inundation depth decreased when the tsunami inundation depth exceeded 3 m, and was mostly lost when the tsunami inundation depth exceeded 6 m.  相似文献   

17.
During storm events wave setup in shallow regions can contribute significantly to the total water elevation, and radiation stress can also generate alongshore drift influencing sediment transport. In low lying coastal regions this generates the potential for flood inundation and morphological change. A coupled tide–surge–wave modelling system is therefore required for accurate forecasting. Liverpool Bay, UK, is taken as a case study because it has a resource of observations and incorporates three estuaries, thus providing conditions to assess the model performance both at the open coast and within estuarine environments. The model covers a region encompassing depths from about 50 m below the mean tidal level to shallow wetting and drying regions, and has previously given good wave and surge hindcasts both for individual storm events and multi-year studies.The present study builds on an already accepted model, to include and assess the spatial influence of 2D radiation stress when implemented in a 3D circulation model. The results show that the method is computationally efficient, so relevant for operational use, and also provides a plausible solution. The varied influence of radiation stress across a coastal domain is demonstrated, with larger impact at an estuary mouth and along the open coast, while having lesser impact within an estuary and further offshore.  相似文献   

18.
Given the history and future risk of storm surge in the United States, functional storm protection techniques are needed to protect vital sectors of the economy and coastal communities. It is widely hypothesized that coastal wetlands offer protection from storm surge and wave action, though the extent of this protection is unknown due to the complexities of flow through vegetation. Here we present the sensitivity of storm-surge numerical modeling results to various coastal wetlands characteristics. An idealized grid domain and 400-km2 marsh feature were used to evaluate the effects of marsh characteristics on hurricane surge, including the effects of bottom friction, elevation, and continuity (the ratio of healthy marsh to open water area within the total wetland area).Through coupled hydrodynamic and wave model simulations, it is confirmed that increased bottom friction reduces storm-surge levels for most storms. However, increases in depth associated with marsh elevation loss generally results in a reduction of surge. As marsh continuity is decreased, coastal surge increases as a result of enhanced surge conveyance into and out of the marsh. Storm surge is parameterized in terms of marsh morphology, namely marsh elevation, frictional characteristics, and degree of segmentation, which will assist in the justification for and optimization of marsh restoration in terms of storm protection.  相似文献   

19.
Up to now, available method of numerical forecasting and suitable wind field model for the Bohai Sea storm surge have been few. In this paper, through the analysis of the weather situation is presented a mathematical model for the wind fields involved mainly the deformation field of a high pressure matched with a low pressure, the temperate cyclone, the cold wave and the northword typhoon. Meanwhile, numerical computations combined with the nonlinear storm surge models are made by using "ADI" method. The computed results are generally coincident with the practical observations. It has showed a success in the simulated wind field and the feasibility of using "ADI" method to forecast the Bohai Sea storm surge.  相似文献   

20.
Storm surges are abnormal rises in sea level along coastal areas and are mainly formed by strong wind and atmospheric depressions.When storm surges coincide with high tide,coastal flooding can occur.Creating storm surge prediction systems has been an important and operational task worldwide.This study developed a coupled tide and storm surge numerical model of the seas around Taiwan for operational purposes at the Central Weather Bureau.The model was calibrated and verified by using tidal records from seas around Taiwan.Model skill was assessed based on measured records,and the results are presented in details.At 3-minute resolution,tides were generally well predicted,with the root mean-square errors of less than 0.11 m and an overall correlation of more than 0.9.Storms(winds and depressions) were introduced into the model forcing by using the parameter typhoon model.Five typical typhoons that threatened Taiwan were simulated for assessment.The surges were well predicted compared with the records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号