首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3‐dimensional variational algorithms are widely used for atmospheric data assimilation at the present time, particularly on the synoptic and global scales. However, mesoscale and convective scale phenomena are considerably more chaotic and intermittent and it is clear that true 4‐dimensional data assimilation algorithms will be required to properly analyze these phenomena. In its most general form, the data assimilation problem can be posed as the minimization of a 4‐dimensional cost function with the forecast model as a weak constraint. This is a much more difficult problem than the widely discussed 4DVAR algorithm where the model is a strong constraint. Bennett and collaborators have considered a method of solution to the weak constraint problem, based on representer theory. However, their method is not suitable for the numerical weather prediction problem, because it does not cycle in time. In this paper, the representer method is modified to permit cycling in time, in a manner which is entirely internally consistent. The method was applied to a simple 1‐dimensional constituent transport problem where the signal was sampled (perfectly and imperfectly) with various sparse observation network configurations. The cycling representer algorithm discussed here successfully extracted the signal from the noisy, sparse observations  相似文献   

2.
Two conceptually different assimilation schemes, three dimensional variational (3DVAR) assimilation and Ensemble Optimum Interpolation (EnOI) are compared in the context of satellite altimetric data assimilation. Similarities and differences of the two schemes are briefly discussed and their impacts on the model simulation are investigated.With a tropical Pacific ocean model, two assimilation experiments of sea level anomaly (SLA) data from TOPEX/Poseidon are performed for 5 years from 1997 to 2001. Annual mean states of temperature and salinity fields are compared with analysis data and some independent observations. It is found that EnOI generally produces moderate improvements on both temperature and salinity fields, while changes induced by 3DVAR assimilation are strong and vary remarkably in different areas. For instance, 3DVAR tends to excessively modify the temperature field along the thermocline depth and even deteriorate the simulation, but it is more effective than EnOI below the thermocline depth. However, for the salinity field 3DVAR outperforms EnOI nearly for almost the whole layer. As the difference relative to the WOA01 analysis is compared, it is apparently reduced to below 0.3 psu in most areas in the 3DVAR experiment. On the other hand, the pattern of difference in the EnOI experiment resembles that of the simulation and the magnitude is only diminished to some extent. One advantage of EnOI is that it yields more consistent improvements even in areas where there are large model errors. It is more reliable than 3DVAR in such a sense. It is also revealed that the TS relation plays a very important role in altimetric data assimilation. Further, the distinct performance of the two schemes can be partly accounted for by their inherent assumptions and settings.  相似文献   

3.
1 IntroductionObservation of the tropical rainfall is crucial forthe research on tropical weather and climate. Nu-merous studies have shown that the ingestion of rain-fall data into a numerical model can have considera-ble impacts on simulation results(Kr…  相似文献   

4.
研究了TRMM/TMI海表降水率资料的四维变分同化在热带气旋(TC)数值模拟中的作用.使用中尺度气象模式MM5设计了若干数值试验模拟了TC Danas(2001)由热带低压初生到台风生成的发展过程.在满足MM5模式动力约束的前提下,将TRMM海表降水率资料直接同化进入较高分辨率(18 km)的模式初始场.结果表明,使用MM5模式的4D-VAR同化系统直接同化TRMM/TMI海表降水率资料是可行的.这种做法提高了TRMM资料的利用率,不仅在模式初始场中加入了更多实测信息,而且避免了两次同化(1DVAR+4DVAR)可能引起的误差.直接同化TRMM资料通过调整气压、温度、湿度等要素初始场,改善了模式对热带气旋结构(如暖心、涡度、散度)的描述和降水的模拟.在此基础上,同化不仅改进了对Danas强度的模拟,而且成功地模拟了热带气旋环境场的演变过程,因而改进了路径的模拟.  相似文献   

