首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
通过对铁卜加牧业气象试验站1987~1996年土壤湿度资料的分析,对土壤湿度随深度、时间的变化及各时段土壤湿度与降水的关系有了初步结论,并研制了春季解冻时和解冻到5月下旬各层次土壤湿度的长期预报方法。  相似文献   

2.
农田土壤湿度的人工神经网络预测诊断系统   总被引:1,自引:0,他引:1       下载免费PDF全文
金龙  袁成松 《气象》1997,23(3):25-29
采用人工神经网络(ANN)方法,研制了农田土壤湿度预测,诊断分析系统,该系统根据不同的土壤湿度特点和影响因子,可自动提供时间序列拓展的人工神经网络预测模型和人工神经网络的混合预测模型进行土壤湿度的动态预测。并提供不同降水量的土壤湿水分渗透深度诊断分析,系统采用中文菜单显示的人机对话方式操作,使具有准动力学特性,多种可调参数和网络结构的ANN方法变得简便易于操作。实际使用表明,该系统对土壤湿度的预测  相似文献   

3.
分析了贵州作物地段土壤湿度观测中存在的两个问题,其一为观测数据不完善,其二为观测数据代表性差,对如何有效地提高土壤湿度观测的代表性和实用性提出了一些建议。  相似文献   

4.
试用极轨气象卫星遥感监测土壤墒情   总被引:2,自引:0,他引:2  
赵玉金 《气象》1994,20(4):37-40
讨论了用极轨气象卫星资料监测表层土壤湿度的方法。在建立土壤湿度与卫星遥感资料的关系时,为了消除土壤条件的影响,把全省分为4个区域来研究。考虑了气候条件,植被状况不同的影响,并给出了简单的订正方法,同时也给出了卫星资料的重新地理校正,资料的输出及存储方法等。  相似文献   

5.
阐述了土壤湿度对短期气候变化的重要作用,结合我国的业务现状提出亟需将这一因子应用于跨季度降水预测。通过将一个土壤湿度反演模型引入IAP跨季度气候预测系统,探讨了土壤湿度应用于季节降水预测的可行性及其效果。初步的个例分析表明:前期土壤湿度的异常分布对降水变化有较显著的影响,继续改进土壤湿度反演模型可望获得更好的降水预测效果。同时,提出的基于常规气象观测进行反演以获得大范围土壤湿度分布的办法在当前业务预测中具有很强的可操作性。  相似文献   

6.
用NOAA卫星资料监测土壤湿度方法的探讨   总被引:3,自引:0,他引:3  
本文提出一种利用NOAA气象卫星资料结合数字化地形资料进行土壤湿度监测的方法,其思想是以冠层温度随植被指数的变化率作为监测土壤湿度的因子。  相似文献   

7.
提出将集合平方根滤波(EnSRF)估计的预报误差协方差用于四维变分(4DVAR)的同化方案(文中称混合四维变分同化方法,简称混合方法)来反演土壤湿度廓线,该方法由两个同化时段构成: 第一时段为EnSRF,第二时段为4DVAR,此种组合可以充分发挥每一同化方法的优势。通过同化表层土壤湿度观测反演土壤湿度廓线这一理想试验来验证方法的可行性,并与EnSRF和4DVAR的反演结果进行比较,结果表明, 混合方法反演的分析时刻土壤湿度廓线都优于EnSRF和4DVAR的结果。与此同时,为了克服小样本在估算背景场误差协方差矩阵时出现的虚假相关对反演的干扰, 提出在原有协方差矩阵中加入具有高斯指数函数成分来降低其影响;与修正前结果相比,反演的中下层(地下34~100 cm) 土壤湿度的均方根误差从0.036 cm3/cm3降到0.016 cm3/cm3, 降幅为55.6%, 更重要的是大大降低了部分深度处反演土壤湿度的误差, 如地下90 cm处误差从0.085 cm3/cm3降到0.024 cm3/cm3, 降幅达71.8%。  相似文献   

8.
本文利用中国西南喀斯特区域内该区域内全部31个农业气候站点1991~2013年50cm层土壤湿度(体积含水量)旬资料,应用线性趋势分析、EOF空间分解方法,详细分析其时空演变特征,进一步认识中国西南喀斯特地区土壤湿度的时空演变特征,结果表明:(1)西南喀斯特地区中层土壤湿度多年平均的空间大小及分布具有明显的区域性差异。(2)1991~2013年季节平均中,中层秋季的土壤湿度整体最高,夏季土壤湿度的低值区范围最大,反映了西南喀斯特地区土壤的独特性。(3)中层土壤湿度年际变化有明显的“南升北降”空间分布特征,相应线性趋势分析和EOF的结果也同样印证了这一主要特征。(4)50cm的年际变化较稳定且波动趋势较小;整体的土壤湿度以夏、秋季最高,春、冬季较低。   相似文献   

