首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Sediment core and trench data from a coastal lagoon on the West Coast of the South Island, New Zealand are used to investigate evidence for co-seismic subsidence and associated tsunami inundation. Physical data are used to document a salt marsh soil buried  80 cm below the modern sediment surface that is locally covered by a gravelly sand bed. The sediment record also contains geochemical and biological (diatom and foram) evidence for abrupt changes in salinity of lagoon waters that link to subsidence, tsunami flooding and to the open versus closed state of the lagoon tidal entrance. At the local scale, these relationships allow for separation of tsunami evidence from other agents of environmental change in the lagoon. We also propose a conceptual connection between these local changes and regional drivers of landscape development, most notably major earthquakes and resultant pulses in sediment supply to the coast.  相似文献   

2.
Coastal boulder deposits and chevrons are two features whose origin have triggered controversial discussions. Boulders are often used as indicators of past tsunamis and storms, with the former interpretation in many cases preferred due to the clast size. Chevrons, defined as large parabolic sand bodies, were previously attributed to (mega-)tsunami, potentially caused by oceanic impacts, because of their dimensions, height above sea level and alignment of the central axis. This study documents that chevrons along the Quobba coast in Western Australia are parabolic dunes and not related to tsunami inundation; their age is consistent with an arid period at about 3·9 to 2·3 ka when the sea level was 1 to 2 m higher than today. The internal age distribution proves an inland migration. Weakly developed soil horizons represent phases of intermittent dune stabilization and later reactivation. The calculated velocities required for wind transport and the prevailing wind directions are consistent with on-site meteorological parameters. The boulders at Quobba are most likely to be remnants of in situ platform denudation that produces shell hash, coral clasts and boulders. An unknown portion of the boulders was certainly moved by tropical cyclones. A previously proposed tsunami origin is unsustainable because the observed features can be explained by processes other than tsunamis. Boulders were tilted during gravitative platform collapse, standing water caused dissolution of the boulder bottoms, creating ‘pseudo-rockpools’, consequently not applicable as upside-down criteria, and ages of attached encrusting organisms document their colonization at higher sea level and (sub)recent frequent inundation by wave splash during rough seas.  相似文献   

3.
Geological Indicators of Large Tsunami in Australia   总被引:1,自引:0,他引:1  
Bryant  E. A.  Nott  J. 《Natural Hazards》2001,24(3):231-249
Tsunami waves can produce four general categories of depositional and erosional signatures that differentiate them from storm waves. Combinations of items from these categories uniquely define the impact of palaeo-tsunami on the coastal landscape. The largest palaeo-tsunami waves in Australia swept sediment across the continental shelf and obtained flow depths of 15–20 m at the coastline with velocities in excess of 10 m -1. In New South Wales, along the cliffs of Jervis Bay, waves reachedelevations of more than 80 m above sea-level with evidence of flow depths in excess of 10 m. These waves swept 10 km inland over the Shoalhaven delta. In northern Queensland, boulders more than 6 m in diameter and weighing 286 tonnes were tossed alongshore above cyclone storm wave limits inside the Great Barrier Reef. In Western Australia waves overrode and breached 60 m high hills up to 5 km inland. Shell debris and cobbles can be found within deposits mapped as dunes, 30 km inland. The array of signatures provide directional information about the origin of the tsunami and, when combined with radiocarbon dating, indicate thatat least one and maybe two catastrophic events have occurred during the last 1000 years along these three coasts. Only the West Australian coast hashistorically been affected by notable tsunami with maximum run-up elevations of 4–6 m. Palaeo-tsunami have been an order of magnitude greater than this. These palaeo-tsunami are produced most likely by large submarine slides on the continental slope or the impactof meteorites with the adjacent ocean.  相似文献   

