首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While limiting-equilibrium Mononobe–Okabe type solutions are still widely used in designing rigid gravity and flexible cantilever retaining walls against earthquakes, elasticity-based solutions have been given a new impetus following the analytical work of Veletsos and Younan [23]. The present paper develops a more general finite-element method of solution, the results of which are shown to be in agreement with the available analytical results for the distribution of dynamic earth pressures on rigid and flexible walls. The method is then employed to further investigate parametrically the effects of flexural wall rigidity and the rocking base compliance. Both homogeneous and inhomogeneous retained soil is considered, while a second soil layer is introduced as the foundation of the retaining system. The results confirm the approximate convergence between Mononobe–Okabe and elasticity-based solutions for structurally or rotationally flexible walls. At the same time they show the beneficial effect of soil inhomogeneity and that wave propagation in the underlying foundation layer may have an effect that cannot be simply accounted for with an appropriate rocking spring at the base.  相似文献   

2.
To simplify the analysis of soil–structure interaction systems, various fixed-base models have recently been proposed by the author to efficiently represent the SSI system and have been shown to have good accuracy. However, the modified mass and damping matrices of these models do not hold the properties of symmetry and orthogonality. Difficulties may consequently be induced for these models in applying conventional computer codes to carry out dynamic analysis. In the present paper, this problem is further explored to establish a fixed-base model possessing classical normal modes. Formulated in the modal space, this fixed-base model is constructed through applying an iteration algorithm to incorporate the Gram–Schmidt orthogonalization process. The convergent real orthogonal mode vectors, natural frequencies, and modal damping ratios are directly determined for this model. It is demonstrated with a numerical example that this new fixed-base model retains excellent accuracy. Accordingly, the complicated SSI systems can be directly analyzed using conventional computer codes for structural dynamics with the fixed-base model developed in this study.  相似文献   

3.
A two-dimensional (2D) finite element analytical model is developed to analyze the seismic response of rigid highway bridge abutments, retaining and founded on dry sand. A well verified finite element code named FLEX is used for this purpose. The proposed model has the following characteristics: (1) The soil (dry sand in this study) is modeled by a 2D finite element grid; (2) The bridge abutment is molded as a rigid substructure; (3) The strength and deformation of the soil are modeled using the viscous cap constitutive model. This model consists of a failure surface and hardening cap together with an associated flow rule. The cap surface is activated for the soil under the wall to represent compaction during wall rocking. In addition, viscoelastic behavior is provided for representing the hysteretic-like damping of soil during dynamic loading; (4) Interface elements are used between the wall and the soil (at the backface of the wall and under its base) to allow for sliding and for debonding/recontact behavior; (5) The finite element grid is truncated by using an absorbing boundary approximation. Using this boundary at both sides of the grid simulates the horizontal radiation of energy scattered from the wall and the excavation. Shear beams are placed adjacent to the lateral boundaries from each side which give the far-field ground motion, for comparison with those computed adjacent to the boundaries. The analytical model is verified comparing predictions to results from dynamic centrifuge tests, with satisfactory agreement. The proposed model is used to study the dynamic response of an 8.0 m high and 3.0 m wide rigid bridge abutment (proportioned using the traditional approach to design) for different sinusoidal and earthquake acceleration input motions. The results from the analysis show that outward tilting of rigid bridge abutments is the dominant mode of response during dynamic shaking and that these abutments end up with a permanent outward tilt at the end of shaking. The results from all the analyzed cases of the 8.0 m high gravity retaining wall together with those from the analysis of the tilting wall centrifuge tests are discussed and used for proposing a practical method for evaluating the seismic response of rigid abutments during earthquakes.  相似文献   

