首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杨颖玥  刘海龙 《海洋与湖沼》2023,54(6):1564-1572
卫星记录以来,南极海冰范围发生5次快速下降事件,研究这5次事件的时空特征,对进一步认识海冰快速下降事件的物理机制具有重要意义。基于海冰范围和海冰密集度的卫星数据,从时间和空间两个维度总结5次南极海冰快速下降事件的特征,再结合大气和海洋各项环境因素的再分析数据,探讨海冰快速下降的影响因素及其驱动过程。结果显示:南极海冰快速下降的空间分布存在季节性差异, 2021年8~12月以及2016年8~12月的春季南极海冰快速下降由别林斯高晋海、威德尔海、印度洋和西太平洋区域的海冰减少所主导; 2010年12月至2011年4月以及1985年12月至1986年4月的夏季南极海冰快速下降由威德尔海、罗斯海沿岸和西太平洋区域的海冰减少所主导;2008年4~8月的冬季南极海冰快速下降则由别林斯高晋海和西太平洋的部分区域的海冰减少所主导。探究影响海冰的环境因素发现,海表面温度和海表面净热通量对海冰减少的热力效应影响具有区域性差异。此外,南极海冰快速下降受阿蒙森低压的影响,相应的海表面风异常既通过经向热输运的热力效应导致海冰减少,也通过风的动力效应驱动海冰漂移使得海冰密集度降低。  相似文献   

2.
渤海海冰漂移数值研究   总被引:1,自引:0,他引:1  
本文利用海冰-海洋动力耦合模式对渤海典型天气形势下海冰动力过程作了数值模拟,海冰模式建立在动量和质量守恒基础上,忽略了海冰变化的热力过程。海冰厚度被划分为三类:堆积冰、平整冰和开阔冰,冰的形变由一个厚度的重新分布约束条件确定。海洋模式是一个二维风暴潮模式.同时考虑了潮汐的作用。风场资料来自于沿岸气象观测站每日四次的风观测,计算网格是十分之一经纬度。主要的分析和模拟是在大气和海洋共同作用下海冰的漂流特点。观测结果比较表明,数值模拟结果基本上反映了该海域流冰的漂移性质,同时也可为短期冰情预报提供有益的参考。  相似文献   

3.
北冰洋中心区海冰漂流与大气过程   总被引:3,自引:3,他引:0  
利用北冰洋中心区漂流自动气象站(DAWS)2012年9月—2013年2月的观测数据,分析了北极点周围海冰漂流轨迹和速度及相关大气过程。结果显示,北冰洋中心区海冰具有不稳定漂流过程。2012年9月1日—2013年1月6日,DAWS所在海冰从西向西北方向漂流,2013年1月6日以后稳定地向东南方向漂流,平均移速为0.06m/s,最大达到0.4m/s。海冰漂流方向的突变和加速与穿极气旋和急流的影响有关。净辐射常出现短期突变过程,导致海冰从大气吸收能量,减缓了海冰的辐射冷却。爆发性增温过程的最大幅度达到30℃,是由强穿极气旋和伴随的暖湿气流向北极中心区输送引起,这种现象在中低纬度十分罕见。增温过程的作用是高空大气向冰面输送热量,导致海冰破裂,海冰硬度的脆变,减缓海冰厚度的增长,这种过程可能是北极海冰面积和厚度减少重要过程。  相似文献   

4.
渤海冰漂移对海面风场、潮流场的响应   总被引:7,自引:1,他引:7  
在对海冰漂移动力学分析基础上,利用MODIS资料,采用MCC方法获取渤海大范围冰覆盖的海域冰速场,并利用NCEP风速资料和潮流资料进行回归分析,得到渤海冰漂移速度与风速和流速的关系.利用MODIS和NOAA/AVHRR资料获取的渤海冰速资料的综合分析显示:渤海海冰运动,除受盛行风控制外,还受到复杂的海岸地形、流和冰内应力的共同作用,所得到的大范围海冰运动规律和多年历史观测资料分析结果基本一致,并清楚地显示了冰边缘带海冰运动的特征,弥补了局地、单站海冰观测的局限性.  相似文献   