4.
Tsunamis versus storm deposits from Thailand   总被引:3,自引:0,他引:3  
Along the Andaman (west) coast of Thailand, the 2004 tsunami depositional features associated with the 2004 tsunami were used to describe the characteristics of tsunamis in a place far away from the effect of both recent and ancient storms. The current challenge is that a lack of precise sedimentological characteristics have been described that will differentiate tsunami deposits from storm deposits. Here, in sedimentological senses, we reviewed the imprints of the sedimentological characteristics of the 2004 tsunami and older deposits and then compared them with storm deposits, as analyzed from the deposits found along the eastern (Gulf of Thailand; GOT) coast of Thailand. We discuss the hydraulic conditions of the 2004 tsunami and its predecessors, on the Andaman coast, and compare them to storm flows found on the coast of the GOT. Similar to an extensive tsunami inflow deposit, a storm flow overwash has very similar sedimentary structures. Well-preserved sedimentary structures recognized in sand sheets from both tsunami and storms include single and multiple normal gradings, reverse grading, parallel, incline and foreset lamina, rip-up clasts, and mud drapes. All these sedimentary structures verify the similarity of tsunami and storm inflow behavior as both types of high-energy flow start to scour the beach zone. Antidunes are likely to be the only unique internal sedimentary structures observed in the 2004 tsunami deposit. Rip-up clasts are rare within storm deposits compared to tsunami deposits. We found that the deposition during the outflow from both tsunami and storms was rarely preserved, suggesting that it does not persist for very long in the geological record.  相似文献   

5.
The Adriatic coast of southern Apulia (Italy) is marked by the presence of large boulder accumulations. Boulders are up to 8 t in weight and arranged either in small groups or rows composed of a few imbricated elements. The lower surface of some of the boulders is covered by biogenic encrustation which suggests that they were possibly carved from the mid or sublittoral zone and that they capsized during their transport. Other boulders, detached from the supratidal zone, have their surface affected by tilted rock pools. New horizontal solution pans are continually forming.A detailed survey of a large boulder accumulation was carried out at Torre Santa Sabina. Direct observations were also made concerning the carving out and transportation of one single boulder during the severe storms in that area on January 4th, 2002 and on January 12th, 2003. Collated data from both the survey and the direct observations including some radiocarbon age determinations and hydrodynamic calculations suggest that the studied accumulation was due to the superimposed effects of one or two tsunami as well as of storm waves. Tsunami would be responsible for the detachment and transportation of the largest boulders, while storm waves may have been responsible for the carving out and transportation of the newer, smaller blocks and for moving once again the largest boulders. It was in this way that a typical boulder accumulation was produced.The collated data suggest that two tsunami may have recently struck the Adriatic coast of southern Apulia. The first possibly took place on the Dalmatian coast as a result of the earthquake on April 6, 1667 which destroyed Ragusa (modern day Dubrovnik). The second tsunami would have accompanied the strong earthquake which took place in southern Apulia on February 20, 1743.  相似文献   

6.
Marine overwash from the north a few centuries ago transported hundreds of angular cobbles and boulders tens to hundreds of meters southward from limestone outcrops in the interior of Anegada, 140?km east?Cnortheast of Puerto Rico. We examined two of several cobble and boulder fields as part of an effort to interpret whether the overwash resulted from a tsunami or a storm in a location where both events are known to occur. One of the cobble and boulder field extends 200?m southward from limestone outcrops that are 300?m inland from the island??s north shore. The other field extends 100?m southward from a limestone knoll located 800?m from the nearest shore. In the two fields, we measured the size, orientation, and spatial distribution of a total of 161 clasts and determined their stratigraphic positions with respect to an overwash sand and shell sheet deposit. In both fields, we found the spacing between clasts increased southward and that clast long-axis orientations are consistent with a transport trending north?Csouth. Almost half the clasts are partially buried in a landward thinning and fining overwash sand and none were found embedded in the shelly mud of a pre-overwash marine pond. The two cobble and boulder fields resemble modern tsunami deposits in which dispersed clasts extend inland as a single layer. The fields contrast with coarse clast storm deposits that often form wedge-shaped shore-parallel ridges. These comparisons suggest that the overwash resulted from a tsunami and not from a storm.  相似文献   

7.
The 2004 tsunami deposits and probable paleotsunami deposits were studied at the southern Kho Khao Island, on Andaman Sea coast of Thailand. The 2004 tsunami laid down about 8?cm of fining upward medium sand and locally about 40?cm of massive coarse sand with common mud clasts. The sediments were characterized by the presence of marine foraminiferal assemblage; however, already after 5?years many of carbonate foraminiferal tests were partly or completely dissolved. The probable paleotsunami deposits form layer about 1?m thick. It consists of massive very coarse sand with common big shells and mud clasts. Its composition suggests a marine origin and the presence of mud clasts, and similarity to the 2004 tsunami deposits suggests that the layer was left by paleotsunami, which took place probably during the late Holocene, even though two shells within the layer gave 14C ages of 40,000?years or more.  相似文献   

