首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The stratigraphy of the last deglaciation sequence is investigated in Lake Saint‐Jean (Québec Province, Canada) based on 300 km of echo‐sounder two dimensional seismic profiles. The sedimentary archive of this basin is documented from the Late Pleistocene Laurentidian ice‐front recession to the present‐day situation. Ten seismic units have been identified that reflect spatio‐temporal variations in depositional processes characterizing different periods of the Saint‐Jean basin evolution. During the postglacial marine flooding, a high deposition rate of mud settling, from proglacial glacimarine and then prodeltaic plumes in the Laflamme Gulf, produced an extensive, up to 50 m thick mud sheet draping the isostatically depressed marine basin floor. Subsequently, a closing of the water body due to glacio‐isostatic rebound occurred at 8.5 cal. ka BP, drastically modifying the hydrodynamics. Hyperpycnal flows appeared because fresh lake water replaced dense marine water. River sediments were transferred towards the deeper part of the lake into river‐related sediment drifts and confined lobes. The closing of the water body is also marked by the onset of a wind‐driven internal circulation associating coastal hydrodynamics and bottom currents with sedimentary features including shoreface deposits, sediment drifts and a prograding shelf‐type body. The fingerprints of a forced regression are well expressed by mouth‐bar systems and by the shoreface–shelf system, the latter unexpected in such a lacustrine setting. In both cases, a regressive surface of lacustrine erosion (RSLE) has been identified, separating sandy mouth‐bar from glaciomarine to prodeltaic muds, and sandy shoreface wedges from the heterolithic shelf‐type body, respectively. The Lake Saint‐Jean record is an example of a regressive succession driven by a glacio‐isostatic rebound and showing the transition from late‐glacial to post‐glacial depositional systems.  相似文献   

2.
Facies architecture and platform evolution of an early Frasnian reef complex in the northern Canning Basin of north‐western Australia were strongly controlled by syn‐depositional faulting during a phase of basin extension. The margin‐attached Hull platform developed on a fault block of Precambrian basement with accommodation largely generated by movement along the Mount Elma Fault Zone. Recognition of major subaerial exposure and flooding surfaces in the Hull platform (from outcrop and drillcore) has enabled comparison of facies associations within a temporal framework and led to identification of three stages of platform evolution. Stage 1 records initial ramp development on the hangingwall dip slope with predominantly deep subtidal conditions that prevented any cyclic facies arrangements. This stage is characterised by basal siliciclastic deposits and a major deepening‐upward facies pattern that is capped by a sequence boundary towards the footwall (north‐west) and a major flooding surface towards the hangingwall. Stage 2 reflects the bulk of platform aggradation, significant platform growth towards the hangingwall and the development of reef margins and cyclic facies arrangements. Thickening of this stage towards the hangingwall indicates that accommodation was generated by rotation of the fault block and overlying platform. Stage 3 records a major flooding and backstep of the platform margin. The Hull platform illustrates important elements of margin‐attached carbonate platforms in a half‐graben setting, including: (i) prominent, but limited, coarse siliciclastic input that does not have a major detrimental effect on carbonate production near the rift margin in arid to semi‐arid settings; (ii) wedge‐shaped accommodation created by syn‐depositional rotation of fault blocks and tilting of the hangingwall dip slope, resulting in shallow‐water facies and subaerial exposure up‐dip of the rotational axis and deeper water facies down‐dip; and (iii) evolution of a ramp to rimmed shelf, coincident with a sequence boundary–flooding surface, that is accelerated by tilting of the hangingwall dip slope during fault‐block rotation.  相似文献   