5.
The tidal ice drift is treated as an element of the three-dimensional tidal dynamics in a sea covered by ice. This dynamics is described by the QUODDY-4 finite-element model, and the tidal ice drift is described by a continuous viscous-elastic approximation. We present the results of modeling not only the tidal ice drift (M 2 wave) (its velocity, direction, and tidal variations in the concentration and pressure of ice compression) but also ice-induced changes in tidal dynamics and the residual tidal ice drift. The modeling results indicate that the maximum velocity of tidal ice drift, which is determined by a combination of various factors responsible for ice evolution and primarily by the horizontal gradient of the level and local tidal velocity, can be higher or lower than the velocity of the surface tidal current in the ice-free sea. This depends on the sign of deviations of tidal sea level elevations in the sea covered by ice from their values in the ice-free sea. In addition, it has been found that ice cover has a stronger effect on the energetics of tides than on their dynamics: the area-mean relative deviations constitute 1.5% for the density of the total tidal energy, 61.5% for the dissipation, 0.1% for the amplitudes of tidal sea level elevations, and 0.9% for the amplitudes of maximum barotropic tidal velocity. In this sense, the conclusion that the role of sea ice is insignificant in the formation of tides can be justified only partially. The main results of this paper are as follows: (1) the development of a module for tidal ice drift, (2) the inclusion of this module into the three-dimensional finite-element hydrothermodynamic model QUODDY-4 to extend its capabilities, and (3) the reproduction (on the basis of the modified model) of qualitative features of the practically important tidal ice drift and ice-induced changes in the tidal dynamics of marginal seas on the Siberian continental shelf.  相似文献   

6.
Modified PIC Method for Sea Ice Dynamics   总被引:1,自引:0,他引:1  
The sea ice cover displays various dynamical characteristics such as breakup, rafting, and ridging under external forces. To model the ice dynamic process accurately, the effective numerical modeling method should be established. In this paper, a modified particle-in-cell (PIC) method for sea ice dynamics is developed coupling the finite difference (FD) method and smoothed particle hydrodynamics (SPH). In this method, the ice cover is first discretized into a series of lagrangian ice particles which have their own sizes, thicknesses, concentrations and velocities. The ice thickness and concentration at Eulerian grid positions are obtained by interpolation with the Gaussian function from their surrounding ice particles. The momentum of ice cover is solved with FD approach to obtain the Eulerian cell velocity, which is used to estimate the ice particle velocity with the Gaussian function also. The thickness and concentration of ice particles are adjnsted with particle mass density and smooth length, which are adjusted with the redistribution of ice particles. With the above modified PIC method, numerical simulations for ice motion in an idealized rectangular basin and the ice dynamics in the Bohai Sea are carried out. These simulations show that this modified PIC method is applicable to sea ice dynamics simulation.  相似文献   

7.
基于质点-网格模式的海冰厚度变化过程数值模拟   总被引:4,自引:3,他引:4  
根据渤海冰情,在海冰动力学和热力学研究基础上,应用一种质点-网格海冰模式于渤海海域.该模式采用了质点-网格法,有效地避免了传统模式的数值扩散问题.该模式采用了冰厚分布函数,用多种类型冰代替用于渤海业务预报的平整冰、堆积冰和开阔水3-level模式.进行理想场的数值试验,模拟冰厚变化动力过程.还使用该模式和业务预报模式对于实际渤海冰情进行了不同个例的预报试验,发现该模式在提高冰外缘线预报精度方面有一定的优势.  相似文献   

8.
一种海冰热力过程参数化方案   总被引:5,自引:1,他引:4  
王可光  白珊 《海洋预报》1999,16(3):104-113
由于海冰热力过程太复杂,难于精确计算冰面和水面热量收支方程中的每一项,并且净热量收支比每项小得多,因此难以确定海冰热力一动力模式中的净热通量。本文根据渤海的水文气象观测,详细分析了太阳短波辐射、长波辐射、云量、感热和潜热等对海冰热力增长函数的贡献,给出了一种海冰热力过程的参数化方案。并选取2个典型的个例进行了对比研究。模拟结果表明,该参数化方案能较好地模拟渤海海冰的热力过程。  相似文献   

