首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have shown that the vertical component of ground motion can be quite destructive on a variety of structural systems. Development of response spectrum for design of buildings subjected to vertical component of earthquake needs ground motion prediction equations (GMPEs). The existing GMPEs for northern Iranian plateau are proposed for the horizontal component of earthquake, and there is not any specified GMPE for the vertical component of earthquake in this region. Determination of GMPEs is mostly based on regression analyses on earthquake parameters such as magnitude, site class, distance, and spectral amplitudes. In this study, 325 three-component records of 55 earthquakes with magnitude ranging from M w 4.1 to M w 7.3 are used for estimation on the regression coefficients. Records with distances less than 300 km are selected for analyses in the database. The regression analyses on earthquake parameters results in determination of GMPEs for peak ground acceleration and spectral acceleration for both horizontal and vertical components of the ground motion. The correlation between the models for vertical and horizontal GMPEs is studied in details. These models are later compared with some other available GMPEs. According to the result of this investigation, the proposed GMPEs are in agreement with the other relationships that were developed based on the local and regional data.  相似文献   

2.
In this article, a study on development of ground motion prediction equations (GMPEs) is undertaken for seismically active regions in India. To derive the equations, the seismically active regions are divided into four units based on seismotectonic setting and geology. Due to lack of strong motion data, a stochastic finite-fault simulation method is used for generating a complete synthetic database with respect to magnitude and distance. The input parameters in the stochastic seismological model, such as site amplification and stress drop, are first derived from the past strong-motion data. A total of 236 three-component records from 62 earthquakes with magnitudes ranging from M w 3.4 to 7.8 are used to calibrate the seismological model. The obtained stress drops of these 62 events lie in between 60 and 165 bars. With the help of a large synthetic database generated from the calibrated seismological model, ground motion relations for 5 % damped spectral acceleration are obtained by regression analysis. The developed ground motion relations are compared with the existing GMPEs of the other active regions in the world. Although the proposed equations have trends similar to those of the existing relations, there are some differences attributed to stress drop and the quality factor of active regions in India. These relations will be useful to prepare spectral acceleration hazard maps of India for a given annual probability of exceedance.  相似文献   

3.
The city of Adapazarı — located in the Marmara Region of northwest Turkey — is situated on a deep sedimentary basin and was the city most heavily damaged by the strong ground motion of the 17 August 1999 Kocaeli earthquake (moment magnitude Mw = 7.4). This study determines site amplifications of the attenuation relationships for shallow earthquakes in the Adapazarı basin by using the previous ground motion prediction equations (GMPEs) and the traditional spectral ratio method. The site amplifications are determined empirically by averaging the residuals between the observed and predicted peak ground acceleration (PGA) and spectral acceleration (SA) values for various periods. Residuals are significantly correlated with the known characteristics of geological units. A new attenuation model has also been developed for 5% damped spectral acceleration to determine the dependence of strong ground motions on frequency.  相似文献   

4.
The N-W Himalaya was rocked by a few major and many minor earthquakes. Two major earthquakes in Garhwal Himalaya: Uttarkashi earthquake of magnitude Ms= 7.0 (mb = 6.6) on October 20, 1991 in Bhagirthi valley and Chamoli earthquake of Ms= 6.5 (mb = 6.8) on March 29, 1999 in the Alaknanda valley and one in Himachal Himalaya: Chamba earthquake of magnitude 5.1 on March 24, 1995 in Chamba region, were recorded during the last decade and correlated with radon anomalies. The helium anomaly for Chamoli earthquake was also recorded and the Helium/Radon ratio model was tested on it. The precursory nature of radon and helium anomalies is a strong indicator in favor of geochemical precursors for earthquake prediction and a preliminary test for the Helium/Radon ratio model.  相似文献   