3.
To elucidate the signature of isostatic and eustatic signals during a deglaciation period in pre‐Pleistocene times is made difficult because very little dating can be done, and also because glacial erosion surfaces, subaerial unconformities and subsequent regressive or transgressive marine ravinement surfaces tend to amalgamate or erode the deglacial deposits. How and in what way can the rebound be interpreted from the stratigraphic record? This study proposes to examine deglacial deposits from Late‐Ordovician to Silurian outcrops at the Algeria–Libya border, in order to define the glacio–isostatic rebound and relative sea‐level changes during a deglaciation period. The studied succession developed at the edge and over a positive palaeo‐relief inherited from a prograding proglacial delta that forms a depocentre of glaciogenic deposits. The succession is divided into five subzones, which depend on the topography of this depocentre. Six facies associations were determined: restricted marine (Facies Association 1); tidal channels (Facies Association 2); tidal sand dunes (Facies Association 3); foreshore to upper shoreface (Facies Association 4); lower shoreface (Facies Association 5); and offshore shales (Facies Association 6). Stratigraphic correlations over the subzones support the understanding of the depositional chronology and associated sea‐level changes. Deepest marine domains record a forced regression of 40 m of sea‐level fall resulting from an uplift caused by a glacio‐isostatic rebound that outpaces the early transgression. The rebound is interpreted to result in a multi‐type surface, which is interpreted as a regressive surface of marine erosion in initially marine domains and as a subaerial unconformity surface in an initially subaerial domain. The transgressive deposits have developed above this surface, during the progressive flooding of the palaeo‐relief. Sedimentology and high‐resolution sequence stratigraphy allowed the delineation of a deglacial sequence and associated sea‐level changes curve for the studied succession. Estimates suggest a relatively short (<10 kyr) duration for the glacio‐isostatic uplift and a subsequent longer duration transgression (4 to 5 Myr).  相似文献   

4.
沉积盆地的地层形态、岩相类型以及空间配置样式是构造事件的重要标识.沉积序列中特征岩石组分的出现标志着毗邻造山带隆升的初始启动时间,与物源区地层单元垂向叠置序列相反或相同的岩屑组分剖面分布则是幕式构造旋回的反映.在前陆盆地中砾石层的出现被认为是冲断岩席活动的记录,而在断陷盆地和走滑拉分盆地中通常可识别出100m级的向上变粗和向上变细的旋回层,它们被解释为构造高地重复隆升和溯源侵蚀的结果.最近的研究工作表明,急剧的构造沉降主要是通过细粒级河湖相沉积补偿的,广泛的砾岩进积发生在构造活动的平静期.构造驱动的山脉隆升表现为砾岩地层呈楔状体,纵向河流水系发育;重力均衡回返所导致的山系隆升则形成以横向河流水系为主的板状砾岩沉积.从青藏高原腹地、周缘和外延海洋盆地的沉积记录中可获取重大构造变革时期的信息,也许是解决目前有关印度与亚洲大陆碰撞、高原隆升等时性或穿时性以及限定陆内变形调节机制的一个重要手段.  相似文献   

5.
沉积盆地的地层形态、岩相类型以及空间配置样式是构造事件的重要标识,沉积序列中特征岩石组分的出现标志着毗邻造山带隆升的初始启动时间,与物源区地层单元垂向叠置序列相反或相同的岩屑组分剖面分布则是幕式构造旋回的反映,在前陆盆地中砾石层的出现被认为是冲断岩席活动的记录,而在断陷盆地和走滑拉分盆地中通常可识别出100m级的向上变粗和向上变细的旋回层,它们被解释为构造高地重复姓升和溯源侵蚀的结果,最近的研究工作表明,急剧的构造沉降主要是通过细粒级河湖相沉积补偿的,广泛的砾岩进积发生在构造活动的平静期,构造驱动的山脉隆升表现为砾岩地层呈楔状体,纵向河流水系发育;重力均衡回返所导致的山系隆升则形成以横向河流水系为主的板状砾岩沉积,从青藏高原腹地、周缘和外延海洋盆地的沉积记录中可获得取重大构造变革时期的信息,也许是解决目前有关印度与亚洲大陆碰撞、高原隆升等时性或穿时性以及限定陆内变形调节机制的一个重要手段。  相似文献   