9.
北冰洋航路是未来全球航运的重点开拓领域,海冰运动对北冰洋航路开发有重要影响。本文利用风云三号卫星中分辨率光谱成像仪(FY-3/MERSI)数据的特点和优势,研究北冰洋流冰自动提取和运动跟踪的方法。首先在分析流冰灰度分布特征的基础上,提出分区域阈值分割与梯度差分相结合的方法实现块状流冰提取,然后根据块状流冰的多种几何特征匹配同名流冰并计算其运动速度。应用这种方法跟踪2011年6月弗雷姆海峡流冰运动,跟踪结果与美国国家冰雪数据中心提供的极地网格化日均海冰运动矢量整体趋势一致,验证了方法的有效性。这种方法获取各块流冰实际运动速度,可以有效弥补网格化海冰运动平均速度场分布和细节的不足,为北冰洋航路开发提供更详细的流冰运动信息。  相似文献   

10.
NUMERICAL EXPERIMENTS OF SEA ICE IN THE BOHAI SEA   总被引:1,自引:0,他引:1  
A rather complete sea ice model is given, which deals with not only thermodynamic and dynamic processes commonly used in previous models of sea ice but also a melting process of ice driven into warmer waters. A series of numerical experiments have been carried out in order to search after a mechanism of the growth and decay of sea ice in the Bohai sea, and the principal result shows that the melting process of sea ice driven into the warmer waters must be taken into consideration when the ice condition in such a partially frozen sea as the Bohai Sea is calculated.  相似文献   

11.
Sea ice drift is mainly controlled by ocean currents, local wind, and internal ice stress. Information on sea ice motion, especially in situ synchronous observation of an ice velocity, a current velocity, and a wind speed, is of great significance to identify ice drift characteristics. A sea ice substitute, the so-called "modelled ice", which is made by polypropylene material with a density similar to Bohai Sea ice, is used to complete a free drift experiment in the open sea. The trajectories of isolated modelled ice, currents and wind in the Bohai Sea during non-frozen and frozen periods are obtained. The results show that the currents play a major role while the wind plays a minor role in the free drift of isolated modelled ice when the wind is mild in the Bohai Sea. The modelled ice drift is significantly affected by the ocean current and wind based on the ice–current–wind relationship established by a multiple linear regression. The modelled ice velocity calculated by the multiple linear regression is close to that of the in situ observation, the magnitude of the error between the calculated and observed ice velocities is less than12.05%, and the velocity direction error is less than 6.21°. Thus, the ice velocity can be estimated based on the observed current velocity and wind speed when the in situ observed ice velocity is missing. And the modelled ice of same thickness with a smaller density is more sensitive to the current velocity and the wind speed changes. In addition, the modelled ice drift characteristics are shown to be close to those of the real sea ice, which indicates that the modelled ice can be used as a good substitute of real ice for in situ observation of the free ice drift in the open sea, which helps solve time availability, safety and logistics problems related to in situ observation on real ice.  相似文献   

12.
渤海海冰漂移过程的数值模拟和试验   总被引:11,自引:0,他引:11  
建立了一个包含潮流作用的准定常海冰动力学模式,利用实测风资料和计算的潮流场对辽东湾中部的冰块漂移过程进行数值模拟,模拟的冰块漂移过程和实况基本一致。表明模式具有反映冰漂移过程动力特征的能力。通过对各动力因子的数值试验,说明引入潮流作用的必要性,并分析了各动力因子在冰漂移过程中的作用。  相似文献   