5.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

6.
Ground motion produced by low magnitude earthquakes can be used to predict peak values in high seismic risk areas where large earthquakes data are not available. In the present work 20 local earthquakes (MD∈[?0.3, 2.2]) occurred in the Campi Flegrei caldera during the last decade were analyzed. We followed this strategy: empirical relations were used to calibrate synthetic modeling, accounting for the source features and wave propagation effects. Once the source and path parameters of ground motion simulation were obtained from the reference data set, we extrapolated scenarios for stronger earthquakes for which real data are not available. The procedure is structured in two steps: (1) evaluation of ground motion prediction equation for Campi Flegrei area and assessment of input parameters for the source, path and site effects in order to use the finite fault stochastic approach (EXSIM code); (2) simulation of two moderate-to-large earthquake scenarios for which only historical data or partial information are available (Mw4.2 and Mw5.4). The results show that the investigated area is characterized by high attenuation of peak amplitude and not negligible site effects. The stochastic approach has revealed a good tool to calibrate source, path and site parameters on small earthquakes and to generate large earthquake scenario. The investigated magnitude range represents a lower limit to apply the stochastic method as a calibration tool, due to the small size of involved faults (fault length around 200/300 m).  相似文献   

7.
Near-field strong ground motions are useful for engineering seismology studies and seismic design, but dense observation networks of damaging earthquakes are still rare. In this study, based on the strong-motion data from the M w 6.6 Lushan earthquake, the ground motion parameters in different spatial regions are systematically analyzed, and the contributions from different effects, like the hanging-wall effect, directivity effect, and attenuation effect are separated to the extent possible. Different engineering parameters from the observed ground motions are compared with the local design response spectra and a new attenuation relation of Western China. General results indicate that the high frequency ground motion, like the peak ground acceleration, on two sides of the fault plane is sensitive to the hanging-wall effect, whereas the low frequency ground motion, like the long period spectral acceleration, in the rupture propagation direction is affected by the directivity effect. Moreover, although the M w 6.6 Lushan earthquake is not a large magnitude event, the spatial difference of ground motion is still obvious; thus, for a thrust faulting earthquake, in addition to the hanging effect, the directivity effect should also be considered.  相似文献   

8.
— On 28 March, 1999 (19:05:10.09, UT) a significant earthquake of M w 6.4 occurred in the Garhwal Himalaya (30.555°N, 79.424°E). One hundred and ten well-recorded aftershocks show a WNW-ESE trending northeasterly dipping seismic zone extending from a depth of 2 to 20?km. As the main shock hypocenter occurred at the northern end of this seismic zone and aftershocks extended updip, it is inferred that the main-shock rupture nucleated on the detachment plane at a depth of 15?km and then propagated updip along a NE-dipping thrust plane. Further, the epicentral distribution of aftershocks defines a marked concentration near a zone where main central thrust (MCT) takes a significant turn towards the north, which might be acting as an asperity in response to the NNE compression due to the underthrusting of Himalayan orogenic process prevalent in the entire region. Presence of high seismicity including five earthquakes of magnitude exceeding 6 and twelve earthquakes of magnitude exceeding 5 in the 20th century is presumed to have caused a higher level of shallow crustal heterogeneity in the Garhwal Himalaya, a site lying in the central gap zone of the Himalayan frontal arc. Attenuation property of the medium around the epicentral area of the 1999 Chamoli earthquake, covering a circular area of 61,500?km2 with a radius of 140?km, is studied by estimating the coda Q c from 48 local earthquakes of magnitudes varying from 2.5–4.8. These earthquakes were recorded at nine 24-bit REFTEK digital stations; two of which were equipped with three-component CMG40T broadband seismometers and others with three-component L4-3D short-period seismometers. The estimated Q o values at different stations suggest on average a low value of the order of (30?±?0.8), indicating an attenuating crust beneath the entire region. The frequency-dependent relation indicates a relatively low Q c at lower frequencies (1–3?Hz) that can be attributed to the loss of energy due to scattering on heterogeneities and/or the presence of faults and cracks. The large Q c at higher frequencies may be related to the propagation of backscattered body waves through deeper parts of the lithosphere where less heterogeneities are expected. An important observation is that the region north of MCT (more rigid highly metamorphosed crystalline rocks) is less attenuative in comparison to the region south of MCT (less rigid slightly metamorphosed rocks (sedimentary wedge)). The acceleration decays to 50% at 20?km distance and to 7% at 100?km. Hence, even 1g acceleration at the source may not cause significant damage beyond 100?km in this region.  相似文献   