8.
A simple model for calculating tsunami flow speed from tsunami deposits   总被引:2,自引:0,他引:2  
This paper presents a simple model for tsunami sedimentation that can be applied to calculate tsunami flow speed from the thickness and grain size of a tsunami deposit (the inverse problem). For sandy tsunami deposits where grain size and thickness vary gradually in the direction of transport, tsunami sediment transport is modeled as a steady, spatially uniform process. The amount of sediment in suspension is assumed to be in equilibrium with the steady portion of the long period, slowing varying uprush portion of the tsunami. Spatial flow deceleration is assumed to be small and not to contribute significantly to the tsunami deposit. Tsunami deposits are formed from sediment settling from the water column when flow speeds on land go to zero everywhere at the time of maximum tsunami inundation. There is little erosion of the deposit by return flow because it is a slow flow and is concentrated in topographic lows. Variations in grain size of the deposit are found to have more effect on calculated tsunami flow speed than deposit thickness. The model is tested using field data collected at Arop, Papua New Guinea soon after the 1998 tsunami. Speed estimates of 14 m/s at 200 m inland from the shoreline compare favorably with those from a 1-D inundation model and from application of Bernoulli's principle to water levels on buildings left standing after the tsunami. As evidence that the model is applicable to some sandy tsunami deposits, the model reproduces the observed normal grading and vertical variation in sorting and skewness of a deposit formed by the 1998 tsunami.  相似文献   

9.
The tsunami of 2004 in the Indian Ocean transported thousands of meters-long boulders shoreward at Pakarang Cape, Thailand. We investigated size, position and long axis orientation of 467 boulders at the cape. Most of boulders found at the cape are well rounded, ellipsoid in shape, without sharp broken edges. They were fragments of reef rocks and their sizes were estimated to be < 14m3 (22.7t). The distribution pattern and orientation of long axis of boulders reflect the inundation pattern and behavior of the tsunami waves. It was found that there is no clear evidence indicating monotonous fine/coarse shoreward trends of these boulders along each transect line. On the other hand, the large boulders were deposited repeatedly along the three arcuate lines at the intertidal zone with a spacing of approximately 136m interval. This distribution pattern may suggest that long-lasting oscillatory flows might have repositioned the boulders and separated the big ones from small. No boulders were found on land, indicating that the hydraulic force of the tsunami wave rapidly dissipated on reaching the land due to the higher bottom friction and the presence of a steep slope. We further conducted numerical calculation of tsunami inundation at Pakarang Cape. According to the calculation, the sea receded and the major part of the tidal bench (area with boulders at present) was exposed above the sea surface before the arrival of the first tsunami wave. The first tsunami wave arrived at the cape from west to east at approximately 130min after the tsunami generation, and then inundated inlands. Our calculation shows that tsunami wave was focused around the offshore by a small cove at the reef edge and spread afterwards in a fan-like shape on the tidal bench. The critical wave velocities necessary to move the largest and average-size boulders by sliding can be estimated to be approximately 3.2 and 2.0m/s, respectively. The numerical result indicates that the maximum current velocity of the first tsunami wave was estimated to be from 8 to 15m/s between the reef edge and approximately 500m further offshore. This range is large enough for moving even the largest boulder shoreward. These suggest that the tsunami waves that were directed eastward, struck the reef rocks and coral colonies, originally located on the shallow sea bottom near the reef edge, and detached and transported the boulders shoreward.  相似文献   