13.
Previous studies have highlighted reversals in the Beaufort Gyre on regional scales during summer months, and more recently, throughout the annual cycle. In this study we investigate coherent ice drift features associated with individual ice beacons during winter 2008 that may be a signature of ice–coast interactions, atmospheric and/or oceanic forcing. Examined in particular are three case studies associated with reversals in ice beacon trajectories in January and April of 2008; case I corresponds to a meander reversal event in January, case II to a loop reversal event in April, and case III to a meander reversal event located to the northeast of the Mackenzie Canyon in April. An assessment of atmospheric and oceanic conditions during these reversal events shows enhanced ocean–sea-ice–atmosphere dynamical coupling during the Case I meander reversal event in January and comparatively weak coupling during the Case II loop and Case III meander reversal event in April. Absolute (single-particle/beacon) and relative (two-particle/beacon) dispersion results demonstrate dominant meridional ice drift displacement and inter-beacon separation for Case I relative to Cases II and III indicative of ice–ice and ice–coast interactions in January. The results from this investigation provide an ice drift case study analysis relevant to, and template for, high-resolution sea ice dynamic modeling studies essential for safety and hazard assessments of transportation routes and shipping lanes, ice forecasting, and nutrient and contaminant transport by sea ice in the Arctic.  相似文献   

14.
The dynamics of ice formation and phytoplankton bloom development in the coastal region of the Okhotsk Sea, Hokkaido, where the Japanese scallop, Mizuhopecten yessoensis, are cultured were investigated using seven years (1998–2004) satellite data from the Special Sensor Microwave/Imager (SSM/I) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The interannual variability of sea ice cover and timing of spring bloom occurrences were analyzed. Longer ice cover in 1999, 2001 and 2003 with the presence of ice until early April and shortened ice cover in 1998, 2000, 2002 and 2004 with the occurrence of ice until early March were recognized at this area. Variability in the timing of sea ice retreat and development of spring blooms at the scallop areas were observed. Progression of a single ice edge bloom showed higher Chl-a concentration compared to development of an initial ice edge bloom followed by a later open water bloom. Higher concentration of phytoplankton biomass was observed in the initial bloom when sea ice melting is delayed compared to when the sea ice leaves earlier. Wind events were also observed to affect the occurrences of spring bloom.  相似文献   

15.
北极冬季季节性海冰双模态特征分析   总被引:1,自引:1,他引:0  
郝光华  苏洁  黄菲 《海洋学报》2015,37(11):11-22
近年来北极海冰快速变化,北极中央区边缘正由以多年冰为主转为季节性海冰为主。通过对北极冬季季节性海冰的EOF分解发现,2002-2012年期间北极季节性海冰变化的前两模态主要体现为2005年和2007年的季节性海冰距平。其中第二模态主要体现了北极海冰在2005年的一种极端变化,而第一模态不仅体现了北极海冰在2007年的变化,还体现了北极季节性海冰的从负位相到正位相的转变。通过比较发现,在研究时段北极季节性海冰最主要的变化发生在北极太平洋扇区,在2007年,冬季季节性海冰距平发生位相转变,2007-2010年一直维持正位相,北极太平洋扇区冬季季节性海冰保持显著正距平。太平洋扇区表面温度最大异常也发生在2007年,从大气环流来看,2007年之后波弗特海区异常高压有利于夏季太平洋扇区海冰的减少,而西风急流的减弱有利于夏季波弗特海区异常高压的维持,结合夏季海冰速度,顺时针的冰速分布有利于海冰离开太平洋扇区,因而会导致冬季太平洋扇区季节性海冰转为正距平并且从2007年一直维持到2010年。  相似文献   

16.
Numerical sea ice prediction in China   总被引:5,自引:2,他引:3  
NumericalseaicepredictioninChinaWuHuiding,BaiShan,ZhangZhanhai1(ReceivedSeptember12,1996;acceptedJune5,1997)Abstract──Adynami...  相似文献   

17.
1 INTRODUcTIONlt is weIl known by whalers and sealers tha in iee covered seas wave is attenuatedas it lnoves inward from the ice edge. But Systematic obsewation on the attenuationphenomenon is rare. Some examples are given in the references [l-3]. In these referenceS,direct measurementS on wave attenuation dije to ice covers are repeded. Theoretical foundationis needed to explain these observations in order to generelize the resultS. These generalizedlesults can then be appIted to wave-…  相似文献   