5.
The option for surface forcing correction, recently developed in the 4D-variational (4DVAR) data assimilation systems of the Regional Ocean Model System (ROMS), is presented. Assimilation of remotely-sensed (satellite sea surface height anomaly and sea surface temperature) and in situ (from mechanical and expendable bathythermographs, Argo floats and CTD profiles) oceanic observations has been applied in a realistic, high resolution configuration of the California Current System (CCS) to sequentially correct model initial conditions and surface forcing, using the Incremental Strong constraint version of ROMS-4DVAR (ROMS-IS4DVAR). Results from both twin and real data experiments are presented where it is demonstrated that ROMS-IS4DVAR always reduces the difference between the model and the observations that are assimilated. However, without corrections to the surface forcing, the assimilation of surface data can degrade the temperature structure at depth. When using surface forcing adjustment in ROMS-IS4DVAR the system does not degrade the temperature structure at depth, because differences between the model and surface observations can be reduced through corrections to surface forcing rather than to temperature at depth. However, corrections to surface forcing can generate abnormal spatial and temporal variability in the structure of the wind stress or surface heat flux fields if not properly constrained. This behavior can be partially controlled via the choice of decorrelation length scales that are assumed for the forcing errors. Abnormal forcing corrections may also arise due to the effects of model error which are not accounted for in IS4DVAR. In particular, data assimilation tends to weaken the alongshore wind stress in an attempt to reduce the rate of coastal upwelling, which seems to be too strong due to other sources of error. However, corrections to wind stress and surface heat flux improve systematically the ocean state analyses. Trends in the correction of surface heat fluxes indicate that, given the ocean model used and its potential limitations, the heat flux data from the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) used to impose surface conditions in the model are generally too low except in spring-summer, in the upwelling region, where they are too high. Comparisons with independent data provide confidence in the resulting forecast ocean circulation on timescales ~14 days, with less than 1.5 °C, 0.3 psu, and 9 cm RMS error in temperature, salinity and sea surface height anomaly, respectively, compared to observations.  相似文献   

6.
A regional ocean circulation model with four-dimensional variational data assimilation scheme is configured to study the ocean state of the Indian Ocean region (65°E–95°E; 5°N–20°N) covering the Arabian Sea (AS) and Bay of Bengal (BoB). The state estimation setup uses 10 km horizontal resolution and 5 m vertical resolution in the upper ocean. The in-situ temperature and salinity, satellite-derived observations of sea surface height, and blended (in-situ and satellite-derived) observations of sea surface temperature alongwith their associated uncertainties are used for data assimilation with the regionally configured ocean model. The ocean state estimation is carried out for 61 days (1 June to 31 July 2013). The assimilated fields are closer to observations compared to other global state estimates. The mixed layer depth (MLD) of the region shows deepening during the period of assimilation with AS showing higher MLD compared to the BoB. An empirical forecast equation is derived for the prediction of MLD using the air–sea forcing variables as predictors. The surface and sub-surface (50 m) heat and salt budget tendencies of the region are also investigated. It is found that at the sub-surface, only the advection and diffusion temperature and salt tendencies are important.  相似文献   

7.
Determining ‘photosynthetically active radiation’ (PAR) is a key part of calculating phytoplankton productivity in a biogeochemical model. We explore the daily and seasonal variability in the ratio of PAR irradiance to total irradiance that occurred at Ieodo Ocean Research Station (IORS) in the East China Sea under clear-sky conditions in 2004 using a simple radiative transfer model (RTM). Meteorological data observed at IORS and aerosol optical properties derived from Aerosol Robotic Network observations at Gosan are used for the RTM. Preliminary results suggest that the use of simple PA R irradianceratio values is appropriate in calculating phytoplankton productivity as follows: an average of 0.44 (±0.01) in January to an average of 0.48 (±0.01) in July, with average daily variabilities over these periods of about 0.016 (±0.008) and 0.025 (±0.008), respectively. The model experiments demonstrate that variations in the major controlling input parameters (i.e. solar zenith angle, precipitable water vapor and aerosol optical thickness) cause PAR irradiance ratio variation at daily and seasonal timescales. Further, increases (>0.012) in the PAR irradiance ratio just below the sea-surface are positively correlated with high solar zenith angles and strong wind stresses relative to those just above the sea-surface.  相似文献   