9.
Turkey was struck by two major events on August 17th and November 12th, 1999. Named Kocaeli (Mw=7.4) and Düzce (Mw=7.2) earthquakes, respectively, the two earthquakes provided the most extensive strong ground motion data set ever recorded in Turkey. The strong motion stations operated by the General Directorate of Disaster Affairs, the Kandilli Observatory and Earthquake Research Institute of Bogazici University and Istanbul Technical University have produced at least 27 strong motion records for the Kocaeli earthquake within 200 km of the fault. Kocaeli earthquake has generated six motions within 20 km of the fault adding significantly to the near-field database of ground motions for Mw>=7.0 strike–slip earthquakes. The paper discusses available strong motion data, studies their attenuation characteristics, analyses time domain, as well as spectral properties such as spectral accelerations with special emphasis on fault normal and fault parallel components and the elastic attenuation parameter, kappa. A simulation of the Kocaeli earthquake using code FINSIM is also presented.  相似文献   

10.
11.
A total of 144 free-field ground motions with closest site-to-rupture distances (Rrup) less than 200 km recorded during the 2010 Mw 7.2 El Mayor–Cucapah earthquake are used to investigate predictive capabilities of the next generation attenuation (NGA) ground-motion prediction equations (GMPE). The NGA GMPEs underpredict observed spectral accelerations at sites with shear wave velocity in the upper 30 m of the site (Vs30) between 180 and 366 m/s with Rrup from about 10 to 50 km and overpredict at sites with Rrup from about 50 to 200 km. Intra-event residuals of the NGA GMPEs exhibit a noticeable negative trend for peak ground acceleration and 0.3, 1.0, and 2.0 s periods. Comparison of the inter-event residual between the 2010 Mw 7.2 El Mayor–Cucapah earthquake and the NGA dataset reveals that short-period inter-event residuals from the 2010 Mw 7.2 El Mayor–Cucapah earthquake is within the scatter of inter-event residuals from the NGA dataset but long-period inter-event residuals do not appear within of the scatter of inter-event residuals from the NGA dataset. Spectral accelerations predicted by the NGA GMPEs are generally unbiased against Vs30 and periods of less than 4.0 s. Observed spectral accelerations show a stronger Vs30 dependence for both short and long periods compared with the NGA GMPEs. The Boore and Atkinson (Earthq Spectra 24(1):99–138, 2008) and Chiou and Youngs (Earthq Spectra 24(1):173–215, 2008) GMPEs perform better in predicting observed short-period spectral accelerations at the sites with Vs30 between 180 and 250 m/s than the Abrahamson and Silva (Earthq Spectra 24(1):67–97, 2008) and Campbell and Bozorgnia (Earthq Spectra 24(1):139–171, 2008) GMPEs.  相似文献   

12.
Two zones of seismicity (ten events with M w = 7.0–7.7) stretching from Makran and the Eastern Himalaya to the Central and EasternTien Shan, respectively, formed over 11 years after the great Makran earthquake of 1945 (M w = 8.1). Two large earthquakes (M w = 7.7) hit theMakran area in 2013. In addition, two zones of seismicity (M ≥ 5.0) occurred 1–2 years after theMakran earthquake in September 24, 2013, stretching in the north-northeastern and north-northwestern directions. Two large Nepal earthquakes struck the southern extremity of the “eastern” zone (April 25, 2015, M w = 7.8 and May 12, 2015, M w = 7.3), and the Pamir earthquake (December 7, 2015, M w = 7.2) occurred near Sarez Lake eastw of the “western” zone. The available data indicate an increase in subhorizontal stresses in the region under study, which should accelerate the possible preparation of a series of large earthquakes, primarily in the area of the Central Tien Shan, between 70° and 79° E, where no large earthquakes (M w ≥ 7.0) have occurred since 1992.  相似文献   