10.
The coastal areas of south-west Iberia and north-west Morocco host numerous megaclast accumulations thought to have been emplaced by high-energy waves, namely by the major tsunami related to the 1 November 1755 AD earthquake. New observations were carried out along several transects from Rabat and Larache areas, using statistical methods applied to boulder size. The main results are (a) the boulders belong to two or three sources located within the Pleistocene–Holocene formations of both areas, but only from a single source at Harhoura; (b) the boulders in Larache are generally small, thin and show a normal polarity, whereas those of Rabat are much larger and are often overturned; (c) the directions of inclination of imbricate boulders are variable at Rabat (N, NW and W), whereas they are constant in Larache (WNW); (d) the blocks were displaced for distances up to 150 m in Rabat, while the displacement of the Larache boulders was stopped by the MHW cliff; (e) the hydrodynamic equations suggest that tsunami waves, with maximum amplitudes of 5–11 m in Rabat and 4.5 m in Larache, were responsible for the displacement of the largest boulders, whereas storms may have displaced smaller ones.  相似文献   

11.
The east coast of Tamil Nadu, particularly Chennai–Nagapattinam was worstly affected by the 2004 tsunami. Run-up shows remarkable variation of 2–8 m with maximum at Cuddalore port and minimum at Marina beach. Factors like width of dislocation, source distance, orientation of the coastline, and bathymetry guide tsunami surge. While most of the parameters are similar in characteristics for the entire coast, it is presumed that variation in bathymetry have played an imperative role in guiding run-up. Based on gradient bathymetry, up to 50 km off the coast was classified into five classes, viz shallow, moderate, and steep continental slope and continental shelf. Statistical analysis was performed between offshore bathymetry and run-up. The results clearly indicate that moderate slopes have guided tsunami to attain maximum height. While steeper slope have acted as barriers and gentle slopes have shoaled tsunami surge resulting in reduced run-up height. The study offers early but potentially meaningful guidance on the role of bathymetry on run-up.  相似文献   

12.
A combined approach of field geology and numerical simulation was conducted for evaluating the tsunami impacts on the shelf sediments. The 2003 Tokachi-oki earthquake, M 8.0, that occurred on 25 September 2003 off southeastern Hokkaido, northern Japan, generated a locally destructive tsunami. Maximum run-up height of the tsunami waves reached 4 m above sea level. In order to estimate the tsunami impacts on shallow marine sediments, we compared pre- and post-tsunami marine sediments in water depths of 38–112 m in terms of grain size, sedimentary structure, and microfossil content. Decreases of fine fractions, especially finer than very fine sand, which led to coarsen the mean grain size, were detected in the inner shelf of the northern part of the study area. Foraminiferal assemblages also changed in the coarsened sediments. On the other hand, the other shelf sediments largely unchanged or slightly fined. We also simulated the tsunami wave velocity and direction, and grain size entrained by the modeled tsunami. The numerical simulation resulted in that the 2003 tsunami could transport very fine sand in water depths shallower than 45–95 m at the northern part of the study area. This is comparable with the actual grain-size changes after the tsunami had passed. However, some storms and tidal currents might also be possible to stir the surface sediments after the pre-tsunami survey, so we could not conclude that the grain-size changes had been caused only by the tsunami. Nevertheless, a combined approach of sampling and modeling was powerful for estimating the tsunami impacts under the sea.  相似文献   

13.
B.G. McFadgen  J.R. Goff   《Sedimentary Geology》2007,200(3-4):263-274
Historical and geological records both indicate tsunami inundation of New Zealand in the 700 years since the first human settlement. In addition, Maori oral traditions refer to unusual waves that might have been tsunami waves, although the accounts are open to other interpretations. Tsunami evidence has rarely been proposed from archaeological sites, primarily because of a limited understanding of the requisite evidence and environmental context. We list a criteria suggesting possible tsunami inundation of archaeological sites based upon geoarchaeological data, and use them in a case study from the Archaic Maori occupation site at Wairau Bar. The list is possibly incomplete, but indicates that archaeological investigations can gain from assessments of changing environmental conditions through time at any individual site. Our intention is not to prove tsunami inundation; rather, it is to point to archaeological sites as possible sources of information. We highlight the potential of the Wairau Bar site for further investigation.  相似文献   

14.
Modern subaerial sand beds deposited by major tsunamis and hurricanes were compared at trench, transect, and sub-regional spatial scales to evaluate which attributes are most useful for distinguishing the two types of deposits. Physical criteria that may be diagnostic include: sediment composition, textures and grading, types and organization of stratification, thickness, geometry, and landscape conformity.