9.
应用NOAA卫星AVHRR通道1、2计算的植被指数和通道4的亮温、农业气象试验站观测的土壤湿度,并结合气象卫星完成的土地覆盖分类等资料,建立了由植被指数和亮温估算甘肃省东部农田区土壤湿度的方程。结果表明,农田土壤湿度与植被指数和亮温间均存在一定相关关系;用植被指数和亮温可以估计土壤湿度情况,并对干旱进行监测。  相似文献   

10.
卫星被动微波遥感土壤湿度研究进展   总被引:5,自引:2,他引:3  
土壤湿度是控制陆地和大气间水分和能量交换过程的重要变量,而被动微波遥感是众多监测土壤湿度技术中最有效的手段之一。文中概述了被动微波反演土壤湿度的物理原理,重点介绍了被动微波反演土壤湿度的主要模型。在对不同模型进行比较分析后,基于不同传感器类型分别列举了当今发展较完善的3个典型算法:①Njoku和Li基于AMSR的多通道同时反演土壤湿度、土壤温度、植被含水量的方法;②Owe等基于SMMR利用极化差异指数同时反演土壤湿度和植被光学厚度2个参数的方法;③Wen等基于SSM/I同时反演土壤湿度和土壤温度的方法。对被动微波遥感土壤湿度研究中目前所存在的问题和发展前景进行了一些探讨。  相似文献   

11.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

12.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

13.
正ERRATUM to: Atmospheric and Oceanic Science Letters, 4(2011), 124-130 On page 126 of the printed edition (Issue 2, Volume 4), Fig. 2 was a wrong figure because the contact author made mistake giving the wrong one. The corrected edition has been updated on our website. The editorial office is sincerely sorry for any  相似文献   

14.
15.
Index to Vol.31     
正AN Junling;see LI Ying et al.;(5),1221—1232AN Junling;see QU Yu et al.;(4),787-800AN Junling;see WANG Feng et al.;(6),1331-1342Ania POLOMSKA-HARLICK;see Jieshun ZHU et al.;(4),743-754Baek-Min KIM;see Seong-Joong KIM et al.;(4),863-878BAI Tao;see LI Gang et al.;(1),66-84BAO Qing;see YANG Jing et al.;(5),1147—1156BEI Naifang;  相似文献   

16.
正Journal of Meteorological Research is an international academic journal in atmospheric sciences edited and published by Acta Meteorologica Sinica Press,sponsored by the Chinese Meteorological Society.It has been acting as a bridge of academic exchange between Chinese and foreign meteorologists and aiming at introduction of the current advancements in atmospheric sciences in China.The journal columns include Articles.Note and Correspondence,and research letters.Contributions from all over the world are welcome.  相似文献   

17.
18.
自地球形成至寒武纪将近40亿年(距今46亿~5.4亿年,通常称为前寒武纪)的气候演变是一个具有特殊难度和挑战性的研究领域,同时也是基础和前沿的研究领域。文章选择了前寒武纪气候演化中的三个重要科学问题进行综述:大气演化、两次全球性的冰川期以及暗弱太阳问题。关于大气演化,本文首先描述了大气成分的演化历史,然后简述了影响大气成分演化的三个基本过程:大气逃逸、两次大气氧含量突然增加、碳酸盐-硅酸盐循环及其对气候系统的负反馈作用。两次全球性的冰川期分别发生在古元古代(距今24亿~21亿年)和新元古代(距今8亿~5.8亿年),文章简述了其成因以及相关的气候模拟结果。暗弱太阳问题是地球历史气候演化的一个经典问题,论文简要地综述了一些最新的研究成果和观点。  相似文献   

19.
淮河流域水文极值预测模型研究   总被引:1,自引:0,他引:1  
为探索气候变化影响下水文极值的非平稳性和预测方法,建立了水文极值非平稳广义极值(GEV)分布的统计预测模型。利用1952-2010年淮河上游流域累计面雨量和流量年最大值资料、同期500 hPa环流特征量资料以及17个CMIP5模式对环流特征量的模拟结果,筛选出对水文极值影响显著的年平均北半球极涡强度指数作为GEV分布参数的预测因子。分析了在RCP2.6、RCP4.5和RCP8.5情景下2006-2050年淮河上游流域水文极值对气候变化的响应。结果表明,10年以下与10年以上重现期的水文极值在非平稳过程中呈现前者下降而后者上升的相反变化趋势;多模型预测的集合平均在未来情景中均呈现上升趋势,情景排放量越大增幅越大,重现期越长增幅也越大。与极值的常态相比,极值的极端态更易受气候变化影响。  相似文献   

20.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号