8.
双多普勒雷达资料同化在飓风“艾克”预报中的应用研究   总被引:3,自引:1,他引:2  
本文采用美国国家大气研究中心(NCAR)开发的中尺度数值模式WRFV3.7及其三维变分同化系统WRF-3DVAR对2008年飓风“艾克”进行了数值模拟研究。利用多普勒天气雷达观测资料具有高时空分辨率的优点,将美国两部多普勒天气雷达资料进行速度退模糊等必要质量控制后同化进中尺度数值模式,考察雷达资料同化对飓风“艾克”预报的改进程度。试验结果表明:将雷达资料用于对流尺度分辨率下飓风初始化需要对变分同化系统中特征尺度化因子进行优化调整,使观测资料能够以较为合理的方式调整模式初始场并进而改进预报;雷达径向风同化可以有效调整模式初始场中的飓风动力和热力结构,而经过尺度化因子调整后的雷达径向风同化则在飓风观测中心位置产生较为合理的气旋性风场增量,提供更为确切的中小尺度信息,使模式初始场更加接近观测并进而改进对飓风路径和强度的预报。  相似文献   

9.
Reducing systematic errors by empirically correcting model errors   总被引:2,自引:0,他引:2  
A methodology for the correction of systematic errors in a simplified atmospheric general‐circulation model is proposed. First, a method for estimating initial tendency model errors is developed, based on a 4‐dimensional variational assimilation of a long‐analysed dataset of observations in a simple quasi‐geostrophic baroclinic model. Then, a time variable potential vorticity source term is added as a forcing to the same model, in order to parameterize subgrid‐scale processes and unrepresented physical phenomena. This forcing term consists in a (large‐scale) flow dependent parametrization of the initial tendency model error computed by the variational assimilation. The flow dependency is given by an analogues technique which relies on the analysis dataset. Such empirical driving causes a substantial improvement of the model climatology, reducing its systematic error and improving its high frequency variability. Low‐frequency variability is also more realistic and the model shows a better reproduction of Euro‐Atlantic weather regimes. A link between the large‐scale flow and the model error is found only in the Euro‐Atlantic sector, other mechanisms being probably the origin of model error in other areas of the globe.  相似文献   

10.
采用变分资料同化技术,结合最优控制思想,对一个海气耦合模型的模式参数和强迫项进行了反演,结果表明,采用该方法对模式进行优化,既可以补偿模式参数不准确性给预报带来的误差,又可以对模式参数本身进行修正和估计,为将来在实际应用中改善更复杂的预报模式、提高预报准确率提供了一个可借鉴的思路。  相似文献   

11.
基于中尺度大气模式WRF及其3DVAR.模块,采用循环3DVAR数据同化方案,针对6次明显的黄海海雾过程,实施了一系列直接同化ATOVS卫星辐射数据数值试验.在试验中设计了不同化任何观测数据、仅同化GTS常规数据、仅直接同化辐射数据,同时同化二者,以及同化不同疏密程度辐射数据的对比研究方案.利用地面水平能见度与卫星云图对模拟的海雾雾区进行了评估,并比较了各种同化方案所形成初始场的差异.对试验结果的统计分析表明:同化试验较好地再现了影响海雾的天气系统,模拟雾区与实际观测较为吻合,并且初始温度场和湿度场对比不同化任何观测数据的试验有明显的改善;仅同化辐射数据的结果略优于仅同化常规数据的结果,疏化或者只同化海上辐射数据几乎不影响模拟的雾区,但却可以大幅节约计算资源;同时同化常规数据与辐射数据的结果为单独同化它们所得结果的综合体现,总体效果最好.  相似文献   