13.
This work generalizes the results of tomographic imaging performed by the authors for epicentral zones. Seismic events in North Africa (the M w = 5.8 earthquake of 1985 near the town of Constantine), eastern Anatolia (the Erzincan M w = 6.7 earthquake of 1992), the Lesser and Greater Caucasus (the 1988 Spitak M w = 6.8 and the 1991 Racha M w = 7.0 earthquakes), and northern Sakhalin (the 1995 Neftegorsk M w = 7.1 earthquake) are examined. It is shown how various morphokinematic types of active faults differ in the resulting tomographic images at various depths. A classification of tomographic images of strong earthquake source zones is proposed in accordance with the rank of their generating faults. The sources of the Spitak, Racha, and Erzincan earthquakes are confined to large boundary faults separating tectonic zones. Lower velocity bands are revealed in the tomographic images, and low velocity “pockets” 1–2 km or somewhat more in width penetrating to a depth of up to 15 km are observed near the fault zones. The Constantine and Neftegorsk earthquakes were generated by faults of a lower rank. The source zones of these events are imaged tomographically as narrow gradient zones.  相似文献   

14.
The present work deals with 1D and 2D ground response analysis and liquefaction analysis of alluvial soil deposits from Kanpur region along Indo-Gangetic plains. Standard penetration tests and seismic down hole tests have been conducted at four locations namely IITK, Nankari village, Mandhana and Bithoor at 1.5 m interval up to a depth of 30 m below the ground surface to find the variation of penetration blows and the shear wave velocity along the depth. From the selected sites undisturbed as well as representative soil samples have been collected for detailed soil classification. The soil profiles from four sites have been considered for 1D and 2D ground response analysis by applying the free field motions of three Himalayan earthquakes namely Chamba earthquake (Mw—5.1), Chamoli earthquake (Mw—6.4) and Uttarkashi earthquake (Mw—6.5). An average value of Peak Ground Acceleration (PGA) obtained from 1D and 2D analysis is considered for liquefaction analysis and post-liquefaction settlement. The excess pore water pressure ratio is greater than 0.8 at a depth of 24 m from ground surface for IITK, Nankari village, Bithoor sites. More than 50% of post liquefaction settlement is contributed by layers from 21–30 m for all sites. In general, the soil deposits in Kanpur region have silty sand and sand deposits and are prone to liquefaction hazards due to drastic decrease of cyclic resistance ratio (CRR) at four chosen sites in Kanpur.  相似文献   

15.
Advancement in the seismic networks results in formulation of different functional forms for developing any new ground motion prediction equation (GMPE) for a region. Till date, various guidelines and tools are available for selecting a suitable GMPE for any seismic study area. However, these methods are efficient in quantifying the GMPE but not for determining a proper functional form and capturing the epistemic uncertainty associated with selection of GMPE. In this study, the compatibility of the recent available functional forms for the active region is tested for distance and magnitude scaling. Analysis is carried out by determining the residuals using the recorded and the predicted spectral acceleration values at different periods. Mixed effect regressions are performed on the calculated residuals for determining the intra- and interevent residuals. Additionally, spatial correlation is used in mixed effect regression by changing its likelihood function. Distance scaling and magnitude scaling are respectively examined by studying the trends of intraevent residuals with distance and the trend of the event term with magnitude. Further, these trends are statistically studied for a respective functional form of a ground motion. Additionally, genetic algorithm and Monte Carlo method are used respectively for calculating the hinge point and standard error for magnitude and distance scaling for a newly determined functional form. The whole procedure is applied and tested for the available strong motion data for the Himalayan region. The functional form used for testing are five Himalayan GMPEs, five GMPEs developed under NGA-West 2 project, two from Pan-European, and one from Japan region. It is observed that bilinear functional form with magnitude and distance hinged at 6.5 M w and 300 km respectively is suitable for the Himalayan region. Finally, a new regression coefficient for peak ground acceleration for a suitable functional form that governs the attenuation characteristic of the Himalayan region is derived.  相似文献   