18.
基于2018年8月至2019年5月布放在北极随海冰漂流的自动气象站和温度链浮标获取的观测数据,分析了北极高纬度区域的大气特征和海冰生消过程。根据海冰的漂移轨迹分为两个阶段分析,第1阶段,海冰主要向东南漂移;第2阶段,海冰主要向东北漂移。第1阶段观测的平均气温和平均相对湿度分别为–6.6℃和93%,第2阶段观测的平均气温和平均相对湿度分别为–29.3℃和76%,第2阶段平均气压高于第1阶段。海冰的漂移轨迹主要受到波弗特高压外围气流的影响。利用自动气象站漂移轨迹计算得到海冰漂移速度,与美国国家冰雪数据中心海冰漂移速度比较显示,两者纬向速度更为接近。海冰在第1阶段以融化为主,海冰厚度略有减小,8月份海冰生长率为–0.11 cm/d;海冰的生长过程主要发生在第2阶段,1–3月生长率均超过0.9 cm/d,2019年3月海冰生长最快,平均生长率为1.3 cm/d,海冰的增长一直持续至观测结束。  相似文献   

19.
Sea ice growth and consolidation play a significant role in heat and momentum exchange between the atmosphere and the ocean. However, few in situ observations of sea ice kinematics have been reported owing to difficulties of deployment of buoys in the marginal ice zone (MIZ). To investigate the characteristics of sea ice kinematics from MIZ to packed ice zone (PIZ), eight drifting buoys designed by Taiyuan University of Technology were deployed in the open water at the ice edge of the Canadian Basin. Sea ice near the buoy constantly increased as the buoy drifted, and the kinematics of the buoy changed as the buoy was frozen into the ice. This process can be determined using sea ice concentration, sea skin temperature, and drift speed of buoy together. Sea ice concentration data showed that buoys entered the PIZ in mid-October as the ice grew and consolidated around the buoys, with high amplitude, high frequency buoy motions almost ceasing. Our results confirmed that good correlation coefficient in monthly scale between buoy drift and the wind only happened in the ice zone. The correlation coefficient between buoys and wind was below 0.3 while the buoys were in open water. As buoys entered the ice zone, the buoy speed was normally distributed at wind speeds above 6 m/s. The buoy drifted mainly to the right of the wind within 45° at wind speeds above 8 m/s. During further consolidation of the ice in MIZ, the direct forcing on the ice through winds will be lessened. The correlation coefficient value increased to 0.9 in November, and gradually decreased to 0.7 in April.  相似文献   

20.
The rapid decrease in Arctic sea ice cover and thickness not only has a linkage with extreme weather in the midlatitudes but also brings more opportunities for Arctic shipping routes and polar resource exploration, both of which motivate us to further understand causes of sea-ice variations and to obtain more accurate estimates of seaice cover in the future. Here, a novel data-driven method, the causal effect networks algorithm, is applied to identify the direct precursors of September sea-ice extent covering the Northern Sea Route and Transpolar Sea Route at different lead times so that statistical models can be constructed for sea-ice prediction. The whole study area was also divided into two parts: the northern region covered by multiyear ice and the southern region covered by seasonal ice. The forecast models of September sea-ice extent in the whole study area(TSIE) and southern region(SSIE) at lead times of 1–4 months can explain over 65% and 79% of the variances, respectively,but the forecast skill of sea-ice extent in the northern region(NSIE) is limited at a lead time of 1 month. At lead times of 1–4 months, local sea-ice concentration and sea-ice thickness have a larger influence on September TSIE and SSIE than other teleconnection factors. When the lead time is more than 4 months, the surface meridional wind anomaly from northern Europe in the preceding autumn or early winter is dominant for September TSIE variations but is comparable to thermodynamic factors for NSIE and SSIE. We suggest that this study provides a complementary approach for predicting regional sea ice and is helpful in evaluating and improving climate models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号