12.
《Ocean Modelling》2011,40(3-4):370-385
The increasing number of oceanic observations calls for the use of synthetic methods to provide consistent analyses of the oceanic variability that will support a better understanding of the underlying mechanisms. In this study, a 1/3° eddy-permitting model of the North Atlantic (from 20°S to 70°N) is combined with a 4D-variational method to estimate the oceanic state from altimeter observations. This resolution allows a better extraction of the physical content of altimeter data since the model spatial scales are more consistent with the data than coarser assimilation exercises because of a lower error in model representativity. Several strategies for the assimilation window are tested through twin experiments carried out under the following conditions: different window lengths and either a quasi-static (also known as progressive) variational assimilation with progressive extension of the window, or a simpler direct method without prior assimilation. From our set of experiments, the most efficient strategy is the use of both a simple direct assimilation method and a 90-day window. The assimilation of synthetic altimeter data constrains the model-temperature, -salinity and -velocity fields mainly over the first 1300 m where the error is the largest. Improvements occur not only in quiescent regions, but also in more energetic meso-scale regimes. Despite the existence of model- and surface forcing-errors as well as large errors in the first guess, the assimilation of real altimeter data proves to be consistent with our twin experiments. Indeed, the analyses show a better detachment of the Gulf Stream, weaker regional biases and more accurate positions for meso-scale structures. Independent hydrographic data (Argo floats and CTD cruises) and transports estimates along the OVIDE 2002 cruise show an improvement of the analysed oceanic state with respect to the assimilation-free case though water mass properties are still incorrectly represented. After assimilation, the North Atlantic heat transport in the model is in good agreement with independent estimates based on hydrographic data.  相似文献   

13.
GPS掩星资料三维变分同化对台风模式预报的改进试验   总被引:1,自引:0,他引:1  
本文尝试了GPSRO COSMIC资料在中尺度数值模式中的应用,利用COSMIC资料受云和降水影响较小,且有高数据精度、高垂直分辨率等优点,以改善模式初始场,进而提高预报准确度。模式采用中尺度气象模式WRF V3.0.1版本及其三维变分同化系统3DVAR,利用NCEP再分析资料、GTS资料和COSMIC资料对2009年第8号台风"莫拉克"登陆台湾岛前到登陆台湾岛的过程进行了模拟试验,并对温度、露点温度、对流有效位能等要素进行了诊断分析。试验结果表明:该项试验成功将COSMIC资料同化进模式,加深对"莫拉克"热力结构特征的了解,有效改善台风降水和路径预报,其中仅屏东县单点降水预报提高600 mm左右,24 h预报路径误差提高80 km以上。同时对提高台风强度预报起到积极作用。  相似文献   

14.
15.
本文采用基于WRFDA的集合-变分混合同化系统(En3DVAR)在云尺度分辨率下同化了雷达观测资料考察其对登陆台风"桑美"的影响。高时空分辨率的雷达径向风资料在台风登陆前的3 h同化窗内以每30 min的频率同化进WRF模式(Weather Research and Forecasting)。研究结果表明:En3DVAR试验在3 h同化窗内的均方根误差相比3DVAR试验改进显著,这可能得益于混合同化系统中提供的"流依赖"的集合协方差信息。系统性的诊断分析表明En3DVAR试验在台风内核区产生了较为明显正温度增量,对台风内核区的热力和动力结构均有较好调整,而3DVAR则在台风内核区产生了负温度增量;相比3DAVR试验,En3DVAR在采用了"流依赖"的集合协方差信息后还可以对背景场上的台风的位置进行系统性的偏差订正。总体而言,En3DVAR试验预报的台风路径和强度相比3DVAR改进显著,其正效果主要来源于混合背景误差协方差中的"流依赖"集合协方差信息。  相似文献   

16.
The wind dependence of sea‐ice motion was studied on the basis of ice velocity and wind observations, and weather model output. The study area was a transition zone between open water and the ice‐covered ocean in the northern Baltic Sea. In the centre of the basin the sea‐ice motion was highly wind‐dependent and the linear relationship between the wind and the drift velocities explained 80% of the drift's variance. On the contrary, the wind‐drift dependence was low near the coast. The wind‐drift coherence was significant over a broader frequency range in the central part of the basin than for the coastal drift. The ice motion was simulated by a numerical model forced with five types of wind stress and with two types of current data, and the outcome was compared with the observed buoy drift. The wind and the wind‐induced surface current were the main factors driving the ice in the basin's centre, while internal ice stresses were of importance in the shear zone near the fast ice edge. The best wind forcing was achieved by applying a method dependent on atmospheric stability and ice conditions. The average air–ice drag coefficient was 1.4×10−3 with the standard deviation of 0.2×10−3. The improvement brought about by using an accurate wind stress was comparable with that achieved by raising the model grid resolution from 18 km to 5 km.  相似文献   