6.
Alluvial fans serve as useful archives that record the history of depositional and erosional processes in mountainous regions and thus can reveal the environmental controls that influenced their development. Economically, they play an important role as groundwater reservoirs as well as host rocks for hydrocarbons in deeply buried systems. The interpretation of these archives and the evaluation of their reservoir architecture, however, are problematic because marked heterogeneity in the distribution of sedimentary facies makes correlation difficult. This problem is compounded because the accumulated sedimentary deposits of modern unconsolidated fan systems tend to be poorly exposed and few such systems have been the focus of investigation using high‐resolution subsurface analytical techniques. To overcome this limitation of standard outcrop–analogue studies, a geophysical survey of an alpine alluvial fan was performed using ground‐penetrating radar to devise a scaled three‐dimensional subsurface model. Radar facies were classified and calibrated to lithofacies within a fan system that provided outcropping walls and these were used to derive a three‐dimensional model of the sedimentary architecture and identify evolutionary fan stages. The Illgraben fan in the Swiss Alps was selected as a case study and a network of ca 60 km sections of ground‐penetrating radar was surveyed. Seven radar facies types could be distinguished, which were grouped into debris‐flow deposits and stream‐flow deposits. Assemblages of these radar facies types show three depositional units, which are separated by continuous, fan‐wide reflectors; they were interpreted as palaeo‐surfaces corresponding to episodes of sediment starvation that affected the entire fan. An overall upward decline in the proportion of debris‐flow deposits from ca 50% to 15% and a corresponding increase in stream‐flow deposits were identified. The uppermost depositional unit is bounded at its base by a significant incision surface up to 700 m wide, which was subsequently filled up mostly by stream‐flow deposits. The pronounced palaeo‐surfaces and depositional trends suggest that allocyclic controls governed the evolution of the Illgraben fan, making this fan a valuable archive from which to reconstruct past sediment fluxes and environmental change in the Alps. The results of the integrated outcrop–geophysical approach encourage similar future studies on fans to retrieve their depositional history as well as their potential reservoir properties.  相似文献   

7.
The early stage of Sichuan Basin formation was controlled by the convergence of three major Chinese continental blocks during the Indosinian orogeny that include South China,North China,and Qiangtang blocks.Although the Late Triassic Xujiahe Formation is assumed to represent the commencement of continental deposition in the Sichuan Basin,little research is available on the details of this particular stratum.Sequence stratigraphic analysis reveals that the Xujiahe Formation comprises four third-order depositional sequences.Moreover,two tectono-sedimentary evolution stages,deposition and denudation,have been identified.Typical wedge-shaped geometry revealed in a cross section of the southern Sichuan Basin normal to the Longmen Shan fold-thrust belt is displayed for the entire Xujiahe Formation.The depositional extent did not cover the Luzhou paleohigh during the LST1 to LST2 (LST,TST and HST mean Iowstand,transgressive and highstand systems tracts,1,2,3 and 4 represent depositional sequence 1,2,3 and 4),deltaic and fluvial systems fed sediments from the Longmen Shan belt,Luzhou paleohigh,Hannan dome,and Daba Shan paleohigh into a foreland basin with a centrally located lake.The forebulge of the western Sichuan foreland basin was located southeast of the Luzhou paleohigh after LST2.According to the principle of nonmarine sequence stratigraphy and the lithology of the Xujiahe Formation,four thrusting events in the Longmen Shan fold-thrust belt were distinguished,corresponding to the basal boundaries of sequences 1,2,3,and 4.The northern Sichuan Basin was tilted after the deposition of sequence 3,inducing intensive erosion of sequences 3 and 4,and formation of wedge-shaped deposition geometry in sequence 4 from south to north.The tilting probably resulted from small-scale subduction and exhumation of the western South China block during the South and North China block collision.  相似文献   

