首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
On the basis of numerical simulation of the mean circulation and relevant thermal-salinity fields in June with a three-dimensional ocean model (ECOM-si), the model outputs are used as first guess of initial fields for numerical integration of the model equations and the numerical results are applied to investigating the dynamical responses of the Huanghai Sea and the East China Sea (HECS) in the course of a weak land-to-sea cyclone‘s passage over the Huanghai Sea on 15-16 June 1999. Predominance of the dynamic impact of cyclone over the thermal one in June in the HECS is justified using observations and model simulations.The cyclone and its surrounding weather system, i.e,, subtropical high ridge to its south could influence current and thermal fields in the Bohai Sea, the Huanghai Sea and the northern East China Sea even though the intensity of cyclone was rather weak. The response of oceanic currents to the wind stresses driven by the cyclone and its southern subtropical high were strongly characterized by the wind drift with its extent of equivalent scale of cyclone in the horizontal and of Ekman layer in the vertical. The sea response at a given site was closely related to the transient local wind speed and direction,especially was sensitive to the local wind direction,which is demonstrated at three points locating at the southern and western Huanghai Sea and the northern East China Sea. So the sea responses at locations differed considerably from one another. Current responded to the wind stress in a simple way:directly to the wind-driven current and subsequent gradient current and slope current, etc., whereas sea temperature responded to the wind stress in two ways: directly to the cyclone-induced cooling and indirectly to water movements both in the horizontal and the vertical by the cyclone‘ s wind stress. So the sea temperature variation under the influence of cyclone was more complicate than the current. The HECS in response to the cyclone and its ambient weather system was likely to be a fast process and such a response could last at least for more than 1d. Current increased with the duration of wind stress exerted on the surface and decreased with the increasing depth. Affected by the cyclone, the maximum sea surface temperature decreased by almost 1.6℃ during the 24h cyclone.  相似文献   

2.
The Chukchi and Beaufort Seas include several important hydrological features: inflow of the Pacific water, Alaska coast current ( ACC ), the seasonal to perennial sea ice cover, and landfast ice 'along the Alaskan coast. The dynamics of this coupled ice-ocean system is important for both regional scale oceanography and large-scale global climate change research. A mumber of moorings were deployed in the area by JAMSTEC since 1992, and the data revealed highly variable characteristics of the hydrological environment. A regional high-resolution coupled ice-ocean model of the Chukchi and Beaufort Seas was established to simulate the ice-ocean environment and unique seasonal landfast ice in the coastal Beaufort Sea. The model results reproduced the Beaufort gyre and the ACC. The depthaveraged annual mean ocean currents along the Beaufort Sea coast and shelf hreak compared well with data from four moored ADCPs, but the simulated velocity had smaller standard deviations, which indicate small-scale eddies were frequent in the region. The model resuits captured the sea,real variations of sea ice area as compared with remote sensing data, and the simulated sea ice velocity showed an ahnost stationary area along the Beaufort Sea coast that was similar to the observed landfast ice extent. It is the combined effects of the weak oceanic current near the coast, a prevailing wind with an onshore component, the opposite direction of the ocean current, and the blocking hy the coastline that make the Beaufort Sea coastal areas prone to the formation of landfast ice.  相似文献   

3.
Based on a coupled ocean-sea ice model, this study investigates how changes in the mean state of the atmosphere in different CO_2 emission scenarios(RCP 8.5, 6.0, 4.5 and 2.6) may affect the sea ice in the Bohai Sea, China,especially in the Liaodong Bay, the largest bay in the Bohai Sea. In the RCP 8.5 scenario, an abrupt change of the atmospheric state happens around 2070. Due to the abrupt change, wintertime sea ice of the Liaodong Bay can be divided into 3 periods: a mild decreasing period(2021–2060), in which the sea ice severity weakens at a nearconstant rate; a rapid decreasing period(2061–2080), in which the sea ice severity drops dramatically; and a stabilized period(2081–2100). During 2021–2060, the dates of first ice are approximately unchanged, suggesting that the onset of sea ice is probably determined by a cold-air event and is not sensitive to the mean state of the atmosphere. The mean and maximum sea ice thickness in the Liaodong Bay is relatively stable before 2060, and then drops rapidly in the following decade. Different from the RCP 8.5 scenario, atmospheric state changes smoothly in the RCP 6.0, 4.5 and 2.6 scenarios. In the RCP 6.0 scenario, the sea ice severity in the Bohai Sea weakens with time to the end of the twenty-first century. In the RCP 4.5 scenario, the sea ice severity weakens with time until reaching a stable state around the 2070 s. In the RCP 2.6 scenario, the sea ice severity weakens until the2040 s, stabilizes from then, and starts intensifying after the 2080 s. The sea ice condition in the other bays of the Bohai Sea is also discussed under the four CO_2 emissions scenarios. Among atmospheric factors, air temperature is the leading one for the decline of the sea ice extent. Specific humidity also plays an important role in the four scenarios. The surface downward shortwave/longwave radiation and meridional wind only matter in certain scenarios, while effects from the zonal wind and precipitation are negligible.  相似文献   