16.
Strong ground motions are estimated for the Pacific Northwest assuming that large shallow earthquakes, similar to those experienced in southern Chile, southwestern Japan, and Colombia, may also occur on the Cascadia subduction zone. Fifty-six strong motion recordings for twenty-five subduction earthquakes ofM s7.0 are used to estimate the response spectra that may result from earthquakesM w<81/4. Large variations in observed ground motion levels are noted for a given site distance and earthquake magnitude. When compared with motions that have been observed in the western United States, large subduction zone earthquakes produce relatively large ground motions at surprisingly large distances. An earthquake similar to the 22 May 1960 Chilean earthquake (M w 9.5) is the largest event that is considered to be plausible for the Cascadia subduction zone. This event has a moment which is two orders of magnitude larger than the largest earthquake for which we have strong motion records. The empirical Green's function technique is used to synthesize strong ground motions for such giant earthquakes. Observed teleseismicP-waveforms from giant earthquakes are also modeled using the empirical Green's function technique in order to constrain model parameters. The teleseismic modeling in the period range of 1.0 to 50 sec strongly suggests that fewer Green's functions should be randomly summed than is required to match the long-period moments of giant earthquakes. It appears that a large portion of the moment associated with giant earthquakes occurs at very long periods that are outside the frequency band of interest for strong ground motions. Nevertheless, the occurrence of a giant earthquake in the Pacific Northwest may produce quite strong shaking over a very large region.  相似文献   

17.
《Geofísica Internacional》2013,52(2):173-196
An analysis of local and regional data produced by the shallow, thrust Ometepec-Pinotepa Nacional earthquake (Mw 7.5) of 20 March 2012 shows that it nucleated at 16.254°N 98.531°W, about 5 km offshore at a depth of about 20 km. During the first 4 seconds the slip was relatively small. It was followed by rupture of two patches with large slip, one updip of the hypocenter to the SE and the other downdip to the north. Total rupture area, estimated from inversion of near-source strong-motion recordings, is ~25 km × 60 km. The earthquake was followed by an exceptionally large number of aftershocks. The aftershock area overlaps with that of the 1982 doublet (Mw 7.0, 6.9). However, the seismic moment of the 2012 earthquake is ~3 times the sum of the moments of the doublet, indicating that the gross rupture characteristics of the two earthquake episodes differ. The small-slip area near the hypocenter and large-slip areas of the two patches are characterized by relatively small aftershock activity. A striking, intense, linear NE alignment of the aftershocks is clearly seen. The radiated energy to seismic moment ratios, (Es/M0), of five earthquakes in the region reveal that they are an order of magnitude smaller for near-trench earthquakes than those that occur further downdip (e.g., 2012 and the 1995 Copala earthquakes). The near-trench earthquakes are known to produce low Amax. The available information suggests that the plate interface in the region can be divided in three domains. (1) From the trench to a distance of about 35 km downdip. In this domain M~6 to 7 earthquakes with low values of (Es/M0) occur. These events generate large number of aftershocks. It is not known whether the remaining area on this part of the interface slips aseismically (stable sliding) or is partially locked. (2) From 35 to 100 km from the trench. This domain is seismically coupled where stick-slip sliding occurs, generating large earthquakes. Part of the area is probably conditionally stable. (3) From 100 to 200 km from the trench. In this domain slow slip events (SSE) and nonvolcanic tremors (NVT) have been reported.The earthquake caused severe damage in and near the towns of Ometepec and Pinotepa Nacional. The PGA exceeded 1 g at a soft site in the epicentral region. Observed PGAs on hard sites as a function of distance are in reasonable agreement with the expected ones from ground motion prediction equations derived using data from Mexican interplate earthquakes. The earthquake was strongly felt in Mexico City. PGA at CU, a hard site in the city, was 12 gal. Strong-motion recordings in the city since 1985 demonstrate that PGAs during the 2012 earthquake were not exceptional, and that similar motion occurs about once in three years.  相似文献   