8.
New field mapping, U–Pb zircon geochronology and structural analysis of the southernmost Sardinia metamorphic basement, considered a branch of the Variscan foreland, indicate that it is, in part, allochthonous and was structurally emplaced within the foreland area, rather than being older depositional basement beneath the foreland succession. The Bithia Formation, classically considered part of the ‘Southern Sulcis metamorphic Complex’ (and here termed the Bithia tectonic unit, or BTU), is a greenschist facies metamorphic unit commonly interpreted as Precambrian in age. New geochronology of felsic volcanic rocks in the BTU, however, yield a U–Pb zircon age of 457.01 ± 0.17 Ma (Upper Ordovician). Thus, the depositional age of the unit is younger than the weakly metamorphosed Lower Cambrian rocks of the adjacent foreland succession. New detailed mapping and analysis of the field relationships between the BTU and foreland succession indicates that their contact is a mylonitic shear zone. The metamorphic character, general lithology, and deformational history of the BTU are similar to those of units in the Variscan Nappe Zone located northeast of the foreland area. We reinterpret the BTU as a synformal klippe of material related tectonically to the Variscan Nappe Zone. We infer that it was thrust over and became infolded into the foreland during late stages of the Variscan contractional deformation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The Lower Cretaceous Fortress Mountain Formation occupies a spatial and temporal niche between syntectonic deposits at the Brooks Range orogenic front and post‐tectonic strata in the Colville foreland basin. The formation includes basin‐floor fan, marine‐slope and fan‐delta facies that define a clinoform depositional profile. Texture and composition of clasts in the formation suggest progressive burial of a tectonic wedge‐front that included older turbidites and mélange. These new interpretations, based entirely on outcrop study, suggest that the Fortress Mountain Formation spans the boundary between orogenic wedge and foredeep, with proximal strata onlapping the tectonic wedge‐front and distal strata downlapping the floor of the foreland basin. Our reconstruction suggests that clinoform amplitude reflects the structural relief generated by tectonic wedge development and load‐induced flexural subsidence of the foreland basin.  相似文献   

10.
Pleistocene sedimentary sequences in the East Anglian region of Britain record both major and minor climatic oscillations, and the impact of isostatic and eustatic variations. Intensively studied in terms of their lithology and biostratigraphy, the sequences have been difficult to place in an absolute timeframe. Dating and correlation by magnetostratigraphy has been attempted over a number of years. However, these sediments are difficult to date by palaeomagnetic means because they are poor in detrital magnetite, are subject to post‐depositional deformation and diagenesis, and have unknown rates of sedimentation. Determining whether their natural remanence magnetisation (NRM) directions are reliable thus requires information on the mode and timing of remanence acquisition. Here, we apply palaeomagnetic, rock magnetic and mineralogical analyses to identify the NRM carriers in these sediments and hence their palaeomagnetic reliability. Within oxidised fluvial sediments (the Kesgrave Formation), the magnetic carriers appear to be relict magnetic minerals (ferrian ilmenites, chromites, haematite and goethite), which sometimes carry a reliable primary depositional remanence (DRM) but often an overprinting viscous (time‐varying) remanence (VRM). Within some reduced marine and intertidal sediments (within the Crag basin), the iron sulphide, greigite, has been found to carry a reliable, ‘syn’‐depositional chemical remanence (CRM). In all the sediments, magnetic inclusions within silicates are abundant, are significant for the mineral magnetic signal but contribute little to any recoverable palaeomagnetic information. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
ABSTRACT The depositional organization and architecture of the middle–late Devonian Yangdi rimmed carbonate platform margin in the Guilin area of South China were related to oblique, extensional faulting in a strike‐slip setting. The platform margin shows two main stages of construction in the late Givetian to Frasnian, with a bioconstructed margin evolving into a sand‐shoal system. In the late Givetian, the platform margin was rimmed with microbial buildups composed mainly of cyanobacterial colonies (mostly Renalcis and Epiphyton). These grew upwards and produced an aggradational (locally slightly retrogradational) architecture with steep foreslope clinoforms. Three depositional sequences (S3–S5) are recognized in the upper Givetian strata, which are dominated by extensive microbialites. Metre‐scale depositional cyclicity occurs in most facies associations, except in the platform‐margin buildups and upper foreslope facies. In the latest Givetian (at the top of sequence S5), relative platform uplift (± subaerial exposure) and associated rapid basin subsidence (probably a block‐tilting effect) caused large‐scale platform collapse and slope erosion to give local scalloped embayments along the platform margin and the synchronous demise of microbial buildups. Subsequently, sand shoals and banks composed of ooids and peloids and, a little later, stromatoporoid buildups on the palaeohighs, developed along the platform margin, from which abundant loose sediment was transported downslope to form gravity‐flow deposits. Another strong tectonic episode caused further platform collapse in the early Frasnian (at the top of sequence S6), leading to large‐scale breccia release and the death of the stromatoporoid buildups. Siliceous facies (banded cherts and siliceous shales) were then deposited extensively in the basin centre as a result of the influx of hydrothermal fluids. The platform‐margin sand‐shoal/bank system, possibly with gullies on the slope, persisted into the latest Frasnian until the restoration of microbial buildups. Four sequences (S6–S9), characterized by abundant sand‐shoal deposits on the margin and gravity‐flow and hemipelagic deposits on the slope, are distinguished in the Frasnian strata. Smaller‐scale depositional cyclicity is evident in all facies associations across the platform–slope–basin transect. The distinctive depositional architecture and evolution of this Yangdi Platform are interpreted as having been controlled mainly by regional tectonics with contributions from eustasy, environmental factors, oceanographic setting, biotic and sedimentary fabrics.  相似文献   