4.
The effects of earthquakes on cantilever retaining walls with liquefiable backfills were studied. The experimental techniques utilized in this study are discussed here. A series of centrifuge tests was conducted on aluminum, fixed-base, cantilever wall models retaining saturated, cohesionless backfills. Accelerations on the walls and in the backfill, static and excess pore pressures in the soil, and deflections and bending strains in the wall were measured. In addition, direct measurements of static and dynamic lateral earth pressures were made. In some tests, sand backfills were saturated with the substitute pore fluid metolose. Modeling of model type experiments were conducted. The experimental measurements were found internally consistent and repeatable. Both static and dynamic earth pressure measurements were determined to be reliable. It was also observed that for the test configuration adopted, a special boundary treatment such as the use of duxseal is optional. Static and seismic modeling of models were also successful, which indicated that the assumed scaling relations were essentially correct.  相似文献   

5.
For a class of civil engineering structures, that can be accurately represented by ‘coupled shear walls’ (CSWs), a discrete model for the analysis of the dynamic interaction with the underlying soil is proposed. The CSWs, with one or more rows of openings, rest on a rigid foundation embedded in the elastic or viscoelastic half-space. A hierarchical finite element model based on an equivalent continuum approach is adopted for the structure. A frequency-domain boundary element method is used to represent the half-space. Finally, the set of equations governing the response of the coupled soil-structure system to harmonic lateral loads acting on the structure is also given. The frequency deviation effect with respect to the fixed-base structure and the effects of radiation and material damping in the soil are presented for different characteristics of the structure and different soil properties.  相似文献   

6.
This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCER) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCER-level far-fault motions, whereas minor structural damage is observed under MCER-level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered.  相似文献   

7.
The response of an elastic circular wedge on a flexible foundation embedded into a half-space is investigated in the frequency domain for incident pane SH-waves. The problem is solved by expansion of the motion in all three media (wedge, foundation and half-space) in cylindrical wave functions (Fourier-Bessel series). The structural model is simple, but accounts for both differential motions of the base and for the effects of soil-structure interaction. Usually, structural models in earthquake engineering consider either differential ground motion, but ignore soil-structure interaction, or consider soil-structure interaction, but for a rigid foundation, thus ignoring differential ground motion. The purpose of the study is to find how stiff the foundation should be relative to the soil so that the rigid foundation assumption in soil-structure interaction models is valid. The shortest wavelength of the incident waves considered in this study is one equal to the width of the base of the wedge. It is concluded that, for this model, a foundation with same mass density as the soil but 50 times larger shear modulus behaves as ‘rigid’. For ratio of shear moduli less than 16, the rigid foundation assumption is not valid. Considering differential motions is important because of additional stresses in structures that are not predicted by fixed-base and rigid foundation models.  相似文献   

8.
The dynamic response of rigid and flexible walls retaining dry cohesionless soil is examined in light of experimental results and analytical elastodynamic and limit analysis solutions. Following a brief review of the problem, experimental findings from three different testing programs on retaining walls are presented, and compared with theoretical predictions based on the above-mentioned approaches. Reasonable agreement is found depending on the assumptions. It is shown that wall flexibility – which is not taken into account in classical design approaches – should be considered to establish the point of application of seismic thrust on the wall. Detailed calculations and set of graphs and charts are presented, which highlight salient aspects of the problem.  相似文献   

9.
Shaking table testing of geofoam seismic buffers   总被引:2,自引:0,他引:2  
The paper describes the experimental design and results of tests used to investigate the use of compressible EPS (geofoam) seismic buffers to attenuate dynamic loads against rigid retaining wall structures. The tests were carried out using 1-m-high models mounted on a large shaking table. Three different geofoam buffer materials retaining a sand soil were tested under idealized dynamic loading conditions. The results of these tests are compared to a nominal identical structure without a seismic buffer. The test results demonstrate that the reduction in dynamic load increased with decreasing seismic buffer density. For the best case reported here, the maximum dynamic force reduction was 31% at a peak base acceleration of 0.7g.  相似文献   