18.
Strong-motion data from large (M ≥ 7.2) shallow crustal earthquakes invariably make up a small proportion of the records used to develop empirical ground motion prediction equations (GMPEs). Consequently GMPEs are more poorly constrained for large earthquakes than for small events. In this article peak ground accelerations (PGAs) observed in 38 earthquakes worldwide with M ≥ 7.2 are compared with those predicted by eight recent GMPEs. Well over half of the 38 earthquakes were not considered when deriving these GMPEs but the data were identified by a thorough literature review of strong-motion reports from the past 60 years. These data are provided in an electronic supplement for future investigations on ground motions from large earthquakes. The addition of these data provides better constraint of the between-event ground-motion variability in large earthquakes. It is found that the eight models generally provide good predictions for PGAs from these earthquakes, although there is evidence for slight under- or over-prediction of motions by some models (particularly for M > 7.6). The between-event variabilities predicted by most models match the observed variability, if data from two events (2001 Bhuj and 2005 Crescent City) that are likely atypical of earthquakes in active regions are excluded. For some GMPEs there is evidence that they are over-predicting PGAs in the near-source region of large earthquakes as well as over-predicting motions on hard rock. Overall, however, all the considered models, despite having been derived using limited data, provide reliable predictions of PGAs in the largest crustal earthquakes.  相似文献   

19.
The JMA (Japan Meteorological Agency) seismic intensity scale has been used in Japan as a measure of earthquake ground shaking effects since 1949. It has traditionally been assessed after an earthquake based on the judgment of JMA officials. In 1996 the scale was revised as an instrumental seismic intensity measure (IJMA) that could be used to rapidly assess the expected damage after an earthquake without having to conduct a survey. Since its revision, Japanese researchers have developed several ground motion prediction equations (GMPEs) for IJMA using Japanese ground motion data. In this paper, we develop a new empirical GMPE for IJMA based on the strong motion database and functional forms used to develop similar GMPEs for peak response parameters as part of the PEER (Pacific Earthquake Engineering Research Center) Next Generation Attenuation (NGA) project. We consider this relationship to be valid for shallow crustal earthquakes in active tectonic regimes for moment magnitudes ( M ) ranging from 5.0 up to 7.5–8.5 (depending on fault mechanism) and rupture distances ranging from 0 to 200 km. A comparison of this GMPE with relationships developed by Japanese researchers for crustal and shallow subduction earthquakes shows relatively good agreement among all of the relationships at M 7.0 but relatively poor agreement at small magnitudes. Our GMPE predicts the highest intensities at small magnitudes, which together with research on other ground motion parameters, indicates that it provides conservative or upwardly biased estimates of IJMA for M <5.5. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This brief article presents a quantitative analysis of the ability of eight published empirical ground-motion prediction equations (GMPEs) for subduction earthquakes (interface and intraslab) to estimate observed earthquake ground motions on the islands of the Lesser Antilles (specifically Guadeloupe, Martinique, Trinidad, and Dominica). In total, over 300 records from 22 earthquakes from various seismic networks are used within the analysis. It is found that most of the GMPEs tested perform poorly, which is mainly due to a larger variability in the observed ground motions than predicted by the GMPEs, although two recent GMPEs derived using Japanese strong-motion data provide reasonably good predictions. Analyzing separately the interface and intraslab events does not significant modify the results. Therefore, it is concluded that seismic hazard assessments for this region should use a variety of GMPEs in order to capture this large epistemic uncertainty in earthquake ground-motion prediction for the Lesser Antilles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号