4.
Wang  Kun  Du  Jing  Liu  Ming  Wu  Jin-hao  Jiang  Heng-zhi  Jin  Sheng  Song  Lun 《中国海洋工程》2019,33(2):185-197
The Bohai Sea is a seasonal icy sea area that has the lowest latitude of any sea experiencing icing in the northern hemisphere, and simulation studies on oil spills during its sea ice period are the key to analyzing winter oil spill accidents. This study applied the three-dimensional free surface to establish a high-resolution hydrodynamic model and simulate tidal distributions in the Bohai Sea. Then, the oil spill model of the open sea area and thermodynamic model were combined to establish a numerical model for the Bohai oil spill during the winter sea ice period. The hydrodynamic model and sea ice growth and melting model were verified, and the parameters were adjusted based on the measured values, which indicate that the numerical model established in this paper is of high accuracy,stability and ubiquity. Finally, after checking the calculations repeatedly, the diffusion coefficient for the Bohai Sea was determined to be 1.0×10~(–7 )m~2/s. It is better that the comprehensive weathering attenuation coefficient is lower than that of a non-winter oil spill, with 1.3×10~(–7 )m~2/s being the most appropriate coefficient. This study can provide the reliable technical support for the operational safety and reduction in losses caused by winter oil spill accidents for the petroleum industry.  相似文献   

5.
The research on sea ice resources is the academic base of sea ice exploitation in the Bohai Sea. According to the ice-water spectrum differences and the correlation between ice thickness and albedo, this paper comes up with a sea ice thickness inversion model based on the NOAA/AVHRR data. And then a sea ice resources quantity (SIQ) time series of Bohai Sea is established from 1987 to 2009. The results indicate that the average error of inversion sea ice thickness is below 30%. The maximum sea ice resources quantity is about 6 × 10 9 m 3 and the minimum is 1.3 × 10 9 m 3 . And a preliminary analysis has been made on the errors of the estimate of sea ice resources quantity (SIQ).  相似文献   

6.
The present work describes the basic features of super typhoon Meranti(2016) by multiple data sources. We mainly focus on the upper ocean response to Meranti using multiplatform satellites, in situ surface drifter and Argo floats, and compare the results with the widely used idealized wind vortex model and reanalysis datasets.The pre-existing meso-scale eddy provided a favor underlying surface boundary condition and also modulated the upper ocean response to Meranti. Results show that the maximum sea surface cooling was 2.0℃ after Meranti.The satellite surface wind failed to capture the core structure of Meranti as the idealized wind vortex model deduced. According to the observation of sea surface drifters, the near-inertial currents were significantly enhanced during the passage of Meranti. The temperature and salinity profiles from Argo floats revealed both the mixed-layer extension and subsurface upwelling induced by Meranti. The comparison results show that the sea surface temperature and surface wind in the reanalysis datasets differs from those in remote sensing system. Sea surface cooling is similar in both satellite and in situ observation, and sea surface salinity response has a lower correlation with the precipitation rate.  相似文献   

7.
基于MODIS热红外数据的渤海海冰厚度反演   总被引:3,自引:1,他引:2  
Level ice thickness distribution pattern in the Bohai Sea in the winter of 2009–2010 was investigated in this paper using MODIS night-time thermal infrared imagery.The cloud cover in the imagery was masked out manually.Level ice thickness was calculated using MODIS ice surface temperature and an ice surface heat balance equation.Weather forcing data was from the European Centre for Medium-Range Weather Forecasts(ECMWF) analyses.The retrieved ice thickness agreed reasonable well with in situ observations from two off-shore oil platforms.The overall bias and the root mean square error of the MODIS ice thickness are –1.4 cm and 3.9 cm,respectively.The MODIS results under cold conditions(air temperature –10°C) also agree with the estimated ice growth from Lebedev and Zubov models.The MODIS ice thickness is sensitive to the changes of the sea ice and air temperature,in particular when the sea ice is relatively thin.It is less sensitive to the wind speed.Our method is feasible for the Bohai Sea operational ice thickness analyses during cold freezing seasons.  相似文献   