10.
The dynamic response of an elastic continuously nonhomogeneous soil layer over bedrock retained by a pair of rigid cantilever walls to a horizontal seismic motion and the associated seismic pressure acting on these walls are determined analytically–numerically. The soil non-homogeneity is described by a shear modulus increasing nonlinearly with depth. The problem is solved in the frequency domain under conditions of plane strain and its exact solution is obtained analytically. This is accomplished with the aid of Fourier series along the horizontal direction and solution of the resulting system of two ordinary differential equations with variable coefficients by the method of Frobenius in power series. Due to the complexity of the various analytical expressions, the final results are determined numerically. These results include seismic pressures, resultant horizontal forces and bending moments acting on the walls. The solution of the problem involving a single retaining wall can be obtained as a special case by assuming the distance between the two walls to be very large. Results are presented in terms of numerical values and graphs using suitable dimensionless quantities. The effect of soil non-homogeneity on the system response is assessed through comparisons for typical sets of the parameters involved.  相似文献   

11.
This study examines the roles of soil-structure interaction (SSI), higher modes, and damping in a base-isolated structure built on multiple layers of soil overlying a half space. Closed-form solutions for the entire system, including a superstructure, seismic isolator, and numerous soil layers overlying a half-space, were obtained. The formulations obtained in this study simply in terms of well-known frequencies and mechanical impedance ratios can explicitly interpret the dynamic behavior of a base-isolated structure interacting with multiple soil layers overlying a half-space. The key factors influencing the performance of the isolation system are the damping ratio of the isolator and the ratio of the natural frequency of the fixed-base structure to that of the isolated structure by assuming that the superstructure moves as a rigid body. This study reveals that higher damping in the base isolator is unfavorable to higher mode responses that usually dominate the responses of the superstructure and that the damping mechanism plays an important role in transmitting energy in addition to absorbing energy. It is also concluded that it is possible to design a soft soil layer as an isolation system for isolating vibration energy.  相似文献   

12.
A complex response algorithm for the dynamic analysis of axisymmetric thin shells supported on an interactive foundation is developed. The substructure deletion method is employed through the utilization of a dynamic boundary system at the contact area between the superstructure and the substructure. A new mathematical formulation in conjunction with the shell behaviour is developed to deal with rigid body motions due to the negation of the fixed base assumption. Four foundation conditions, that is, a fixed base, two pile foundation cases and a flexible base, are to examine the effect of base flexibility on the seismic response of cooling towers. Also, excellent comparative results between the frequency domain solution and a time domain solution are obtained.  相似文献   

13.
A three-dimensional backfill–structure–soil/foundation interaction phenomenon is simulated using the finite element method in order to analyze the dynamic behavior of cantilever retaining wall subjected to different ground motions. Effects of both earthquake frequency content and soil–structure interaction are evaluated by using five different seismic motions and six different soil types. The study mainly consists of three parts. In the first part, following a brief review of the problem, the finite element model with viscous boundary is proposed under fixed-base condition. In the second part, analytical formulations are presented by using modal analysis technique to provide the finite element model verification, and reasonable agreement is found between numerical and analytical results. Finally, the method is extended to further investigate parametrically the effects of not only earthquake frequency content but also soil/foundation interaction, and nonlinear time history analyzes are carried out. By means of changing the soil properties, some comparisons are made on lateral displacements and stress responses under different ground motions. It is concluded that the dynamic response of the cantilever wall is highly sensitive to frequency characteristics of the earthquake record and soil–structure interaction.  相似文献   

14.
To simplify the consideration of the soil-structure interaction (SSI) effects, a single degree-of-freedom (SDOF) replacement oscillator has been successfully utilized to represent an SSI system with SDOF structural model. In the present paper, this approximation is first extended to an equivalent fixed-base model with modified system parameters. Based on this generalization, a methodology is then proposed to determine the equivalent fixed-base models of a general multi degree-of-freedom SSI system using simple system identification techniques in the frequency domain. Various fixed-base models are formulated and their accuracy is compared for a five-story shear building resting on soft soil. It is shown that the actual SSI system can be accurately represented with an appropriate fixed-base model.  相似文献   