12.
The sequence architecture and depositional systems of the Paleogene lacustrine rift succession in the Huanghekou Sag, Bohai Bay Basin, NE China were investigated based on seismic profiles, combined with well log and core data. Four second‐order or composite sequences and seven third‐order sequences were identified. The depositional systems identified in the basin include: fan delta, braid delta, meander fluvial delta, lacustrine and sublacustrine fan. Identification of the slope break was conducted combining the interpretation of faults of each sequence and the identification of syndepositional faults, based on the subdivision of sequence stratigraphy and analysis of depositional systems. Multiple geomorphologic units were recognized in the Paleogene of the Huanghekou Sag including faults, flexures, depositional slope break belts, ditch‐valleys and sub‐uplifts in the central sag. Using genetic division principles and taking into consideration tectonic features of the Paleogene of the Huanghekou Sag, the study area was divided into the Northern Steep Slope/Fault Slope Break System, the Southern Gentle Slope Break System and T10 Tectonic Slope Break System/T10 Tectonic Belt. Responses of slope break systems to deposition–erosion are shown as: (1) basin marginal slope break is the boundary of the eroded area and provenance area; (2) ditch‐valley formed by different kinds of slope break belts is a good transport bypass for source materials; (3) shape of the slope break belt of the slope break system controls sediments types; (4) the ditch‐valley and sub‐sag of a slope break system is an unloading area for sediments; and (5) due to their different origins, association characteristics and developing patterns, the Paleogene slope break belt systems in the Huanghekou Sag show different controls on depositional systems. The Northern Fault Slope Break system controls the deposition of a fan delta‐lacustrine‐subaqueous fan, the Southern Gentle Slope Break system controls the deposition of a fluvial–deltaic–shallow lacustrine and sublacustrine fan, and the T10 Tectonic Slope Break System controls the deposition of shallow lacustrine beach bar sandbodies. The existence of a slope break system is a necessary but not a sufficient condition for studying sandbody development. The formation of effective sandbodies along the slope break depends on the reasonable coupling of effective provenance, necessary association patterns of slope break belt, adequate unloading space and creation of definite accommodation space. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Tectonic forcing of delta progradation is increasingly being invoked to explain stratal stacking patterns in foreland basins. Nonetheless, the recognition of different types of tectonic forcing and their consequences for the spatial and temporal distribution of accommodation often rely on incomplete data sets and indirect sequence stratigraphic criteria. Previous work has concluded that the Cenomanian–Turonian Frontier Formation of northern Utah, north‐west Colorado and south‐west Wyoming (‘Vernal Delta’) owes its origin largely to tectonic overprinting of depositional patterns, although the lack of a comprehensive sequence stratigraphic framework for the unit has hampered evaluation of this claim. This study provides detailed facies and sequence stratigraphic analyses based on outcrop sections and wireline log suites from the Uinta, Piceance and Green River basins. Four genetically related intervals were defined and mapped by using regionally traceable stratigraphic horizons (flooding surfaces and sequence boundaries). Internally, intervals are composed of distal and proximal delta front lithologies, and coastal plain facies. Overall, Intervals 1 to 4 form a major basinward projection of coarse clastic strata generated in response to four separate, high‐frequency regressions. Furthermore, a change through time from southward projection of elongate lobes (Intervals 1 and 2) to eastward dispersal and development of a broad, arcuate planform (Intervals 3 and 4) can be explained in terms of changes in prevailing tectonic forcing mechanisms. North–south trending Sevier Orogeny forebulge structures controlled Intervals 1 and 2. West–east progradation (Intervals 3 and 4) was probably controlled by Proterozoic basement lineament reactivation due to Laramide foreland uplifts. Therefore, this study provides direct geological evidence for the initiation of local Laramide deformation as early as 90 Ma. These findings contribute to a more complete understanding of tectonic forcing of coastal to shallow marine successions in foreland basins and the tectonic evolution of the western USA.  相似文献   