Published reports of Pacific Ocean tsunami impacts and our field observations suggest that sandy tsunami deposits are generally < 25 cm thick, extend hundreds of meters inland from the beach, and fill microtopography but generally conform to the antecedent landscape. They commonly are a single homogeneous bed that is normally graded overall, or that consists of only a few thin layers. Mud intraclasts and mud laminae within the deposit are strong evidence of tsunami deposition. Twig orientation or other indicators of return flow during bed aggradation are also diagnostic of tsunami deposits. Sandy storm deposits tend to be > 30 cm thick, generally extend < 300 m from the beach, and will not advance beyond the antecedent macrotopography they are able to fill. They typically are composed of numerous subhorizontal planar laminae organized into multiple laminasets that are normally or inversely graded, they do not contain internal mud laminae and rarely contain mud intraclasts. Application of these distinguishing characteristics depends on their preservation potential and any deposit modifications that accompany burial.

The distinctions between tsunami and storm deposits are related to differences in the hydrodynamics and sediment-sorting processes during transport. Tsunami deposition results from a few high-velocity, long-period waves that entrain sediment from the shoreface, beach, and landward erosion zone. Tsunamis can have flow depths greater than 10 m, transport sediment primarily in suspension, and distribute the load over a broad region where sediment falls out of suspension when flow decelerates. In contrast, storm inundation generally is gradual and prolonged, consisting of many waves that erode beaches and dunes with no significant overland return flow until after the main flooding. Storm flow depths are commonly < 3 m, sediment is transported primarily as bed load by traction, and the load is deposited within a zone relatively close to the beach.  相似文献   


15.
A combination of numeric hydrodynamic models, a large-clast inverse sediment-transport model, and extensive field measurements were used to discriminate between a tsunami and a storm striking Anegada, BVI a few centuries ago. In total, 161 cobbles and boulders were measured ranging from 1.5 to 830?kg at distances of up to 1?km from the shoreline and 2?km from the crest of a fringing coral reef. Transported clasts are composed of low porosity limestone and were derived from outcrops in the low lying interior of Anegada. Estimates of the near-bed flow velocities required to transport the observed boulders were calculated using a simple sediment-transport model, which accounts for fluid drag, inertia, buoyancy, and lift forces on boulders and includes both sliding and overturning transport mechanisms. Estimated near-bed flow velocities are converted to depth-averaged velocities using a linear eddy viscosity model and compared with water level and depth-averaged velocity time series from high-resolution coastal inundation models. Coastal inundation models simulate overwash by the storm surge and waves of a category 5 hurricane and tsunamis from a Lisbon earthquake of M 9.0 and two hypothetical earthquakes along the North America Caribbean Plate boundary. A modeled category 5 hurricane and three simulated tsunamis were all capable of inundating the boulder fields and transporting a portion of the observed clasts, but only an earthquake of M 8.0 on a normal fault of the outer rise along the Puerto Rico Trench was found to be capable of transporting the largest clasts at their current locations. Model results show that while both storm waves and tsunamis are capable of generating velocities and temporal acceleration necessary to transport large boulders near the reef crest, attenuation of wave energy due to wave breaking and bottom friction limits the capacity of storm waves to transport large clast at great inland distances. Through sensitivity analysis, we show that even when using coefficients in the sediment-transport model which yield the lowest estimated minimum velocities for boulder transport, storm waves from a category 5 hurricane are not capable of transporting the largest boulders in the interior of Anegada. Because of the uncertainties in the modeling approach, extensive sensitivity analyses are included and limitations are discussed.  相似文献   