15.
16.
A stress plasticity solution is proposed for evaluating the gravitational and dynamic active earth pressures on cantilever retaining walls with long heel. The solution takes into account the friction angle of the soil, wall roughness, backfill inclination and horizontal and vertical seismic accelerations. It is validated by means of the comparison with both traditional limit equilibrium methods (e.g. Mononobe–Okabe equations) and static and pseudostatic numerical FLAC analyses. For numerical analyses the soil is modelled as an elasto-plastic non-dilatant medium obeying the Mohr–Coulomb yield criterion, while the wall is elastic. The solutions for the horizontal and vertical seismic coefficients are proposed, which allow one to determine the intensity of the active thrust and its inclination δ with respect to the horizontal. It is demonstrated that the latter also depends on the soil friction angle φ. The inclination in seismic conditions δE is greater than the one in static conditions, δS, usually adopted in both cases. As a matter of fact, since wall stability conditions improve with the increase of inclination δ, the present method gives solutions that are less onerous than traditional ones, producing less conservative wall designs. Finally pseudostatic results are compared with proper dynamic analyses (by FLAC code) performed utilising four Italian accelerometric time-histories as input ground motion.  相似文献   

17.
This review type of paper shows how the poroelastodynamic theory of Biot can be applied to some soil dynamics problems encountered in transportation engineering, which have been solved by the present authors. These problems involve rigid walls retaining poroelastic soil and subjected to harmonic seismic waves and moving loads on poroelastic soil. Both classes of problems involve a soil layer over bedrock, are of the plane strain type and are solved analytically by two methods: a direct (almost exact and exact for the above two classes of problems) method and an approximate method. The effects of shear modulus, porosity, permeability and hysteretic damping of the soil medium as well as the seismic frequency for retaining walls and velocity for moving loads on the dynamic response are numerically evaluated in order to assess their relative importance on that response.  相似文献   

18.
The system damping, the system frequency, the relative building response and the base rocking response peak amplitudes are studied, as those depend on the building mass and height, the flexibility of the soil, the structural damping, the type of incident waves and their angle of incidence. A linear two-dimensional model is used, which assumes the soil to be a homogeneous isotropic half-space, the foundation supporting the building to be a rigid embedded cylinder, and in which the building model is an equivalent single-degree-of-freedom oscillator. The system frequency and the system damping ratio are determined by measuring the width and the frequency of the peak in the transfer function of the oscillator relative response, using the analogy with the half-power method for a single-degree-of-freedom fixed-base oscillator. Previous similar studies are for dynamic soil-structure interaction only, and for simplified models in which the stiffness of the soil and the damping due to radiation are represented by springs and dashpots. The study in this paper differs from the previous studies in that the wave passage effects (or the kinematic interaction) are also included, and that no additional simplifications of the model are made. Results are shown for excitation by plane P- and SV-waves.  相似文献   

19.
Seismic active pressure distribution history behind rigid retaining walls   总被引:1,自引:0,他引:1  
Evaluating the seismic active earth pressure on retaining walls is currently based on pseudo-static method in practices. In this method, however, it is not simple, choosing an appropriate value for earthquake coefficient, which should fully reflect the dynamic characteristics of both soil and loading is an important problem. On the other hand, by using only two extra dynamic parameters that are shear wave velocity of soil and predominant frequency of probable earthquake, one can benefit from another more accurate tool called pseudo-dynamic method to solve the problem of earth pressure.In this study in the framework of limit equilibrium analysis, pseudo-dynamic method has been applied into horizontal slice method of analysis to account for the effect of earthquake on lateral earth pressure history behind rigid retaining walls. The pressure history resulted from a number of analyses shows that before and after reaching the peak resultant force, different pressure distributions occur behind a wall that put more local pressure than the same at peak. This method would be a tool to control this phenomenon in wall design.  相似文献   

20.
The effects of seismic pounding on the structural performance of a base-isolated reinforced concrete (RC) building are investigated, with a view to evaluate the influence of adjacent structures and separation between structures on the pounding response. In particular, seismic pounding of a typical four-story base-isolated RC building with retaining walls at the base and with a four-story fixed-base RC building is studied. Three-dimensional finite element analyses are carried out considering material and geometric nonlinearities. The structural performance of the base-isolated building is evaluated considering various earthquake excitations. It is found that the performance of the base-isolated building is substantially influenced by the pounding. The investigated base-isolated building shows good resistance against shear failure and the predominant mode of failure due to pounding is flexural. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号