14.
Numerical modelling of depositional sequences in half-graben rift basins   总被引:1,自引:0,他引:1  
ABSTRACT A three‐dimensional numerical model of sediment transport and deposition in coarse‐grained deltas is used to investigate the controls on depositional sequence variability in marine half‐graben extensional basins subject to eustatic sea‐level change. Using rates of sea‐level change, sediment supply and fault slip reported from active rift basins, the evolution of deltas located in three contrasting structural settings is documented: (1) footwall‐sourced deltas in high‐subsidence locations near the centre of a fault segment; (2) deltas fed by large drainage catchments at fault tips; and (3) deltas sourced from drainage catchments on the hangingwall dip slope. Differences in the three‐dimensional form and internal stratigraphy of the deltas result from variations in tilting of the hangingwall and the impact of border fault slip rates on accommodation development. Because subsidence rates near the centre of fault segments are greater than all but the fastest eustatic falls, footwall‐sourced deltas lack sequence boundaries and are characterized by stacked highstand systems tracts. High subsidence and steep bathymetry adjacent to the fault result in limited progradation. In contrast, the lower subsidence rate settings of the fault‐tip and hangingwall dip‐slope deltas mean that they are subject to relative sea‐level fall and associated fluvial incision and forced regression. Low gradients and tectonic tilting of the hangingwall influence the geometry of these deltas, with fault‐tip deltas preferentially prograding axially along the fault, creating elongate delta lobes. In contrast, broad, sheet‐like delta lobes characterize the hangingwall dip‐slope deltas. The model results suggest that different systems tracts may be coeval over length scales of several kilometres and that key stratal surfaces defining and subdividing depositional sequences may only be of local extent. Furthermore, the results highlight pitfalls in sequence‐stratigraphic interpretation and problems in interpreting controlling processes from the preserved stratigraphic product.  相似文献   

15.
The Upper Cretaceous (Campanian) Kenilworth Member of the Blackhawk Formation (Mesaverde Group) is part of a series of strand plain sandstones that intertongue with and overstep the shelfal shales of the western interior basin of North America. Analysis of this section at a combination of small (sedimentological) and large (stratigraphical) scales reveals the dynamics of progradation of a shelf-slope sequence into a subsiding foreland basin. Four major lithofacies are present in the upper Mancos and Kenilworth beds of the Book Cliffs. A lag sandstone and channel-fill shale lithofacies constitutes the thin, basal, transgressive sequence, which rests on a marine erosion surface. It was deposited in an outer shelf environment. Shale, interbedded sandstone and shale, and amalgamated sandstone lithofacies were deposited over the transgressive lag sandstone lithofacies as a wave-dominated delta and its flanking strand plains prograded seaward. Analysis of grain size and primary structures in Kenilworth beds indicates that there are four basic strata types which combine to build the observed lithofacies. The fine- to very fine-grained graded strata of the interbedded facies are tempestites, deposited out of suspension by alongshelf storm flows (geostrophic flows). There is no need to call on cross-shelf turbidity currents (density underflows) to explain their presence. Very fine- to fine-grained hummocky strata are likewise suspension deposits created by waning storm flows, but were deposited under conditions of more intense wave agitation on the middle shoreface. Cross-strata sets in this region are bed-load deposits that accumulated on the upper shore-face, in the surf zone. Lag strata are multi-event, bed-load deposits that are the product of prolonged storm winnowing. They occur on transgressive surfaces. While the graded beds are tempestites in the strict sense, all four classes of strata are storm deposits. The distribution of strata types and their palaeocurrent orientations suggests a model of the Kenilworth transport system driven by downwelling coastal storm flows, and probably by a northeasterly alongshore pressure gradient. The stratification patterns shift systematically from upper shoreface to lower shoreface and inner shelf lithofacies partly because of a reduction in fluid power expenditure with increasing water depth, but also because of progressive sorting, which resulted in a decrease in grain size in the sediment load delivered to successive downstream environments. The Kenilworth Member and an isolated outlier, the Hatch Mesa lentil, constitute a delta-prodelta shelf depositional system. Their rhythmically bedded, lenticular, sandstone and shale successions are a prodelta shelf facies, and may be prodelta plume deposits. Major Upper Cretaceous sandstone tongues in the Book Cliffs are underlain by erosional surfaces like that beneath the Blackhawk Formation, which extend for many tens of kilometres into the Mancos shale. These surfaces are the boundaries of Upper Cretaceous depositional sequences. The sequences are large-scale genetic stratigraphic units. They result from the arranging of facies into depositional systems; the depositional systems are in turn stacked in repeating arrays, which constitute the depositional sequences. The anatomy of these foreland basin sequences differs  相似文献   