8.
A hybrid Lagrangian-Eulerian(HLE) method is developed for sea ice dynamics,which combines the high computational efficiency of finite difference method(FDM) with the high numerical accuracy of smoothed particle hydrodynamics(SPH).In this HLE model,the sea ice cover is represented by a group of Lagrangian ice particles with their own thicknesses and concentrations.These ice variables are interpolated to the Eularian gird nodes using the Gaussian interpolation function.The FDM is used to determine the ice velocities at Eulerian grid nodes,and the velocities of Lagrangian ice particles are interpolated from these grid velocities with the Gaussian function also.The thicknesses and concentrations of ice particles are determined based on their new locations.With the HLE numerical model,the ice ridging process in a rectangular basin is simulated,and the simulated results are validated with the analytical solution.This method is also applied to the simulation of sea ice dynamics in a vortex wind field.At last,this HLE model is applied to the Bohai Sea,and the simulated concentration,thickness and velocity match the satellite images and the field observed data well.  相似文献   

9.
渤海夏季环流的高分辨率海浪-潮汐-环流耦合模式研究   总被引:2,自引:0,他引:2  
The Bohai Sea is a shallow semi-enclosed inner sea with an average depth of 18 m and is located at the west of the northern Yellow Sea. The climatological circulation pattern in summer of the Bohai Sea is studied by using a wave-tide-circulation coupled model. The simulated temperature and the circulation agree with the observation well. The result shows that the circulation pattern of the Bohai Sea is jointly influenced by the tidal residual current, wind and baroclinic current. There exists an obvious density current along the temperature front from the west part of the Liaodong Bay to the offshore area of the Huanghe Estuary. In the Liaodong Bay there exists a clockwise gyre in the area north to the 40°N. While in the area south to the 40°N the circulation shows a two-gyre structure, the flow from the offshore area of the Huanghe Estuary to the Liaodong Bay splits into two branches in the area between 39°N and 40°N. The west branch turns into north-west and forms an anti-clockwise gyre with the south-westward density current off the west of the Liaodong Bay. The east branch turns to the east and forms a clockwise gyre with the flow along the east coast of the Liaodong Bay. The forming mechanism of the circulation is also discussed in this paper.  相似文献   

10.
溢油污染的渤海海冰反射光谱特征实测研究   总被引:1,自引:1,他引:0  
Oil spilled on the sea ice surface in the Bohai Sea of China is studied through the field measurements of the reflectance of a simulated sea ice-oil film mixed pixel. The reflection characteristics of sea ice and oil film are also analyzed. It is found that the mixed pixel of sea ice and oil film is a linear mixed pixel. The means of extracting sea ice pixels containing oil film is presented using a double-band ratio oil-film sea-ice index(DROSI) and a normalized difference oil-film sea-ice index(NDOSI) through the analysis of the reflectance curves of the sea iceoil film pixel for different ratios of oil film. The area proportion of the oil film in the sea ice-oil film pixel can be accurately estimated by the average reflectance of the band of 1 610–1 630 nm, and the volume of the spilled oil can be further estimated. The method of the sea ice-oil film pixel extraction and the models to estimate the proportion of oil film area in the sea ice-oil film pixel can be applied to the oil spill monitoring of the ice-covered area in the Bohai Sea using multispectral or hyperspectral remote sensing images in the shortwave infrared band(1 500–1 780 nm).  相似文献   

11.
渤海冰漂移对海面风场、潮流场的响应   总被引:7,自引:1,他引:7  
在对海冰漂移动力学分析基础上,利用MODIS资料,采用MCC方法获取渤海大范围冰覆盖的海域冰速场,并利用NCEP风速资料和潮流资料进行回归分析,得到渤海冰漂移速度与风速和流速的关系.利用MODIS和NOAA/AVHRR资料获取的渤海冰速资料的综合分析显示:渤海海冰运动,除受盛行风控制外,还受到复杂的海岸地形、流和冰内应力的共同作用,所得到的大范围海冰运动规律和多年历史观测资料分析结果基本一致,并清楚地显示了冰边缘带海冰运动的特征,弥补了局地、单站海冰观测的局限性.  相似文献   

12.
渤海海冰漂移过程的数值模拟和试验   总被引:11,自引:0,他引:11  
建立了一个包含潮流作用的准定常海冰动力学模式,利用实测风资料和计算的潮流场对辽东湾中部的冰块漂移过程进行数值模拟,模拟的冰块漂移过程和实况基本一致。表明模式具有反映冰漂移过程动力特征的能力。通过对各动力因子的数值试验,说明引入潮流作用的必要性,并分析了各动力因子在冰漂移过程中的作用。  相似文献   