16.
Large earthquakes along the Kuril subduction zone in northern Japan are known to have caused damaging tsunami, although there is a little information on historical earthquakes and tsunami in this area because no documents exist before the 19th century that might refer to tsunami events. To determine the likely timing and size of future events we need information on their recurrence intervals and to do this for the prehistoric past we have investigated sediments located in the Kiritappu marsh in eastern Hokaido that we interpret as laid down by tsunami. Using reliable multiple lines of evidence from sedimentological, geomorphological, micropaleontological, and chronological results, we identify 13 tsunami sands. Two of these lie within a peat bed above a historical tephra, Ta-a (AD 1739); the upper one probably corresponds to the AD 1843 Tempo Tokachi-oki earthquake (M 8.2) tsunami, and the lower to either the AD 1952 Tokachi-oki earthquake (M 8.2) tsunami or the AD 1960 Chilean earthquake (M 9.5) tsunami. Underlying are 11 prehistoric tsunami sand beds (nine large sand beds and two smaller sand beds) deposited during the past 4000 years. Because of the wide spatial distribution of the large sand beds, and inundation distances inland of between 1200 to 3000 m, we suggest that they record unusually large tsunamis along the Kuril subduction zone. According to our analyses, these tsunami sands were derived from the coastal area and, although they do not show clear graded bedding, they commonly have gradational upper boundaries and erosional bases and include internal sedimentary structures such as plane beds, dunes, and current ripples, reflecting bedload transportation. Based on our results we calculate the recurrence interval of unusually large earthquakes (probably M 8.6) along the Kuril subduction zone as about 365–553 years and estimate the youngest large event to have occurred in the 17th century.  相似文献   

17.
A sandy deposit from the 1929 Grand Banks tsunami in Newfoundland contains sediment from two distinct sources, one from an inferred gravel shoreline close to the deposit, and one from a sandy dune some 200 m seaward of the deposit. The deposit ranges from 0 to 15 cm thick, and is composed of a bimodal mix of fine and coarse sand. We took approximately 100 core samples of this deposit in an attempt to characterize lateral grain size trends within the sand. Although the coarse fraction does fine with distance inland, the fine fraction does not change size over the study area, and the aggregate grain size changes in no systematic way.

We interpret this deposit to represent the mixture of material picked up at the bar with material picked up at the gravel shoreline. The bar material does not fine in part because it is already fairly well sorted, but also because it is far from its source. The shoreline material, on the other hand, is poorly sorted so that the tsunami took only those grains it was capable of moving, and deposited them near their source.

We estimated the size of the tsunami by determining the flow depth-flow velocity combinations required to advect sand from the bar to the back of the deposit, and by estimating the shear velocity required for motion of the largest grain we found during our survey. This modeling indicates an average flow depth of about 2.5–2.8 m over the area, at a flow velocity of 1.9–2.2 m/s. This estimate compares well with eyewitness accounts of a maximum flow depth of 7 m at the shoreline if our estimate represents an average over the whole study area.  相似文献   


18.
19.
This paper outlines the field measurements and numerical modelling carried out to develop a high-resolution tsunami inundation map, as a case study, for the city of Trincomalee on the east coast of Sri Lanka, which was devastated by the 2004 tsunami. We employ the deterministic approach together with numerical simulations based on the probable worst-case scenario to derive the inundation map. Linear and non-linear versions of shallow-water equations have been utilized to simulate tsunami propagation and onshore inundation, respectively. The field data considered in the present paper comprise the extent of inundation, the tsunami heights and the arrival times whilst the model results include the spatial distribution of the flow depth, the peak current speeds and the momentum flux. The computed extent of onshore inundation reproduces the observed overall pattern of inundation in most areas barring the south-eastern part of the city. Further, the model simulations suggest maximum flow depths up to about 2 m in most areas of the city whilst patches of flow depths exceeding 2 m can be seen in a narrow strip along the coastline. The computed current speeds also exceed 3 m/s at some locations adjacent to the shoreline.  相似文献   

20.
The Yucatán Peninsula, Mexico, has typically been considered a tectonically stable region with little significant seismic activity. The region though, is one that is regularly affected by hurricanes. A detailed survey of ca 100 km of the eastern Yucatán and Cozumel coast identified the presence of ridges containing individual boulders measuring >1 m in length. The boulder ridges reach 5 m in height and their origin is associated with extreme wave event activity. Previously modelled tsunami waves from known seismically active zones in the region (Muertos Thrust Belt and South Caribbean Deformed Belt) are not of sufficient scale in the area of the Yucatán Peninsula to have produced the boulder ridges recorded in this study. The occurrence of hurricanes in this region is more common, but two of the most destructive (Hurricane Gilbert 1988 and Hurricane Wilma 2005) produced coastal waves too small to have created the ridges recorded here. In this paper, a new tsunami model with a source area located on the Motagua/Swan Island Fault System has been generated that indicates a tsunami event may have caused the extreme wave events that resulted in the deposition of the boulder ridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号