16.
In order to better understand modern human behavioral variability in Hokkaido, Japan, we consider the geoarchaeology of the Kamihoronai‐Moi site in terms of its geochronology, stratigraphy, depositional environments, and post‐depositional disturbances. A Paleolithic component is stratigraphically situated between the Eniwa‐a (15,000–17,000 14C yr B.P.) and the Tarumae‐d (8000–9000 14C yr B.P.) tephras. Moreover, six AMS 14C ages on charcoal from a Pleistocene‐aged hearth feature are between 14,400 and 14,800 14C yr B.P. Quantitative examinations of patterns in artifact distributions show a low degree of vertical and horizontal displacement of chipped‐stone artifacts, suggesting that post‐depositional movement of the cultural material was insufficient to disrupt the original pattern of artifact distribution. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
Abstract Successions across the Middle–Upper Jurassic disconformity in the Lusitanian Basin (west‐central Portugal) are highly varied, and were probably developed on a large westward‐inclined hangingwall of a half‐graben. The disconformity is preceded by a complex forced regression showing marked variations down the ramp, and provides an example of the effects of rapid, relative sea‐level falls on carbonate ramp systems. In the east, Middle Jurassic inner ramp carbonates (‘Candeeiros’ facies) are capped by a palaeokarstic surface veneered by ferruginous clays or thick calcretes. In the west, mid‐outer ramp marls and limestones (‘Brenha’ facies) are terminated by two contrasting successions: (1) a sharp‐based carbonate sandbody capped by a minor erosion surface, overlain by interbedded marine–lagoonal–deltaic deposits with further minor erosion/exposure surfaces; (2) a brachiopod‐rich limestone with a minor irregular surface, overlain by marls, lignitic marls with marine and reworked non‐marine fossils and charophytic limestones, with further minor irregular surfaces and capped by a higher relief ferruginous erosional surface. The age ranges from Late Bathonian in the east to Late Callovian in the west. This disconformity assemblage is succeeded by widespread lacustrine–lagoonal limestones with microbial laminites and evaporites (‘Cabaços’ facies), attributed to the Middle Oxfordian. Over the whole basin, increasingly marine facies were deposited afterwards. In Middle Jurassic inner‐ramp zones in the east, the overall regression is marked by a major exposure surface overlain by continental sediments. In Middle Jurassic outer‐ramp zones to the west, the regression is represented initially by open‐marine successions followed by either a sharp marine erosion surface overlain by a complex sandbody or minor discontinuities and marginal‐marine deposits, in both cases capped by the major lowstand surface. Reflooding led to a complex pattern of depositional conditions throughout the basin, from freshwater and brackish lagoonal to marginal‐ and shallow‐marine settings. Additional complications were produced by possible tilting of the hangingwall of the half‐graben, the input of siliciclastics from westerly sources and climate change from humid to more seasonally semi‐arid conditions. The Middle–Late Jurassic sea‐level fall in the Lusitanian Basin is also recorded elsewhere within the Iberian and other peri‐Atlantic regions and matches a transgressive to regressive change in eustatic sea‐level curves, indicating that it is related in part to a global event.  相似文献   