17.
基于ROMS和4DVAR的沿轨与网格化SSH数据同化效果评价   总被引:1,自引:1,他引:0  
Remote sensing products are significant in the data assimilation of an ocean model. Considering the resolution and space coverage of different remote sensing data, two types of sea surface height(SSH) product are employed in the assimilation, including the gridded products from AVISO and the original along-track observations used in the generation. To explore their impact on the assimilation results, an experiment focus on the South China Sea(SCS) is conducted based on the Regional Ocean Modeling System(ROMS) and the four-dimensional variational data assimilation(4 DVAR) technology. The comparison with EN4 data set and Argo profile indicates that, the along-track SSH assimilation result presents to be more accurate than the gridded SSH assimilation, because some noises may have been introduced in the merging process. Moreover, the mesoscale eddy detection capability of the assimilation results is analyzed by a vector geometry–based algorithm. It is verified that, the assimilation of the gridded SSH shows superiority in describing the eddy's characteristics, since the complete structure of the ocean surface has been reconstructed by the original data merging.  相似文献   

18.
The temporal evolution of innovation and residual statistics of the ECMWF 3D‐ and 4D‐Var data assimilation systems have been studied. First, the observational method is applied on an hourly basis to the innovation sequences in order to partition the perceived forecast error covariance into contributions from observation and background errors. The 4D‐Var background turns out to be ignificantly more accurate than the background in the 3D‐Var. The estimated forecast error variance associated with the 4D‐Var background trajectory increases over the assimilation window. There is also a marked broadening of the horizontal error covariance length scale over the assimilation window. Second, the standard deviation of the residuals, i.e., the fit of observations to the analysis is studied on an hourly basis over the assimilation window. This fit should, in theory, reveal the effect of model error in a strong constraint variational problem. A weakly convex curve is found for this fit implying that the perfect model assumption of 4D‐Var may be violated with as short an assimilation window as six hours. For improving the optimality of variational data assimilation systems, a sequence of retunes are needed, until the specified and diagnosed error covariances agree.  相似文献   

19.
In the summer and fall of 2012, during the GLAD experiment in the Gulf of Mexico, the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) used several ocean models to assist the deployment of more than 300 surface drifters. The Navy Coastal Ocean Model (NCOM) at 1 km and 3 km resolutions, the US Navy operational NCOM at 3 km resolution (AMSEAS), and two versions of the Hybrid Coordinates Ocean Model (HYCOM) set at 4 km were running daily and delivering 72-h range forecasts. They all assimilated remote sensing and local profile data but they were not assimilating the drifter’s observations. This work presents a non-intrusive methodology named Multi-Model Ensemble Kalman Filter that allows assimilating the local drifter data into such a set of models, to produce improved ocean currents forecasts. The filter is to be used when several modeling systems or ensembles are available and/or observations are not entirely handled by the operational data assimilation process. It allows using generic in situ measurements over short time windows to improve the predictability of local ocean dynamics and associated high-resolution parameters of interest for which a forward model exists (e.g. oil spill plumes). Results can be used for operational applications or to derive enhanced background fields for other data assimilation systems, thus providing an expedite method to non-intrusively assimilate local observations of variables with complex operators. Results for the GLAD experiment show the method can improve water velocity predictions along the observed drifter trajectories, hence enhancing the skills of the models to predict individual trajectories.  相似文献   

20.
A numerical primitive-equation model of the hydrodynamics of the Black Sea and the Sea of Azov in σ-coordinates is proposed. The model has a resolution of ~4 × 4 km in horizontal coordinates with 40-σ levels in the vertical and includes the four-dimensional variational initialization of temperature and salinity fields. A numerical initialization algorithm combines splitting methods and adjoint equations. Flow, temperature, sea level, and salinity fields driven by atmospheric forcing are calculated for the year 2008. The calculations are made in a variational initialization — prediction regime. Temperature and salinity fields are initialized at the end of each month. The optimality system includes forward and adjoint transport-diffusion equations for heat and salt that are linearized on the assimilation interval. Results of three numerical experiments with different sets of assimilated data in comparison with the prediction obtained from the forward model are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号