13.
对海冰的运动规律进行精确、连续和长周期的实时监测有助于海冰热力学和动力学的研究,也可保障冰区生产活动的安全进行。针对辽东湾海冰的运动特点和工程需求,在JZ20-2油气平台上建立了海冰雷达监测系统。采用数字图像处理技术对海冰雷达监测图像进行了分析和软件开发,可对海冰密集度、速度和冰块面积等海冰参数进行提取。采用该海冰雷达监测系统和数字图像处理软件,在2011-2012年冬季对该海域的海冰运动规律进行了全冰期的连续监测,在此基础上重点对海冰速度的雷达图像监测结果进行了分析,讨论了海冰速度场分布以及连续48 h的变化过程。以上结果为海冰的生消运移规律研究和油气作业区的海冰管理工作提供了可靠的现场监测数据。对海冰雷达现场监测及数字图像处理中的问题及改进方法进行了讨论。  相似文献   

14.
基于GOCI数据渤海海冰厚度算法研究   总被引:2,自引:0,他引:2  
提出一种基于GOCI数据提取渤海海冰厚度方法并将其应用于2014年-2015年冬季渤海海冰厚度动态变化监测。首先基于高时间分辨率的GOCI数据建立GOCI短波宽带反射率与各波段反射率模型,然后建立海冰厚度与GOCI短波宽带反射率模型,并将此模型应用于渤海海冰厚度监测,最后通过基于MODIS数据、热动力学模型(Lebedev和Zubov模型)反演获得的海冰厚度以及实测海冰厚度数据对实验结果进行验证。实验结果表明:基于GOCI数据建立海冰厚度模型所反演的海冰厚度与基于MODIS数据反演的海冰厚度以及Lebedev和Zubov模型具有较高相关性(R2>0.86),而且反演结果接近实测数据(RMS为6.82 cm)。  相似文献   

15.
渤海海冰现场监测的数字图像技术及其应用   总被引:1,自引:1,他引:0       下载免费PDF全文
在渤海冰区油气开发中,海冰给平台结构、油气运输和施工作业带来很大影响.油气作业区海冰参数精确、连续、实时的现场监测对分析油气开发的可靠性、检验海冰数值模式、校正海冰卫星遥感数据具有重要意义.针对渤海油气作业区的海冰运动和分布特性,通过数字图像技术对海冰的厚度、运动速度和密集度三个参数的提取进行了算法开发和软件研制.在2...  相似文献   

16.
Numerical simulation for dynamical processes of sea ice   总被引:1,自引:0,他引:1  
NumericalsimulationfordynamicalprocessesofseaiceWuHuiding,BaiShan,ZhangZhanhaiandLiGuoqing(ReceivedMay16,1996;acceptedJanuary...  相似文献   

17.
Numerical sea ice prediction in China   总被引:5,自引:2,他引:3  
NumericalseaicepredictioninChinaWuHuiding,BaiShan,ZhangZhanhai1(ReceivedSeptember12,1996;acceptedJune5,1997)Abstract──Adynami...  相似文献   

18.
海冰动力学过程的数值模拟   总被引:41,自引:11,他引:30  
讨论了海冰动力学性质并阐述决定海冰漂移的动量平衡,冰脊和水道形成及确定冰应力与形变、强度之间关系的海冰流变学.提出了模拟海冰动力学过程的数值模式,模式中冰厚分布由开阔水、平整冰和堆积冰3种要素表示.在这3要素的预报方程中引入形变函数,采用一种参数化方法模拟冰脊和水道.为了表示冰内相互作用,将海冰作为一种非线性粘性可压缩物质,采用粘-塑性本构关系.本文还概述和讨论了模式中所采用的数值方法,应用此模式模拟了渤海、波罗的海的波的尼亚湾和拉布拉多海的冰漂移.渤海冰漂移模拟结果明显地显示出潮周期变化,还模拟了渤海的冰脊和水道,进行了海冰流变学参数的敏感性试验.并将此冰模式与大气模式和边界层模式联接,给出渤海海冰预报结果.  相似文献   

19.
为给寒区海域的波浪能估算提供科学依据,提出一种合理推算冰水共存海域波浪条件及波能流密度的方法,该方法将海冰模型与水动力学模型耦合模拟得到的冰浓度以线性修正函数的方式纳入波浪模型的海面摩阻风速方程中,并基于MCT (model coupling toolkit)耦合器将海冰模型、水动力学模型与波浪模型进行实时耦合。基于该方法模拟了渤海冬季寒潮大风期间的海冰以及波能流密度的演化。模拟结果表明,在2012年2月5~8日寒潮大风期间,结冰区域占到渤海总面积的1/3,约有76%的渤海海域的平均波能流密度受海冰影响减小,其中辽东湾近岸的波能流密度平均受冰影响最多减小了100%,而渤海湾和莱州湾近岸受冰影响最多分别减小了60%和50%。即使是无冰覆盖的老铁山水道,其波能流密度的最大值也受冰影响减少了14%。耦合模拟可以更为准确地对渤海冬季的波能流密度分布进行评估,为波浪能发电厂选址提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号