18.
The Balfour Formation represents a fully fluvial succession of late Late Permian–earliest Triassic age which accumulated in the foredeep of the Karoo Basin during the overfilled phase of the foreland system. The lack of a coeval marine environment within the limits of the preserved Karoo Basin provides an opportunity to study the stratigraphic cyclicity developed during a time when accommodation was solely controlled by tectonics. The Balfour stratigraphy is composed of a succession of six third-order fluvial depositional sequences separated by subaerial unconformities. They formed in isolation from eustatic influences, with a timing controlled by orogenic cycles of loading and unloading. Sediment accumulation took place during stages of flexural subsidence, whereas the bounding surfaces are related to stages of isostatic uplift. The vertical profile of all sequences displays an overall fining-upward trend related to the gradual decrease in topographic slope during orogenic loading. At the same time, an upward change in fluvial styles can be observed within each sequence, from initial higher to final lower energy systems. The actual fluvial styles in each location depend on paleoslope gradients and the position of the stratigraphic section relative to the orogenic front. Proximal sequences show transitions from braided to meandering systems, whereas more distal sequences show changes from sand-bed to fine-grained meandering systems. The average duration of the Balfour stratigraphic cycles was 0.66 My, i.e. six cycles during 4 My. No climatic fluctuations are recorded during this time, with the long-term climatic background represented by temperate to humid conditions.  相似文献   

19.
Matthews, J. A. & Winkler, S. 2010: Schmidt‐hammer exposure‐age dating (SHD): application to early Holocene moraines and a reappraisal of the reliability of terrestrial cosmogenic‐nuclide dating (TCND) at Austanbotnbreen, Jotunheimen, Norway. Boreas, 10.1111/j.1502‐3885.2010.00178.x. ISSN 0300‐9483. Schmidt‐hammer exposure‐age dating (SHD) and terrestrial cosmogenic‐nuclide dating (TCND) are complementary techniques that can be used for mutual testing. SHD is low‐cost but requires local control points of known age and may be affected by local geological variation and other environmental factors that influence weathering rates. TCND is vulnerable to the occurrence of anomalous boulders, other geomorphological uncertainties and the effects of snow‐shielding at high altitudes. Both techniques are sensitive to post‐depositional disturbances if other than solid bedrock is sampled. SHD was applied to two moraine ridges beyond the Little Ice Age limit of Austanbotnbreen in the Hurrungane massif, southern Norway. Independent regional and experimental local age‐calibration curves were used to reappraise previous TCND results. Neither the two boulder surfaces nor their proximal bedrock surfaces could be differentiated statistically in terms of SHD exposure ages or their mean R‐values (±95% confidence intervals), which ranged from 40.73±1.72 to 43.34±0.69. The best of the independent regional‐calibration curves produced SHD exposure ages of 9413±723 and 9304±602 years, which are consistent with moraine formation early (c. 10.2 ka) and late (c. 9.7 ka) within the late‐Preboreal Erdalen Event. The current precision of SHD, as reflected in 95% confidence intervals of ±500–900 years, enables rejection of a Finse Event (c. 8.2 ka) age for either moraine. Results are consistent with a retracted Austanbotnbreen between the Erdalen Event and the Little Ice Age, and a modified model of Neoglaciation.  相似文献   

20.
The Mellish Park Syncline is located in the northern part of the Mt Isa terrane. It has an axial trace that transects the remnants of the unconformity‐bounded Palaeoproterozoic Leichhardt and Isa Superbasins. The syncline is separated into a lower and upper component based upon variation in fold geometry across the basin‐bounding unconformity. The lower syncline, in the Leichhardt Superbasin, is tight and has an inclined west‐dipping axial plane. The upper syncline, in the Isa Superbasin, is open and upright. The geometry of the lower syncline is a consequence of a period of shortening and basin inversion which post‐dated the Leichhardt Rift Event (ca 1780–1740 Ma) and pre‐dated the Mt Isa Rift Event (ca 1710–1655 Ma), forming an open and upright north‐oriented syncline. Subsequent southeast tilting and half‐graben development during the Mt Isa Rift Event resulted in the lower syncline being tilted into its inclined geometry. Sequences of the Isa Superbasin were then deposited onto the eroded syncline. The geometry of the upper syncline reflects regional east‐west shortening during the Isan Orogeny (ca 1590–1500 Ma). The position of the upper syncline was largely controlled by the pre‐existing lower syncline. At this time the lower syncline was reactivated and tightened by flexural slip folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号